Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Аналитические марганца

    Фотометрия пламени — вид эмиссионного спектрального анализа, в котором источниками возбул<дения спектров являются пламена различных видов ацетилен — воздух, ацетилен — кислород, пропан — воздух, пропан — кислород, водород — воздух и др. Вследствие невысокой температуры в пламенах излучают легко и среднеионизующиеся элементы щелочные и щелочноземельные металлы, галлий, индий, магний, марганец, кобальт, медь, серебро и ряд других, причем их число растет с увеличением температуры пламени. В наиболее холодных пламенах, таких как, например, пропан — воздух, светильный газ — воздух излучают только атомы щелочных и щелочноземельных металлов. Вследствие невысокой температуры спектры, излучае-МЕле пламенами, состоят из небольшого числа спектральных линий, главным образом резонансных, что позволяет выделять характеристическое излучение элементов при помощи светофильтров и использовать простые и имеющие невысокую стоимость спектральные приборы — пламенные фотометры. Кроме атомных спектральных линий в спектрах пламен присутствуют полосы ряда в основном двухатомных молекул и радикалов С2, СиС1, СаОН и др. Некоторые из них используют в аналитических целях. Так, в случае элементов, образующих термически устойчивые оксиды, которые практически не диссоциируют в пламенах с образованием свободных атомов, молекулярные спектры являются единственным источником аналитического сигнала. Практически не атомизируются в низкотемпературных пламенах оксиды скандия, титана, лантана и других элементов, ирлеющих относительно невысокие потенциалы ионизации. Наиболее часто фотометрию пламени применяют для определения щелочных и щелочноземельных металлов. [c.35]


    Абсолютно специфичных реакций в аналитической химии почти не существует, поэтому А. И. Крылова разработала определенные приемы для устранения мешающего влияния посторонних элементов маскирование ионов (например, широко распространенного в органах иона железа) введением комплексообра-зователей, реакции окисления — восстановления (марганец, хром, мышьяк), строгим соблюдением определенных значений pH среды, применением малых объемов минерализата (марганец, хром, мышьяк, цинк), разбавлением минерализата до предела чувствительности реакции во избежание обнаружения естественно содержащихся элементов и использованием правила рядов среди диэтилдитиокарбаминатов и дитизонатов. [c.295]

    Пламя используют в качестве источника света в так называемом методе фотометрии пламени, а также как один из основных способов атомизации веществ в методе атомно-абсорбционного анализа (см. разд. 3.2). В зависимости от состава горючей смеси температура пламени может поддерживаться в интервале 2000—3000 К, что обеспечивает достаточно низкий предел обнаружения элементов, энергии возбуждения резонансных линий которых не превышают 5 эВ и соединения которых атомизируются в пламени в достаточной мере. Особое значение метод фотометрии пламени имеет для определения микроколичеств соединений щелочных и щелочноземельных металлов, для которых предел обнаружения этим методом находится в диапазоне 0,001 — 1 нг/мл. Предел обнаружения порядка 0,1—1 нг/мл достигается также для таких элементов, как европий, иттербий, свинец, медь, серебро, индий, таллий, хром, марганец, алюминий и галлий, причем в некоторых случаях в качестве аналитического сигнала используют молекулярную эмиссию пламени. Освоение высокотемпературных пламен (водородно-кислородного, ацетилен-кислородного) позволило значительно увеличить число определяемых элементов. [c.58]

    Эта группа веществ включает соединения так называемых ядовитых металлов, а также мыщьяка и сурьмы. Из элементов V, IV, III и II аналитических групп токсикологическое значение имеют мыщьяк, сурьма, олово, ртуть, висмут, медь, кадмий, свинец, серебро, цинк, хром, марганец, таллий, никель, кобальт и барий. [c.278]

    При определении натрия в присутствии солей марганца на значение аналитического сигнала влияет наложение молекулярной полосы излучения МпО, что приводит к систематической погрешности. Влияние увеличивается пропорционально концентрации марганца в растворе и в значительной степени зависит от селективности применяемого прибора. Так, при использовании пламенного фотометра со светофильтрами помеха за счет излучения МпО будет велика. Марганец также влияет на излучение калия. Механизм этого влияния не выяснен. [c.161]


    Марганец определяют при тех же параметрах дуги переменного тока. Для анализа используют две группы линий, расположенных в синей области спектра. В случае содержаний марганца более 10 % применяют третью группу линий в желто-зеленой области спектра. Сравнение яркостей линий аналитической пары осуществляют после 10—15 с обжига образца. [c.103]

    Колориметрический анализ отличается высокой чувствительностью. Так, например, количество марганца порядка ЫО г, которое невозможно взвесить на аналитических весах, легко можно определить колориметрическим методом. Для этого марганец переводят в перманганат и измеряют интенсивность окраски полученного раствора. Таким путем можно определить даже ЫО г марганца в 5 мл раствора. [c.215]

    В пламени с большой точностью и высокой чувствительностью легко определяются многие элементы все щелочные и щелочноземельные металлы, а также медь, марганец, хром, железо и другие металлы. Из-за сравнительно низкой температуры пламени многие вещества, введенные в пламя или образовавшиеся в нем, находятся в виде двухатомных молекул. Молекулярные полосы, излучаемые возбужденными молекулами, используют для аналитических целей, например для определения бора, алюминия и других элементов. [c.274]

    На рис. 30.14 приведены типичные кривые обыскривания для конструкционной стали. Как видно из рисунка, первые 40 с интенсивность спектральных линий сильно изменяется. Затем процессы поступления вещества в аналитический промежуток стабилизируются. На этом кончается время предварительного обыскривания и наступает время экспонирования. Из этого рисунка также видно, что интенсивность линий элементов, имеющих большое сродство к кислороду (углерод, марганец), во время предварительного [c.673]

    В кислом растворе (2 н. кислота) тиоацетамид осаждает катионы IV и V аналитических групп мышьяка (III), сурьмы (III), олова (П), ртути (II), меди (П), свинца (II), серебра (I) в щелочной среде осаждаются катионы III группы алюминий (III), железо (111), хром (III), кобальт (П), никель (II), марганец (II) и цинк (11). Применяют его также для разделения катионов. [c.207]

    Марганец — один из первых редких металлов, применяемых в промышленности, например, для производства стали. Поэтому интерес к аналитической химии марганца возник очень давно. Однако наибольшие успехи в разработке новых методов анализа для определения марганца в различных природных и промышленных материалах достигнуты за последние два десятилетия. В на-стояш,ее время марганец определяют при анализе сталей, сплавов, полупроводниковых материалов, особо чистых веществ, органических веществ, почв, биологических материалов, горных пород различного происхождения, минералов, руд и, наконец, космического вещества в виде метеоритов и лунных пород. [c.5]

    При выделении III группы аммиачным методом в присутствии хлорида аммония (pH 7,0) трехвалентные катионы (Fe, AU Сг, редкоземельные элементы), а также бериллий, титан и некоторые другие элементы осаждаются в виде гидроокисей, а двухвалентные— Со, Ni, Zn—образуют растворимые комплексные аммиакаты [М(ЫНз)б] + марганец, осаждающийся при более высоком значении pH, остается в растворе. Далее от элементов III аналитической группы бериллий вместе с А1, Сг и Zn отделяют при растворении их гидроокисей в избытке щелочи. Ниже даны значения pH осаждения и растворения амфотерных гидроокисей [30, 54, 55]  [c.35]

    Оксихинолин отличается от других оксихинолинов пространственным расположением гидроксильной группы по отношению к азоту кольца. В результате такого расположения ионы многих металлов образуют с 8-оксихинолинами нерастворимые клешнеобразные соединения. Такие металлы, как медь, цинк, кадмий, алюминий, висмут, уран, марганец, железо (трехвалентное) и никель, наряду с некоторыми другими, осаждаются в виде клешнеобразных соединений с 8-оксихинолином из его раствора, содержащего уксуснокислый натрий. Вследствие этого 8-оксихинолин является одним из наиболее ценных органических реагентов для определения металлических ионов. Это соединение известно также под названием оксина оно было предложено в качестве аналитического реактива Ханом [449] и Бергом [450]. Имеются хорошие обзоры работ с применением этого реагента [4506, 451]. [c.104]

    Катионы 3-й аналитической группы осаждаются в щелочной среде сульфидом аммония при pH 9 в присутствии буферного раствора — смеси гидроокиси и хлорида аммония. 3-ю группу делят на две подгруппы 1) подгруппу катионов, образующих гидроокиси, и 2) подгруппу катионов, образующих сульфиды. Гидроокиси металлов получаются из сульфидов в том случае, когда растворимость гидроокиси меньше, чем растворимость сульфида данного металла. В подгруппе катионов, образующих гидроокиси, ясно заметно влияние диагонального направления в системе Менделеева. По диагоналям расположены элементы, выделяющиеся в этих условиях в виде гидроокисей а) бериллия, алюминия, титана, ниобия б) скандия, циркония, тантала, урана (VI) в) иттрия, гафния, лантана, тория вследствие сходства в свойствах с лантаном и актинием вместе с гидроокисями указанных металлов выпадают также все лантаноиды и актиноиды. Может выпасть и гидроокись магния в отсутствие иона ЫН . Выпадение в этой же подгруппе гидроокиси хрома, Сг(ОН)з, объясняется существованием электронной конфигурации. .. ёЧзК По этой же причине медь с электронной конфигурацией. .. За 1"451 попадает не в 3-ю, а в 4-ю аналитическую группу, образуя сульфид Сы5, не растворимый в кислой среде. Появление внешнего подуровня наблюдается через четыре элемента калий 5, кальций скандий s титан s ванадий хром 5 марганец s железо s кобальт 5% никель 5% медь цинк 5 Поведение ионов ванадия и марганца отличается от поведения хрома, поведение никеля и цинка — от поведения меди. [c.28]


    Марганец(П) восстанавливается на ртутных электродах с образованием амальгамы марганца. Хорошо изучен этот процесс в 1 М растворе хлористого калия [196, 197]. Этот фоновый электролит может быть рекомендован для аналитического определения Мп(П). Для изученных концентраций марганца (И) в интервале от 10 до 10 моль/л при различных плотно -стях тока соблюдалось постоянство it / , что указывает на отсутствие в данных условиях предшествующей химической реакции [196]. Значение ф остается постоянным и составляет —1,3 В (нас. к. э.). На основании результатов хронопотенциометрии с реверсом тока 196] делается вывод, что металлический марганец растворяется в ртути, а не остается на поверхности, так как в противном случае переходное время для процесса окисления должно быть равно переходному времени для процесса восстановления, [c.128]

    По второму методу кокс анализируют непосредственно. После измельчения в агатовой ступке 30 мг кокса помещают в кратер электрода и наносят каплю 3%-ного раствора полистирола в бензоле для предотвращения выброса во время горения дуги. Анализ проводят по методу добавок. В образцы кокса вводят нитраты или оксиды определяемых элементов. Применяют электроды с кратером глубиной 5 м)м и диаметром 3 мм, спектрограф ИСП-28, дуга переменного тока силой 12—14 А, аналитический промежуток 2 мм, экспозиция 45 с, ширина щели 15 мкм. Достигнуты следующие значения предела обнаружения (в мкг/г) медь и марганец — 0,01 ванадий, никель, свинец и титан — 0,1. Результаты анализов совпадают с данными, полученными методом кислотного озоления. С увеличением количества азотной кислоты снижается степень выделения свинца, марганца, меди и титана в асфальто-смолистую часть. По-видимому, разрушаются соединения этих элементов и частично переходят в жидкую фазу. При меньшем количестве кислоты также ухудшается выделение металлов, по-видимому, из-за недостатка кислоты для образования осадка асфальто-смолистых веществ. [c.187]

    Для прямого анализа масел наибольшее распространение получил метод вращающегося электрода. В работе [136] описана методика определения содержания фосфора в смазочных маслах. Диск диаметром 12,7 мм и толщиной 3,2 мм, изготовленный из высокопористого графита, вращают со скоростью 7,5 об/мин. Верхним электродом служит графитовый стержень диаметром 6,5 лж с концом, заточенным на полусферу. Для предотвращения загорания пробы анализ проводят в атмосфере азота, который подают под давлением 150 мм рт. ст. по трубке диаметром 6,3 жж к мелкопористому стеклянному диску диаметром 19 мм. Диск устанавливают сбоку от вращающегося электрода на расстоянии 19 мм (рис. 67) так, что аналитический промежуток, вращающийся электрод и поверхность пробы продуваются азотом. Источником возбуждения служит униполярная высоковольтная искра. Условия анализа следующие продолжительность обжига 15 сек, экспозиции 55 сек, величина аналитического промежутка 3 мм, ширина щели спектрографа 0,05 мм. Внутренним стандартом служит марганец (0,1%), а буфером — литий (0,9%). Перед анализом 15 г пробы масла смешивают с Ъ мл раствора, содержащего 0,1% марганца и 0,9% лития. Оба элемента вводят в виде нафтенатов в газойлевую фракцию 260—370 °С. Подготовленную пробу выливают в фарфоровую лодочку. Установлено некоторое [c.164]

    В подобных же условиях можно определять хром и молибден (после анализа на марганец). Аналитические признаки для определения хрома и молибдена приведены в табл. 11 и 12. [c.55]

    Марганец. Первый аналитический участок расположен в голубой области спектра. Группа линий состоит из пяти ярких голубых и голубовато-зеленых линий Мп 475,404 Мп1 476,238 Мп1 476,643 Мп1 478,342 и Мп1 482,352 нм. Первую из них используют в качестве аналитической. С коротковолновой стороны наблюдается ряд линий меньшей интенсивности, две из которых также используют для оценки массовой доли марганца (Mnl 470,974 и Мп1 470,116 нм). Вид спектра на первом аналитическом участке марганца, наблюдаемый при анализе различных типов медных сплавов, приведен на рйё. 3.]8, б (обоэиачения даны в соответствии с данными табл. 3.2). [c.100]

    Успешная попытка систематизировать многочисленные аналитические реакции с участием соединений металлов по определенной логической схеме была осуществлена немецким химиком Генрихом Розе (1795—1864) и описана в 1829 г. в его книге Руководство по аналитической химии . Разработанная им общая схема систематического качественного анализа металлов (катионов металлов — на современном языке) основана на определенной последовательности действия химических реагентов (хлороводородная кислота, сероводород, азотная кислота, раствор аммиака и др.) на анализируемый раствор и про укты реакций компонентов этого раствора с прибавляемыми реагентами. При этом исходный анализируемый раствор в схеме Г. Розе содержал соединения многих известных к тому времени металлов серебро, рт>ть, свинец золото, сурьма, олово, мышьяк кадмий, висмут медь, железо, никель, кобальт, цинк, марганец, алюминий барий, стронций, кальций, магний. Здесь химические элементы перечислены в последовательности их разделения или открытия по схеме Г. Розе. [c.35]

    Расширение объектов исследования и все возрастающие требования современной промышленности к чистоте материалов и к комплексному использованию сырья привели к разработке новых, более точных, быстрых и высокочувствительных методов определения марганца. Наиболее существенным достижением в аналитической химии марганца явилось использование ней-троно-активационного метода. Благодаря высокому значению поперечного сечения реакции радиационного захвата тепловых нейтронов природным изотопом Мп, этот метод позволяет определять марганец из очень малых количеств исследуемых проб и без их разрушения. Это имеет принципиально важное значение при анализе уникальных проб космического происхождения, что способствует решению ряда важнейших космогонических проблем, таких как нуклеосинтез, ядерная эволюция вещества Солнечной системы, а также созданию геохимической модели земной коры и верхней мантип. Большой интерес представляют работы по нейтроно-активационному определению ничтожно малых количеств радиоактивного Мп, образующегося в метеоритах и породах лунной поверхности за счет ядерных взаимодействий с космическими лучами. Этот изотоп позволяет изучать вариации интенсивности космических лучей и солнечной активности за последние десять миллионов лет. [c.5]

    Реакции окисления перекисью водорода и кислородом. Марганец катализирует реакцию разложения Н2О2 [768]. Она весьма чувствительна в щелочной среде к присутствию очень малых количеств марганца и позволяет обнаружить присутствие его в растворе в количестве до 20 мкг. Чувствительность реакции резко увеличивается (до 0,03 жкз/л-л) при введении в раствор триэтилен-тетрамина, который образует каталитически активное комплексное соединение с марганцем. Реакцию проводят в растворе при pH 10. Применяют 0,15 М HjOg и 0,048 М раствор триэтилентетр-амина. Скорость реакции измеряют газоволюмометрическим либо химико-аналитическим методом. [c.82]

    Грибы как аналитические индикаторы шщюко используют цри анализе почв на содержание таких элементов, как цинк, медь, марганец, железо, молибден, фосфор, углерод, азот, сера. [c.401]

    Марганец. Восстановление марганца (II) изучалось полярографическим методом во многих комплексообразующих и некомплексообразующих средах. В комплексообразующем электролите, например, в цианиде натрия, первым продуктом восстановления является марганец (I), а не металл или амальгама. Мейтес и Моро fill] провели глубокое исследование этого восстановительного процесса, применяя метод потенциостатической кулонометрии с большим ртутным катодом, и обнаружили интересную вторичную реакцию с участием продукта восстановления, марганца (I), и растворителя. Взаимодействие между марганцем (I) и водой создавало дополнительное количество восстанавливающегося вещества, в результате чего возникал аномально высокий фоновый ток, увеличивающий погрешность аналитического определения. [c.58]

    Окисленная форма — марганец (III)—стабильна в некоторых комплексообразующих средах (например, в пирофосфате), так что восстановление марганца (III) может быть использовано для аналитических целей. Кольтгоф и Уоттерс[П2] использовали этот процесс для полярографического определения марганца в присутствии свинца, однако сообщений о применении его в кулонометрии не появлялось. Другие окислительно-восстановительные процессы, например, окисление марганца (II) до марганца (III) или восстановление марганца [c.58]

    Поглощение ионов ионитами может быть осуществлено в статических или динамических условиях. В первом случае ионит непосредственно помещают в исследуемый раствор, и между содержанием определяемых ионов в растворе и ионите возникает равновесие. Во втором случае исследуемый раствор пропускают через слой ионита, при этом равновесия не наступает, так как по мере продвижения вниз раствор встречает свежие порции ионита. В аналитической практике в большинстве случаев используется динамическая обработка ионитов. В ряде случаев поглощение ионитами можно проводить так, чтобы происходило селективное поглощение одного из ионов. Так, например, хром и марганец можно отделить от железа, алюминия, никеля и ряда других катионов, окислив хром и марганец до высших степеней валентности и пропустив полученный раствор через катионитную колонку. При этом железо и другие катионы г отлощаются катионитом, а хром и марганец в виде анионов Сг04 и Мп04 проходят через колонку и мог т быть определены в растворе. [c.530]

    Еще один любопытный пример возможностей последовательного определения элементов при использовании разных растворителей дает аналитическая химия урана. Известно, что диэтилди-тиокарбаминат уранила очень слабо экстрагируется четыреххлористым углеродом [71]. Проводя экстракцию карбаминатных комплексов четыреххлористым углеродом, можно определять какой-либо тяжелый металл (например, медь или марганец), после чего экстрагировать хлороформом комплекс уранила для его определения. [c.46]

    Второй способ применяют для определения натрия, калия, марганца, кальция, магния, железа и алюминия. Во фторопластовом тигле к 0,1 г золы прибавляют 5 мл 65%-ной фтороводородной кислоты и 0,5 мл 65%-ной хлорной кислоты, тигель помещают на песочную баню при 50—60 °С и, повышая температуру до 200—250 °С, выпаривают раствор досуха. Сухой остаток растворяют при нагревании в 2,5 мл концентрированной хлороводородной кислоты и 25 мл воды и разбавляют водой до 100 мл. Эталоны для определения кремния содержат 1% борной, 5% хлороводородной и 1% сЬто-роводородной кислот, а для определения остальных элементов — 2,5% хлороводородной кислоты. Для подавления ионизации при определении кальция к пробам и эталонам добавляют 0,1% калия в виде хлорида. Кремний, алюминий, кальций и магний определяют в пламени ацетилен — оксид диазота железо, марганец, калий и натрий — в ацетилено-воздушном пламени. Использован СФМ Перкин-Элмер , модель 305. Аналитические линии и характеристики метода анализа приведены в табл. 60. [c.225]

    При добавлении пиридина к слабокислому анализируемому раствору в нем, создается pH, приблизительно равный 6,5. В этих условиях осаждаются железо (III), алюминий, хром, уран, индий, галлий, титан,, цирконий, тОрий и скандий. В то же время марганец, кобальт, никель и цинк (а также и металлй сероводородной группы — медь и кадмий) образуют с пиридином ко мплексные ионы состава Me( 5HgN)2 , остающиеся в растворе. Для создания в растворе указанного значения pH при определении металлов, присутствующих в обычных аналитических концентрациях, требуется добавление пиридина в избытке около 8 эквивалентов. [c.111]

    Перенос электронов в органических лигандах, обусловленный их координацией с иона1Ми металлов, облегчает окисление самих органических реагентов. Очень популярным примером таких р еак-ций ъ аналитической химии является окисление щавелевой кислоты Перманганатом, которое катализируется марганцем (II). При этом образуются комплексы оксалат- марганец(П), которые затем распадаются с образованием двуокиси углерода радикала СО2 — сильного восстановителя. Окисление аскорбиновой кислоты катализируется ионами меди(II), образующими комплексы с этим органическим лигандом [56]. Медь(II) также действует в качестве катализатора декарбоксилирования (многих карбоновых кислот, которые могут образовывать промежуточные хелаты, например щавелевоуксусная [67] и ацетондикарбоновая кислоты. Подобное же действие наблюдается при окислении а-кетокислот в нрисутствии Zn(II), Fe(II), Fe(III), Mn(II) и других ионов металлов [58]. [c.159]

    С помощью высоковольтпой конденсированной искры совместно можно определять марганец, хром, никель, ванадий, вольфрам и молибден. Из-за наложений на аналитические линии кремния, проявляющихся при работе с прибором средней дисперсии и с искровым возбуждением, этот элемент приходится определять с помощью дуги переменного тока. [c.84]

    Юхан Готлиб Ган (1745—1818), друг Шееле, был горным химиком и сотрудником Берцелиуса в некоторых аналитических исследованиях. В 1774 г. открыл марганец Одним из первых стал употреблять паяльную трубку при химических анализах. Занимался также металлургией железа. [c.122]

    Малинек [72] подверг метод определения молибдена оксином дальнейшему изучению, применил его для анализа руд, шлаков и сплавов и считает его очень точным, надежным и быстрым. Определение проводится в 5 раз скорее, чем определение молибдена в виде РЬМо04 или потенциометрическим методом. Только у образцов со слишком большим содержанием железа или у образцов, которые необходимо сплавлять в железном тигле с перекисью натрия, наблюдалось незначительное соосаждение железа в виде оксихинолята железа. В этих случаях рекомендуется сначала осаждать молибден в виде сульфида и после растворения осадка определять молибден приведенным оксиновым методом. При осаждении молибдена в виде сульфида следует учитывать то, что в щелочной среде в присутствии комплексона сульфидом аммония не осаждаются железо, никель, кобальт, марганец и цинк, и поэтому автор рекомендует следующий ход определения к кислому раствору, содержащему молибден, железо и другие катионы, кроме катионов сероводородной аналитической группы, прибавляют в избытке комплексон и пропускают сероводород до обесцвечивания раствора. Подщелачивают аммиаком и опять пропускают сероводород до приобретения раствором темной окраски сульфосоли молибдена. После насыщения сероводородом раствор подкисляют серной кислотой (1 5) и нагревают на песчаной бане для свертывания осадка сульфида молибдена. Осадок отфильтровывают, промывают сероводородной водой и сульфид молибдена обрабатывают азотной кислотой. После растворения доводят раствор до требуемого pH и определяют молибден оксином в присутствии комплексона, как было указано. Единственный недостаток метода заключается в том, что при высоких концентрациях железа обработка сероводородом вызывает выпадение осадка серы, затрудняющего фильтрование. Этим методом было определено 10 мг молибдена в присутствии 1 г железа с точностью 0,2—0,3%. [c.113]

    В результате систематического исследования оксидиметрических определений катионов в сильнощелочной среде, проводившегося главным образом Томнчеком и его школой, было предложено несколько ценных аналитических методов. Из них прежде всего следует упомянуть метод селективного определения марганца в присутствии кобальта феррицианидом в аммиачной среде [105], затем аналогичный ему метод определения марганца в среде винной кислоты или глицерина [106] и определение марганца в растворе цианида щелочного металла [107]. В сильно аммиачной среде можно определить кобальт и марганец вместе. В среде цианида определению марганца мешает присутствие кобальта. Определению также мешает присутствие тех катионов, которые в больших концентрациях можно только с трудом удержать в щелочном растворе. [c.137]

    Получение и использование. Рубидий распространен в природе довольно широко содержание его в земной коре составляет 3,1-10 %, Однако собственных минералов не образует и встречается вместе с другими гцелочными металлами, например всегда сопутствует калию. Извлекается попутно при переработке мнне-ралыного сырья, в частности лепидолита и карналлита, с целью извлечения соединений калия и магния. Рубидиевые препараты иногда применяются в медицине как снотворные и болеутоляющие средства и при лечении некоторых форм эпилепсии. В аналитической химии соединения рубидия используются как специфические реактивы на марганец, цирконий, золото, палладий и серебро. В виде металлов его употребляют для изготовления рубидиевых фотокатодов (рис. 73), [c.288]


Смотреть страницы где упоминается термин Аналитические марганца: [c.20]    [c.62]    [c.193]    [c.666]    [c.369]    [c.101]    [c.165]    [c.237]    [c.50]    [c.45]   
Аналитическая химия. Т.1 (2001) -- [ c.393 ]




ПОИСК





Смотрите так же термины и статьи:

Аналитические реакции катионов третьей группы (ионы алюминия, хрома, железа, марганца и цинка)

Марганец аналитические реакции

Третья аналитическая группа катионов (ионы алюминия, хрома, железа, марганца и цинка)

Третья аналитическая группа катионов. Алюминий, хром, железо, марганец, цинк, ванадий, церий, никель, кобальт, бериллий, титан, цирконий, торий, уран

Физико-химическая и химико-аналитическая характеристика марганца и его соединений



© 2025 chem21.info Реклама на сайте