Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Водяной пар удаление из газов

    Для выгрузки кокса используют механическую лебедку, которую укрепляют и располагают в месте, удобном для наблюдения за процессом выгрузки. Аварийный спускной трубопровод прокладывают, предусматривая возможность прокачки его продуктом или продувки паром. Площадку для выгрузки кокса оборудуют водяными стояками для тушения кокса из расчета один стояк на три куба. Открывают коксовый куб только после продувки его водяным паром для удаления газов и паров нефте- [c.94]


    Описан [27] двухступенчатый процесс очистки газа от HjS и органических сернистых соединений. Для удаления HgS на первой ступени процесса используется активированный уголь из буроугольного полукокса. На второй ступени для полного удаления органических сернистых соединений (сероокись углерода, сероуглерод it тиофен) применяют уголь, приготовленный таким же методом из антрацита. Эффективная очистка от органических сернистых соединений на второй ступени процесса возможна только, если газ не содержит даже следов сероводорода и углеводородов. Вероятно, при добавке к насыщенному водяными парами газу аммиака и кислорода в количествах, несколько превышающих стехиометрические, сероокись углерода полностью превращается в сульфат аммония и тиомочевину, сероуглерод — в сульфат и тиосульфат аммония, а тиофен — в тиомочевину. Условия очистки объемная скорость 350—400 ч , температура 27—38° С. Активированный уголь адсорбирует 10 — 12% органических сернистых соединений. Регенерацию осуществляют экстрагированием насыщенного угля конденсатом водяного пара при 79—80° С с последующим пропариванием перегретым до 400 С водяным наром нри избыточном давлении 0,5 ат. [c.187]

    Открытие кубов для удаления газов, паров нефтепродуктов и охлаждения кокса можно производить только после продувки их водяным паром. [c.36]

    В случае отсутствия инертного газа горючий газ из холодного генератора, подлежащего розжигу, может быть удален продувкой воздухом, а из генератора, переключаемого на выжиг серы, — водяным паром. Только после полного удаления газа допустимо начинать разогрев генератора или выжиг в нем серы. [c.420]

    Открывать коксовый куб можно только после продувки его водяным паром для удаления газов и паров нефтепродуктов и охлаждения кокса. [c.44]

    Процесс коксования в необогреваемых камерах (так называемых камерах замедленного коксования) начинается с нагрева сырья в печах и смешения с рециркулирующей жидкостью в колонне, в результате чего температура смеси достигает 400 °С. Затем эта смесь нагревается в печи до 530 °С. Во избежание коксования в змеевиках в печь подается турбулизатор — водяной пар, резко увеличивающий скорость движения смеси через печь. Смесь попадает в камеру, с верха которой удаляются водяной пар, газ и пары дистиллята коксования при 440—480°С. Эта смесь подвергается разделению, сепарации, стабилизации, промывке и т. д. Заполненная коксом камера периодически отключается, продувается водяным паром для удаления паров из пористого кокса, а затем охлаждается водой. Далее кокс удаляется из камеры гидравлическим способом. [c.162]


    НИИ вода сохраняет свои химические и физические свойства. Так, напр., высушиванием можно удалить такую воду, что известно из жизненных опытов. Воду, удержанную как-либо механически, напр., тканями, можно удалить механическими же путями давлением, центробежною силою и т. п. Но предметы, называемые в практике сухими (потому, что не смачивают рук), часто содержат еще влажность, что можно доказать, нагревая предмет в стеклянной трубке, запаянной с одного конца. Положив в такую трубку кусок обыкновенной бумаги, сухого чернозема и многие тому подобные (особенно, рыхлые вещества) предметы и нагрев слегка то место трубки, где они помещены, можно заметить скопление паров в холодных частях трубки. В телах твердых присутствие такой втянутой или гигроскопической воды часто узнается чрез высушивание до 100° или чрез высушивание под колоколом воздушного насоса над веществами, химически притягивающими воду. Взвешивая вещество до высушивания и после высушивания, легко определить количество гигроскопической воды чрез потерю [45]. Конечно, в этом случае должно быть осторожным в суждении о количестве воды, потому что потеря может происходить иногда от разложения самого взятого вещества с удалением газа или каких-либо паров. Гигроскопичность тел, т.-е. способность втягивать влажность, должно иметь постоянно в виду, когда производят точные взвешивания, иначе от присутствия влаги вес будет неверен. Количество втянутой влаги зависит от степени влажности воздуха (т.-е. от упругости находящихся в нем водяных паров), в котором помещено тело. В совершенно сухом воздухе и в пустоте гигроскопическая вода удаляется, превращаясь в пар, поэтому, помещая в высушиваемое пространство предметы, поглотившие воду, можно их вполне высушить. Нагревание этому помогает, потому что увеличивает упругость паров. Для сушения газов чаще всего употребляют фосфорный ангидрид (белый порошок), жидкую серную кислоту,твердый и пористый хлористый кальций и белый порошковатый прокаленный медный купорос. Они втягивают из воздуха и всякого газа влажность, "в них заключающуюся, в значительном количестве, но не в безграничном. Фосфорный ангидрид и хлористый кальций при этом расплываются, делаются сырыми, серная кислота становится из маслянистой густой жидкости более подвижною, а прокаленный медный купорос синеет, после чего эти вещества теряют часть своей способности удерживать воду и даже могут, при избытке воды, отдавать ее поздуху. Порядок, в каком выше перечислили [c.58]

    Метод обработки коксового газа до сжижения несколько изменился по сравнению с более ранней установкой Линде, описанной выше. На заводе в Остенде коксовый газ, после обычной обработки для получения побочных продуктов, пропускается последовательно через аммиачный раствор, водяной скруббер, серную кислоту и наконец раствор едкого натра. Затем газ сжимается до 9 ат, охлаждается жидким аммиаком, вновь нагревается теплообменниками до комнатной температуры и промывается в водяных скрубберах. Газ, выделившийся из промывной воды из последней башни при снижении давления и содержащий 30% СН , 25% H , 10% No, 9% олефинов, кислород, углекислоту и этан, применяется в качестве топлива. Промытый газ охлаждается далее до —45° С для удаления паров воды, после чего подвергается фракционированной конденсации. Последовательно удаляемые конденсаты называются фракциями этилена, метана и окиси углерода. Этиленовая фракция [c.169]

    Перед вскрытием аппаратов или трубопроводов, в которых находились горючие газы (водород, природный газ, газ-восстановитель и т. д.), аппараты необходимо продуть инертным газом или водяным паром, а в отдельных случаях заполнить водой. Особое внимание должно быть обращено на удаление газа с участков, где могут оставаться мешки с газом. [c.281]

    Переработка коксового газа, непрерывно отводимого из коксовых печей, осуществляется по примерной схеме, показанной на рис. 91. Газ, имеющий температуру около 800°С, попадает в газосборник и охлаждается там до 70—90°С путем интенсивного орошения газосборника холодной надсмольной водой. Смесь газов, паров, воды и сконденсировавшейся смолы отводят в сепараторы на разделение по плотности. Смолу направляют в сборники, а часть надсмольной воды охлаждают и направляют на орошение газосборника. Остальная надсмольная вода поступает на переработку, состоящую в выделении из нее аммиака и фенолов отгонкой с водяным паром. Газ проходит холодильники, где охлаждается до 30°С, и электрофильтры для отделения смоляного тумана. В газосборнике и в холодильниках при конденсации водяных паров содержащиеся в газе аммиак и фенол частично растворяются. Аммиак, оставшийся в газе после полного отделения смолы, перерабатывают в минеральное удобрение — сульфат аммония взаимодействием с серной кислотой. Для этого газ, предварительно подогретый в теплообменнике (для ускорения процесса), барботируют в сатураторах через слой серной кислоты концентрацией 75% Н ЗО . Для выделения бензольных углеводородов газ сначала охлаждают водой в холодильниках непосредственного смешения охлаждение сопровождается удалением брызг серной кислоты и отделением твердого нафталина. Охлажденный газ [c.202]


    Выделение углекислого газа заканчивается за 1—2 мин., но часть его остается растворенной в полученном солянокислом растворе. Чтобы учесть это количество газа, поступают следующим образом когда растворение доломита заканчивается, пробирку осторожно нагревают па спиртовке до кипения. Полное удаление газа из раствора замечают по остановке капли ртути в бюретке-газомере. Нагревание пробирки на водяной бане не дает полного извлечения газа из раствора. Для поглощения паров воды к пробирке присоединяют трубку с хлористым кальцием. [c.281]

    И фаза — удаление газов горячего дутья в атмосферу — предназначена для очистки системы от воздушного газа. В этой фазе прекращается подача воздуха и начинается подача в газогенератор снизу пара низкого давления. Пар поступает из паросборника газогенератора 11. Образующийся водяной газ и избыток пара проходят путь газа первой фазы до полной очистки системы от воздушного газа. [c.16]

    Для удаления водяных паров газ пропускают через конденсационную колонну, орошаемую холодным насыщенным поглотителем при этом газ несколько охлаждается и часть водяных паров конденсируется. Жидкость из конденсационной колонны подается в отгонную колонну для выделения из нее двуокиси серы. [c.243]

    В случае попадания воды в сырье, повышения в связи с этим давления в реакторе, и посадки катализатора питание реактора прекращают. За уровнем катализатора в загрузочных бункерах должно быть обеспечено наблюдение, не допускающее падение его ниже установленного. При прорыве нефтяных паров в загрузочный бункер необходимо подать инертный газ или водяной пар. Чтобы предотвратить попадание нефтепродукта в регенератор вместе с катализатором, в нижнюю часть реактора подают сухой без следов конденсата водяной пар. Если количество водяного пара, подаваемого в зону отпарки реактора, не обеспечивает удаления с катализатора адсорбированных [c.83]

    Сливо-наливные установки должны быть расположены в местах, удаленных от других рабочих мест, в хорошо проветриваемых местах, вне зданий. Хранилища должны располагаться преимущественно вне зданий с дистанционным управлением насосами и арматурой на основных трубопроводах. Отдельно стоящие пункты слива и налива должны находиться на регламентированном расстоянии от остального производства. Практика показывает, что при больших утечках продукта не удается локализовать пожары на большой площади, что обусловлено ограниченными возможностями пожарных команд и газоспасательных подразделений. Поэтому хранилища и сливо-наливные установки должны оснащаться стационарными системами противоаварийной защиты — системами пожаротушения, сигнализацией, системами пожарных шлангов и системами громкоговорящей связи. На таких пунктах должны быть предусмотрены дренчерные системы для создания водяных завес, препятствующих распространению парогазового облака или охлаждающих резервуары при пожаре. Для локализации возможной утечки газа следует внимательно продумывать систему отключения подачи сжиженного газа или легковоспламеняющихся жид- [c.196]

    При контактировании с горячим катализатором сырье испаряется. Смесь паров сырья с микросферическим катализатором, пройдя стояк, поступает через распределительную решетку реактора в кипящий слой катализатора. Внизу регенератора расположен цилиндрический колодец высотой 1—2 м с круговым распределителем водяного пара. Водяной пар вводится в колодец для того, чтобы избежать слеживания катализатора, и для удаления из последнего газов регенерации. Из колодца катализатор засасывается сырьем и транспортируется в реактор. [c.134]

    Для удаления остатка аммиака, содержащегося в аммонийных солях, которые не подвергаются термическому разложению в скруббере, раствор смешивается с известковым молоком и подается в верхнюю часть дистиллера — противоток, развитие поверхности соприкосновения фаз. Газы, уходящие из скруббера и дистиллера и содержащие в основном аммиак, двуокись углерода и водяной пар, направляются в теплообменник. Окончательное их охлаждение проводится в холодильнике (температура хладагента — воды 25 °С), при этом конденсируется часть водяного пара — косвенный теплообмен, противоток. Растворенный в конденсате аммиак отгоняется в дистилляционной колонне. Основным продуктом отделения регенерации аммиака являются газы, содержащие аммиак, который затем извлекается из них в абсорбционном отделении. [c.427]

    Продукты реакции на выхода из реакционной печи охлаждаются сначала в трубчатом холодильнике до 300—350°, а затем в водяном скруббере до 60—70°, после чего подвергаются промывке натронной известью для удаления из них органических кислот. Охлажденные и очищенные газы пиролиза направляются в ацетиленовый конвертор, в котором на хромо-никелевом катализаторе при температуре около 200° ацетилен гидрируется до этилена. На выходе из ацетиленового конвертора газы компримируются до 18—20 amu, подвергаются промывке маслом, адсорбции углем и обработке щелочью для освобождения от бензиновых углеводородов и СОг и направляются в секцию низкотемпературной ректификации, где из них выделяют этилен, пропилен, бутилен, бутадиен, этан и горючие газы (метан, водород). Горючие газы используют в качестве технологического топлива, а этан возвращают в процесс. [c.53]

    Схема процесса состоит в следующем [129]. Охлажденный до 30—40° синтез-газ (На - -СО) поступает в колпачковый абсорбер, где он орошается раствором моноэтаноламина концентрации 15—20%. Насыщенный углекислотой раствор моноэтаноламина регенерируется нагревом водяным паром под давлением и снова возвращается в абсорбер на улавливание Og, а выделившаяся двуокись углерода возвращается в конвертор природного газа. Очищенный от Oj газ смешивают с циркулирующим водородом, сжимают до 28 ати, промывают 1 %-ным раствором щелочи для удаления следов Og, охлаждают и подвергают осушке активированной окисью алюминия для удаления следов влаги. [c.111]

    Различают периодические и непрерывные процессы выделения газового бензина с помощью адсорбентов. Наибольшее распространение получил периодический процесс как более простой. Периодический процесс адсорбционного выделения газового бензина состоит из четырех этапов 1) адсорбция углеводородов на поверхности активированного,угля 2) десорбция, т. е. удаление адсорбированных углеводородов с поверхности адсорбента с помощью острого водяного пара 3) сушка угля горячим газом и 4) охлаждение адсорбента холодным газом. [c.167]

    С целью удаления из системы водяного пара в момент времени х- система продувается гелием (участок V). В момент времени Xg подается воздух для регенерации адсорбента от коксовых отложений (участок VI), затем в момент времени Т , (участок VII) система продувается. инертным газом, после чего опыт заканчивается. [c.101]

    Взрывы в технологических аппаратах и пожары нередко возникают при остановке аппаратов на профилактический осмотр, ремонт и пуск их в эксплуатацию (при выводе на режим). Взрывоопасные концентрации при остановке аппаратов образуются в результате неполного удаления паров или газов из внутреннего объема системы, а при пуске — в результате неполного удаления воздуха и огнеопасных жидкостей, при недостаточной продувке внутреннего объема аппаратов водяным паром или негорючим газом. [c.80]

    Для увеличения активности антрацита его подвергают нагреву для удаления летучих веществ, в результате чего получаются микро-поры. Установлено, что при активировании антрацита в кипящем слое наилучшая пористость получается при невысокой скорости выгорания углерода в среде водяного пара наиболее эффективным методом снижения скорости выгорания углерода является уменьшение размера частиц перерабатываемого антрацита до 0,3—0,6 мм при соответствующем сокращении расхода реакционного газа и удлинении процесса активации до 5 ч. Структура активированного антрацита, полученного в кипящем слое, довольно однородна с преобладающим количеством микропор. [c.241]

    Определение. Общее содержание бромидов. Образец весом от 5 до 10 г обрабатывают в 100-л<л никелевом тигле. 40 мл спиртового раствора едкого кали оставляют стоять на 1 час и выпаривают досуха на водяной бане. Затем сушат короткое время при 110° и засыпают гранулированным едким натром, которого берут в количестве 10 г. Тигель держат 1—2 часа на горячей электрической плитке до прекращения пенообразования и выделения тумана, после чего помещают в муфельную печь с температурой 600°. Плавление следует производить, не допуская слишком сильного горения и вспенивания если содержимое тигля загорается, то тигель следует вынуть из муфельной печи, дать пламени погаснуть и снова поставить в печь, поступая так до полного удаления газов. Для полного окисления углерода или не-разложившихся органических веществ к плаву прибавляют небольшими порциями (по нескольку миллиграм- [c.341]

    Устанавливают регулятор скорости потока б проба газа проходит через охлаждаемую колонку и выходит из системы через расходомер е. Примеси в газе удерживаются набивкой в трубке г, а объем пробы измеряют расходомером е. После того как через петлеобразную трубку г проходит необходимое количество пробы, кран а закрывают и поворачивают кран д, соединяя систему с вакуумной линией для удаления неадсорбировавшихся газов. При этом ловушку следует охлаждать, и время ее включения в вакуумную линию никогда не должно превосходить 2 сек, так как иначе будут удалены и сконденсированные газы. Если удерживаемые объемы основного компонента и сконденсированных примесей близки друг к другу, бывает необходимо продуть ловушку газом-носителем, для чего поворачивают дози-рующ,ий кран в так, что газ-носитель проходит в хроматограф через ловушку. В результате оставшиеся количества несконденсированных газов удаляются из системы. В это же время включают самописец и детектор, чтобы проверить, не теряются ли в процессе продувки компоненты, интересные с аналитической точки зрения. После достаточной продувки ловушки дозирующий кран поворачивают, соединяя ловушку с вакуумной линией для удаления газа-носителя. Эту операцию тоже нужно провести быстро, чтобы избежать потерь компонентов пробы. Затем ловушку отключают от остальной системы и поглощенные газы выделяют путем замены охлаждающего агента водяной баней, нагретой до йО—60°. После того как колонка нагреется до этой температуры, дозирующий кран поворачивают, впуская испарившиеся вещества в поток газа-носителя.  [c.198]

    II водорода (52—55 объем.%), содержит метан и небольшие количества этилена, бензола, окнс.и углерода и азота. С помощью водяного орошения газ охлаждают, фильтруют от саягн и после удаления воды подвергают очистке (см. ниже). В результате получают 87 — )8 ()-ный ацетилен с общим выходом около 45% от теоретического. [c.428]

    Двуокись углерода получают прокаливанием магнезита (Mg Oз) в тугоплавкой трубке, присоединенной к аппаратуре. Еш,е раз напоминаем о необходимости удаления газов и водяных паров из кусочков магнезита. [c.174]

    Силикагель слуншт прекрасным адсорбентом для различных веществ, особенно для водяного пара. Силикагель получают обезвоживанием желеобразной кремниевой кислоты. Пористый сухой гель напоминает медовые соты с множеством тонких отверстий. В лабораторной и промышленной практике силикагель находит широкое применение в качестве осушающего агента. После использования его можно снова активировать нагреванием в печи для удаления адсорбированного водяного пара. Древесный уголь применяют в противогазах для удержания отравляющих газов, а такн<е в виде таблеток при лечении несварения желудка и в качестве противоядия для оказания первой помощи при отравлениях. В некоторых городах древесный уголь используют для удаления газов и устранения неприятных запахов при обработке питьевой воды. В химической лаборатории порошкообразный древесный уголь применяется для удаления окрашенных примесей из соединений, которые подлежат выделению и очистке. Для этой же цели химики часто применяют колонки из адсорбента, напри- [c.137]

    Сечение каждого башенно-ящичного очистителя 8800 X 4970 мм, высота 17 м. В каждой башне имеются 14 полок сечением по 31,4 при высоте слоя 686 мм на каждой полке. При пяти работающих башнях или объемной производительности R = 30,5 это соответствует объемной скорости 6,1 нм /час на 1 м окиси железа. Для теплового расчета температура на входе насыщенного водяным паром газа принимается 12,8° и температура окружающего воздуха 3,9°. Полнота удаления сероводорода в первых двух ящиках принята 90% в третьем ящике достигается полное удаление сероводорода. Реакция окисления протекает на 50% в первой башне, на 25% во второй, на 15% в третьей и 10% в четвертой. Для очистки применяется, окись влажностью 30% и насыпным весом 800 кг1м . Предполагается также, что (как обычно происходит) конденсат не поглощается окисью. [c.190]

    Термическое взаимодействие метана с водяным паром происходит при 1200—1300°. В присутствии никелевого катализатора взаимодействие становится возможным при 700—800°. Каталитический спозоб, в котором природный газ (в целях предотвращения отравления никелевого катализатора) должен предварительно освобождаться от сернистых соединений, в промышленности уже давно разработан [20].. Грубая очистка предусматривает удаление неорганической серы, главным образом в виде сероводорода. Она происходит над так называемой люкс-массой (окись железа— красный шлам бокситиых отходов) или над бурым железняком при обычной температуре. Тонкая очистка, имеющая целью удаление органической серы в виде сероуглерода или сернистого карбонила, осуществляется над щелочной люкс-массой при температуре 250—300°. [c.28]

    Раствор МЭА, насыщенный сероводородом, из абсорберов для очистки газов поступает в дегазатор, где при снижении давления пз раствора МЭА выделяются растворенные газообразные углеводороды и бензин. Выделившийся бензин направляется в стабилизационную колонну. Дегазированный насыщенный раствор МЭА, предварительно нагретый в теплообменниках, поступает в отгонную колонну, температурный режим в которой поддерживается циркулирующим через термосифонный паровой рибойлер раствором МЭА. Пары воды и сероводорода, выходящие из колонны, охлаждаются в воздушном конденсаторе-холодильнике, доохлаждаются в водяном холодильнике, после чего разделяются в сепараторе, где также предусмотрен отстой бензина и его ВЫВОДЕ стабилизационную колонну. Сероводород из сепаратора направляется на производство серной кислоты илн элементарной серы. Из нижней части колонны выводится регенерированный раствор МЭА, который после последовательного охлаждения в теплообменниках, воздушном и водяном холодильниках вновь возвращается в цикл. Для удаления механических примесей из насыщенного раствора МЭА предусмотрено фильтрование части раствора. [c.56]

    Перед замещением инертного газа на водяной пар необходимо убедиться, что в последнем не содержится конденсата. Далее температура в слое катализатора поднимается до 370—420 °С, проводится пропарка катализатора водяным паром с целью десорбции из пор катализатора жидкпх остатков и удаления части высокомолекулярных отложений, наиболее богатых водородом. Продолжительность пропарки2—4ч при расходе водяного пара 400—900 м /ч (при нормальных условиях) на 1 м катализатора. [c.130]

    Технологический процесс получения ацетилена этим способом основан на термоокислительном пиролизе метана с кислородом (соотношение кислорода и метана должно быть в пределах 0,58— 0,62) в реакторах при 1400—1500 °С и избыточном давлении. Процесс состоит из следующих стадий подогрева метана и кислорода пиролиза метана и закалки пирогаза очистки пирогазов от сажл в скрубберах или электрофильтрах компримирования пирогаза до давления 0,8—1,2 МПа и абсорбции ацетилена и его гомологов селективным растворителем (метилпирролидоном, диметилформ-амидом) фракционной десорбции газов в десорбере первой ступени (при давлении 20 кПа) и второй ступени (при вакууме 80 кПа) с выделением при 80—90 °С чистого ацетилена и нагреве с водяным паром (ПО—116°С) фракции высших гомологов ацетилена регенерации растворителя (удаления твердых продуктов полимеризации гомологов ацетилена) сжигания отходов производства в печи (сажи из сажеотстойников продуктов "полимеризации, выделенных при регенерации растворителя высших гомологов ацетилена, полученных на второй ступени фракционной десорбции). [c.28]

    Внизу регенератора расположен цилиндрический колодец 13 высотой 1—2 м с круговым распределителем водяного пара. Выходящий с большой скоростью из полого стержня клапана поток сырья засасывает из колодца 13 катализатор и транспортирует его со скоростью около 12 м/сек в реактор. Водяной пар вводится в колодец, чтобы избежать с пеживания катализатора и для удаления из последнего газов регенерации. Тепло регенерировапного катализатора используется для нагрева и испарения сырья и возмещения расхода тепла на реакцию крекинга. [c.182]

    Закоксованный катализатор после его отпарки водяным паром в отпарной зоне реактора по напорному стояку 3 под давлением воз/ а подается в регенератор I. ТемпераФуру в регенераторе р. -"улируют за счет съема тепла в его змеевиках, изменения степени закоксованности катализатора и количества циркулирующего катализатора. Для удаления катализаторной пыли из дымовых газов в регенераторе установлены двухступенчатые циклоны. [c.20]

    Большая часть угля в этом процессе сгорает так, из 1 кг кокса с теплотворной способностью 7500 ккал получают 1 водяного газа с теплотворной способностью 2600 ккал и 4 л газообразных продуктов сгорания, которые трудно использовать в дальнейшем. Для уменьшения потерь тепла и упрощения технологии используют неполное сгорание части сырья, одновременно вводя водяной пар (иногда совместно с кислородом). Экзотермические реакции С + + — СО АН = —26,6 ккал1моль) и С + О2 — СО2 АН = = —94 ккал/моль) позволяют достичь температур, необходимых для осуществления эндотермической реакции между углем и парами воды, и позволяют устранить потери тепла. В результате можно получить смеси, содержащие около 38% Нз, 38% СО и 22% СО2, которые можно использовать (после удаления из них СО2) в качестве синтез-газа. Изменяя соотношение между водяным паром и кислородом в сырье, можно получить смеси с различным соотношением Нз СО. [c.212]

    Побле очнспш серной кислотой легкое масло меняет свой желтоватый цвет на зеленоватый. Исчезает его резкий запах, и вместо нега отчетливо выступает запах сернистого газа. Подготовленное таким образом масло неско тько раз хорошо промывается водой для удаления сульфокислот и серноэфирных кислот, вызывающих эмульсию при щелочной очистке. Затем масло промывается щелочью (5%-ной), отчего цвет его желтеет п появляется приятный ароматический запах. После отстаивания масло отделяется от щелочного раствора, еще раз промывается водой, отстаивается и, по отделении воды, взвешивается. Вместо отстаивания можно просто отогнать масло с водяным паром. Потеря при очистке может достигать 10—25% и складывается из 1) действительной потери от обработки кислотой и 2) потери на улетучивание, не полное разделение, эмульсирование и т. п. Ввиду этого, даже прп самой тщательной работе, не следует брать в очистку меньше 100 г, лучше даже брать больше, чтобы относительно уменьшить ошибку вследствие второй причины. Заводские очистки, несмотря на перемешивание воздухом, часто показывают меньший процент потери, чем лабораторные. [c.402]


Смотреть страницы где упоминается термин Водяной пар удаление из газов: [c.742]    [c.181]    [c.211]    [c.175]    [c.206]    [c.123]    [c.29]    [c.44]    [c.78]    [c.104]    [c.101]   
Технология связанного азота Синтетический аммиак (1961) -- [ c.0 ]




ПОИСК







© 2025 chem21.info Реклама на сайте