Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Кинетика процессов синтеза аммиака

    VII-9. Кинетика синтеза аммиака исследовалась Темкиным и Пыжовым . Суммарная скорость процесса определяется скоростью адсорбции азота. При выводе кинетического уравнения было использовано подтвержденное экспериментально уравнение изотермы адсорбции в логарифмическом виде  [c.237]

    КИНЕТИКА ПРОЦЕССА СИНТЕЗА АММИАКА [c.27]

    Известно, что кинетика процесса синтеза аммиака зависит от многих факторов от температуры, общего давления в системе и парциальных давлений газовых компонентов, активности катализатора, крупности его зерен, его пористости, от объемной скорости газа и др. Учесть влияние всех этих факторов на кинетику процесса экспериментально и теоретически очень трудно, вследствие чего до сих пор отсутствует строго научный метод расчета кинетики процесса и реакционной аппаратуры. Требуются дальнейшие исследования и теоретические обобщения по кинетике процесса, учитывающие влияние вышеуказанных факторов. [c.225]


    Такой эффект наблюдался в процессе синтеза аммиака и будет рассмотрен в следующей главе, при обсуждении кинетики этой реакции, вместе с общими вопросами отравления для процессов в реальных адсорбированных слоях. [c.167]

    В советских исследовательских институтах, в заводских лабораториях и в вузах проведены обширные работы в области исследования термодинамики и кинетики процесса синтеза аммиака. Большой вклад в усовершенствование технологии синтеза аммиака внесли инженеры азотно-туковых заводов и рабочие—новаторы производства. На основе этих работ значительно интенсифицирован технологический процесс и созданы новые конструкции аппаратов. Советские системы синтеза аммиака характеризуются высокой производительностью и экономичностью. [c.316]

    Знание кинетики процесса синтеза аммиака необходимо для выяснения механизма процесса, а также для научного проектирования производственных установок и для расчета реакционной аппаратуры. [c.224]

    Для количественных расчетов кинетики процесса синтеза аммиака В. А. Ройтер предложил следующую эмпирическую зависимость  [c.226]

    Реакции между газообразными веществами на поверхности твердых катализаторов весьма часто применяются при осуществлении промышленных процессов (синтез метилового спирта, реакции гидрогенизации и дегидрогенизации углеводородов, синтез и окисление аммиака и т. д.). Кинетика таких каталитических реакций существенно изменяется по сравнению с кинетикой в отсутствие катализатора. В некоторых случаях увеличение парциального давления одного из реагирующих газов приводит вместо ускорения реакции к ее замедлению. В других случаях замедление реакций происходит вследствие увеличения количества одного из продуктов реакции. В гетерогенных газовых реакциях часто наблюдается дробный порядок реакций. [c.409]

    Представления о неоднородности поверхности катализатора были использованы М. И. Темкиным с сотрудниками при изучении кинетики различных процессов. Было показано, что на этой основе могут быть объяснены наблюдаемые на опыте дробные порядки реакции. Так, для процесса синтеза аммиака на железном катализаторе М. И. Темкин вывел кинетическое уравнение, при помощи которого удалось объяснить результаты многих более ранних, а также и более поздних исследований. [c.411]

    Представления об энергетической неоднородности поверхности катализатора были использованы М. И. Темкиным при изучении кинетики многих каталитических реакций и особенно синтеза аммиака. Разработанная им теория объясняет наблюдаемые на опыте дробные порядки реакций. Для процесса синтеза аммиака М. И. Темкин вывел общепринятое в настоящее время кинетическое уравнение, при помощи которого можно объяснить результаты более ранних исследований, а также и поздних исследований, не получивших до этого определенного истолкования. М. И. Темкин установил, что при синтезе аммиака на железном катализаторе единственным адсорбирующимся газом является азот и скорость реакции определяется скоростью его адсорбции. При выводе уравнения было учтено, что активные центры отличаются своими энергетическими характеристиками и на разных активных центрах адсорбция идет с различной скоростью. Упомянутое выше уравнение для скорости синтеза аммиака, находящееся в прекрасном согласии с опытом, имеет вид  [c.278]


    Кинетика реакции синтеза аммиака в присутствии кислородсодержащих обратимых ядов была рассмотрена автором [438]. Кинетические данные могут быть объяснены, если предположить, что кислород и азот адсорбируются на железе со средней силой, но в совокупности покрывают почти всю поверхность катализатора. При этом скорость процесса по-прежнему определяется скоростью адсорбции азота. [c.220]

    Одновременное изучение кинетики процесса и адсорбции компонентов в ходе реакции в циркуляционной системе проводил также К. Тамару [537, 696], например, для реакции разложения муравьиной кислоты и синтеза аммиака в газовой фазе. [c.521]

    В работе [27] получено выражение Гопт для произвольной обратимой экзотермической реакции (для эндотермической реакции Гопт должно иметь максимально допустимое значение), характеризуемое формальной кинетикой. Для реакции конверсии оксида углерода не удается получить аналитическое выражение типа (VII.19). Однако нахождение оптимального температурного режима на ЭВМ по модели (VII.18) не представляет трудности и время расчета для процесса конверсии оксида углерода примерно то же, что и для расчета ОТР в процессе синтеза аммиака. Это обусловлено тем, что ОТР — монотонно-убывающая функция. Для расчета ОТР произвольной реакции с учетом диффузионного сопротивления на зерне катализатора используют численные методы. [c.441]

    Расчет показывает, что скорость разложения аммиака на дважды промотированном катализаторе в 10 раз превышает скорость обмена. Энергия активации процесса разложения аммиака, по данным различных исследователей, составляет при постоянной летучести азота от 31 до 44 ккал моль. Экспериментально найденная энергия активации обмена не выпадает из этих пределов. Кинетика реакции изотопного обмена также неплохо согласуется с известным уравнением Темкина—Пыжева. Увеличенную скорость синтеза по сравнению со скоростью обмена можно объяснить лишь малой скоростью поверхностной миграции атомов азота на катализаторе с данным содержанием промоторов. [c.197]

    Описанные выше термодинамические данные, приводящие к увеличению выхода продуктов реакции, часто находятся в противоречии с кинетикой процесса, поэтому для установления оптимальных технологических условий необходимо одновременно учитывать как термодинамические, так и кинетические факторы. Так например, с точки зрения термодинамики экзотермический процесс синтеза аммиака или окисления сернистого ангидрида на катализаторе желательно вести при низкой температуре, так как равновесная степень превращения увеличивается при понижении температуры. Однако скорость реакции, наоборот, при уменьшении температуры снижается, поэтому на практике выбирают такую оптимальную температуру Гопт, при которой обеспечивается максимальный выход продукта в единицу времени, т. е. максимальная интенсивность. [c.50]

    Следует также отметить, что зависимость скорости химической реакции от давления в значительной степени определяется конкретным способом ее проведения. Так, например, при синтезе аммиака, который проводится с помощью твердого катализатора (железо, промотиро-ванное оксидом алюминия и оксидом калия), скорость суммарного процесса определяется кинетикой активированной адсорбции азота на поверхности катализатора, свободного от адсорбированного азота. Опыты по синтезу аммиака при 500 °С и давлениях до 50,6 МПа показали, что при давлениях свыше 10,1 МПа начинается ио-степенное уменьшение константы скорости реакции. Анализ экспериментальных результатов показал, что они объясняются отмеченным явлением — кинетикой активированной адсорбции. [c.180]

    Существенной особенностью той трактовки кинетики реакций на поверхностях, которая была здесь вкратце представлена, является постулат о существовании определенного вида связи между кинетическими и адсорбционными характеристиками различных мест неоднородной поверхности, а именно связи, выражаемой уравнением [21]. Этот постулат устанавливает определенное соответствие между уравнениями, описывающими адсорбционное равновесие, и кинетическими уравнениями. Опирающаяся на него теория кинетики гетерогенных каталитических процессов дала возможность установить рациональные кинетические уравнения для важнейших контактных процессов химической технологии—синтеза аммиака, окисления сернистого газа, конверсии окиси углерода, чего не в состоянии была сделать прежняя теория Лэнгмюра — Хиншельвуда — Шваба. [c.65]

    В рамках данного проекта проводятся исследования перспективного метода синтеза циклогексаноноксима - исходного продукта в производстве е-капролактама окислительным аммонолизом циклогексанона. Реакция окислительного амманолиза осуществляется при взаимодействии циклогексанона с аммиаком и перекисью водорода при 10-20°С. В качестве катализатора нами использовались растворимые в водной фазе соединения вольфрама. Стабилизация распада перекиси водорода осуществлялась с помощью трилона-Б Было установлено, что при молярном соотношении циклогексанон перекись водорода аммиак = 14 5 выход циклогексаноноксима составляет 93-95% на загруженный циклогексанон при практически полной его конверсии. С целью выяснения механизма реакции окислительного аммонолиза циклогексанона была изучена кинетика процесса и показано, что он протекает через промежуточное образование гидропероксициклогексиламина Для получения циклогексанона и перекиси водорода предложено использовать жидкофазное окисление цикJюгeк aнoлa В зтой связи подробно изучена реакция окисления циклогексанола - температура, продолжительность реакции, концентрация катализатора, выделение смеси циклогексанона и перекиси водорода, которая непосредственно была использована для получения циклогексаноноксима. Изучена кинетика реакции окислительного аммонолиза циклогексанона и предложен механизм реакции [c.53]


    В результате исследования влияния на кинетику синтеза аммиака изменения давления, температуры и объемной скорости при соотношении Нг N1 от 0,5 до 10,0 было установлено, что стадией, определяющей скорость синтеза аммиака, является процесс хемосорбции азота на активной поверхности катализатора свободной не только от атомов азота и иминных радикалов, находящихся в адсорбционно-химическом равновесии с аммиаком и водородом газовой фазы, но и от атомов водорода, находящихся в адсорбционном равновесии с водородом газовой фазы. Водород в процессе синтеза аммиака под давлением оказывает двойственное влияние на активность катализатора положительное при высоких температурах и отрицательное при низких. В первом случае свободная работающая поверхность уменьшается с увеличением соотношения КНз На, а во втором — с увеличением отношения Нг На. [c.230]

    В 14.4.1 было показано, что температура и давление влияют на состояние системы и скорость синтеза аммиака противоположным образом, то есть существует противоречие между термодинамикой и кинетикой процесса. Поэтому, выход аммиака и удельная производительность катализатора зависят в первую очередь от этих параметров, а также от состава и объемной скорости газовой смеси, и активности катализатора и конструкции реактора. [c.200]

    Каталитический синтез аммиака имеет большое значение для всей химической промышленности. Поэтому немало научно-исследовательских работ посвящено изучению кинетики этого каталитического процесса, хемосорбции азота и водорода на поверхности катализатора, изменению его электронных и структурных свойств в ходе синтеза. Непрерывно продолжаются и поиски различных добавок к железному катализатору для повышения его активности и изыскание новых катализаторов синтеза аммиака. [c.27]

    Этот процесс используется для тонкой очистки синтез-газа в производстве аммиака от двуокиси углерода, которая является ядом для катализатора синтеза аммиака. В качестве катализатора гидрирования используется никель, нанесенный на окись алюминия, каолин или цемент из алюмината кальция [7]. Кинетика гидрирования двуокиси углерода при атмосферном давлении описывается уравнением 1-го порядка [8]. Эффективная константа скорости для зерна произвольной формы определяется соотношением  [c.190]

    Эта идея руководила нами при выборе тематики на протяжении последних лет перед войной. После работ в области синтеза аммиака мы перешли на исследование процессов конверсии окиси углерода, избирательного окисления сероводорода в коксовом газе, окисления примеси ацетилена в воздухе. Поразительно, насколько мало было известно о кинетике и механизме даже такого распространенного, проводимого в колоссальных масштабах процесса, как конверсия окиси углерода водяным паром, не говоря уже о других, перечисленных здесь. [c.357]

    До Великой Октябрьской социалистической революции Россия не имела азотной промышленности. В настоящее время СССР имеет мощную азотную промышленность, основанную на каталитическом синтезе аммиака из азота и водорода с последующим окислением его в азотную кислоту. Работы в этой области проводились в ряде исследовательских учреждений Советского Союза. Основную стадию процесса — синтез аммиака — изучали Н. И. Кобозев, М. Я. Каган, В. А. Ройтер, Н. И. Морозов и другие исследователи. В этих работах детализованЁ схема реакции синтеза, идущей на активных участках катализатора с образованием поверхностных нитродов. Весьма подробно изучены наиболее важные железные катализаторы, промотированные окисью алюминия и калия. Н. И. Кобозев с сотрудниками выяснил роль окиси алюминия в реакции и показал, что в процессе реакции происходит торможение вследствие накопления окиси алюминия в поверхностном слое катализатора. Отдельно изучена роль окиси калия. П. В. Усачевым, С. С. Лачиновым и др. детально изучены условия, позволяющие получать высокоактивные катализаторы. В работах Г. И. Чуфарова изучена кинетика восстановления различных окислов железа, причем оказалось, что реакция идет в несколько стадий и является автокаталитическим процессом. [c.13]

    Для реакции синтеза аммиака из азота и водорода, при которой лимитирующим этапом является хемосорбция азота, максимум каталитической активности смещен в сторону меньшего числа -электронов ц лежит у железа. Удельная каталитическая активность никеля в отношении этой реакции на три порядка ниже активности железа. По-видимому, энергия связи азота с поверхностью железа наиболее близка к опти-мальио.му значению для процесса синтеза аммиака на хроме она слишком велика, в результате чего очень медленно протекают последующие этапы гидрирования хемосорбированного азота на никеле же энергия хемосорбции азота слишком мала, и сорбция ироисходит очень медленно. Это предположение согласуется и с данными по кинетике синтеза аммиака на различных металлах. [c.136]

    Другое исследование, проводимое Русовым, Певзнер и Стрельцовым, направлено на выяснение границ влияния макрокинетических факторов на процесс синтеза аммиака на технических катализаторах. После работ Темкина и Пыжова , Эмметта и Куммера и наших > кинетика этого процесса настолько выяснена, что можно было бы использовать выводы теории для количественных расчетов промышленных колонн синтеза и оптимальных условий его проведения. Как показано автором, в обычно принятых условиях лабораторных исследований макрокипетические факторы не осложняют реакцию. Однако имеется опасность, что при переходе к условиям и масштабам промышленных установок (крупные куски катализатора, высокие давления, возможность перегревов) имеет место наложение влияния диффузии, что не учитывалось авторами цитированных работ. Это обстоятельство может исказить найденные в лаборатории параметры и зависимости. Методика проводимой нами работы сводится, в основном,к исследованию кинетики процесса в циркуляционной установке на отдельных кусках катализатора разной величины, свободно висящих в потоке газа, при разных температурах, скоростях потока и давлениях газа. [c.361]

    Решение проблемы кинетики синтеза аммиака имеет не только большое теоретячеокое значение, оно весьма важно и з практическом отношении. При проектировании аппаратуры для различных химических процессов успешно используются точные или эмпирические уравнения кинетики. Применительно к процессу синтеза аммиака такие уравнения до сих пор не использовались. [c.521]

    Создание и развитие метода производства синтетического аммиака оказало очень большое влияние на развитие химической технологии. Синтез аммиака — пример нового подхода к решению химико-техниче-ских проблем. Осуществление его стало возможным только на основе глубокого изучения теории процесса. Именно в этом случае впервые в истории химической промышленности для создания нового технологического процесса была всесторонне использована физичес1бая химия. В свою очередь исследование процесса синтеза аммиака в значительной мере повлияло на развитие важнейших разделов физической химии термодинамики и кинетики каталитических процессов. [c.316]

    При гидрировании карбонильной связи качественно наблюдается та же последовательность изменения удельной каталитической активности с максимумом у никеля, как и при гидрировании двойных связех , но падение активности при переходе к меди значительно меньше. Для реакции синтеза амдшака из азота и водорода (кривая 3, рис. 2), при которой лимитирующим этапом является хемосорбция азота, максимум каталитической активности смещен в сторону меньшего числа й-электронов и лежит у железа [6]. Удельная каталитическая активность никеля в отношении этой реакции на три порядка ниже активности железа. По-видимому, энергия связи азота с поверхностью железа наиболее близка к оптимальному значению для процесса синтеза аммиака на хроме она слишком велика, в результате чего очень медленно протекают последующие этапы гидрирования хемосорбированного азота на никеле же энергия хемосорбции азота слишком мала и сорбция происходит очень медленно. Это предположение согласуется и с данными по кинетике синтеза аммиака на различных металлах. [c.234]

    В настоящее время считают, что стадией, определяющей скорость каталитического процесса синтеза аммиака, является хемосорбция азота на активной части поверхности катализатора, свободной от атомов азота или иминных радикалов, находящихся в равновесии с аммиаком и водородом газовой фазы [1, 2]. Предполагают, что вдали от равновесия могут быть две замедленные стадии хемосорбция азота и первая стадия его гидрирования [3]. Подробный анализ кинетики синтеза аммиака дан в работе [4]. Во всех случаях отмечается положительное влияние водорода на скорость процесса синтеза. Однако в работе [5] было показано, что на однопромотированном катализаторе (Fe/AlaOg) при температуре ниже 200° С и атмосферном давлении скорость синтеза аммиака была в 30 раз ниже, чем можно было ожидать из данных по хемосорбции азота. Предполагается, что в этих опытах хемосорбция азота была подавлена относительно большим количеством хемосорбирован-ного водорода. При исследовании раздельной и последовательной хемосорбции азота и водорода на железных катализаторах, содержащих различные промоторы, был сделан вывод о том, что одной из положительных сторон щелочного промотирования (КаО) является увеличение скорости хемосорбции азота в присутствии водорода [6]. В нашем исследовании влияния щелочного промотирования на кинетику и механизм синтеза аммиака при высоком давлении было показано, что добавка КгО оказывает сложное комплексное действие, в частности увеличивает число активных участков на поверхности катализатора, так как препятствует увеличению степени покрытия поверхности водородом и отрицательному заряжению его поверхностных комплексов [7]. Следует еще упомянуть, что при высоком давлении (150—310 атм) при температуре ниже 370° С уравнение Тёмкина — Пыжева неприменимо, что, по мнению Нильсона и др. [8], связано с изменением механизма для покрытия поверхности . [c.143]

    В промышленности широко используется проведение реакций в струе газа, проходящего через реактор, который может быть или пустым, играя роль только области, где поддерживается постоянная температура, или заполненным слоем зер-неного катализатора. Примерами реакций, осуществляемых в потоке в промышленных масштабах, могут служить реакции термического и каталитического крекинга нефтепродуктов, каталитического алкилирования, иолимеризации, гидро- и дегидрогенизации углеводородов, дегидратации и дегидрогенизации спиртов, гидратации олефинов, галоидирования, нитроваиия охислами азота, синтеза аммиака, получения серной кислоты контактным способом, синтеза моторного топлива н т. п. Поэтому и лабораторные опыты по изучению кинетики многих в.ажных широко применяемых в промышленности реакций проводятся также в потоке. Вследствие того, что реакции этого типа проводятся обычно при постоянном давлении и сопровождаются в большинстве случаев изменением объема участвующих в реакции веществ, уравнения кинетики этих процессов должны отличаться от уравнений, выведенных выше для условия ПОСТОЯННОГО) объема. Кроме того, и сам метод расчета кон-стаит скоростей реакций, протекающих в потоке, должен отличаться от методов расчета констант скоростей реакций,осуществляемых при постоянном объеме, так как очень трудно определить время пребывания реагирующих веществ в зоне реакции (так называемое время контакта). [c.48]

    Теория синтеза аммиака в присутствии катализаторов получила плодотворное развитие в результате работы ]И. И. Темкина п В. ]И. Пыжева [193]. Авторы показали, что при синтезе аммиака на железном катализаторе, иромотированном окисью алюминия и окисью калия, скорость суммарного процесса определяется кинетикой активированной адсорбции азота на поверхности, свободной от адсорбированного азота. Количество азота на поверхности определяется равновесием с водородом и аммиаком в газовой фазе, так как гидрирование адсорбированного азота в аммиак протекает быстро. Скорость разложения аммиака определяется скоростью десорбции азота. [c.112]

    Н. И. Кобозевым [3] и голландскими исследователями [4]. Взаимосвязь между кинетикой процессов и проблемой катализатора наибольше активности для некоторых случаев была показана М. И. Темкиным [5]. Ранее, в работе Темкина и автора [6] был поставлен вопрос о максимальной в данных ус-ловиях скорости реакции применительно к частному случаю реакции синтеза аммиака. [c.107]

    Последнее обусловлено стадийным протеканием процесса и установлением адсорбционно-химического равновесия быстрых стадий, как это быхо подробно рассмотрено в предыдущей главе. Такая особенность кинетики реакций с торможением продуктами была впервые отмечена на примере процессов на неоднородных поверхностях [436], в частности для синтеза аммиака [436, 501]. [c.207]

    Совпадение зависимостей, получаемых из анализа опытных данных, с зависимостями, вытекающими из предполагаемых кинетических уравнений, может указывать на справедливость этих уравнений. Так, например, в работах В. Ш. Грановской и автора [493, 562] было показано, что при варьировании объемной скорости в ходе реакции синтеза аммиака вдали от равновесия на осмиевом катализаторе произведение хУостает-ся постоянным. Такая зависимость вытекает йз уравнения нулевого порядка, и отсюда был сделан вывод, что в данном случае продукт реакции — аммиак не тормозит ее и скорость процесса отвечает уравнению (У.250), поскольку концентрации исходных веществ мало изменяются вдали от равновесия (а для этой реакции при атмосферном давлении — и вблизи равновесия). Общему уравнению кинетики синтеза аммиака (У.247) в интегральной форме (1Х.93) при достаточном удалении от равновесия отвечает соотношение [c.547]


Смотреть страницы где упоминается термин Кинетика процессов синтеза аммиака: [c.204]    [c.467]    [c.517]    [c.525]    [c.225]    [c.383]    [c.411]    [c.383]    [c.411]    [c.14]    [c.107]    [c.298]   
Технология связанного азота Синтетический аммиак (1961) -- [ c.505 , c.511 ]

Синтез углеводородов из окиси углерода и водорода (1954) -- [ c.77 , c.78 ]




ПОИСК





Смотрите так же термины и статьи:

Кинетика процессов

Синтез аммиака

Синтез аммиака кинетика

Синтез аммиака синтеза аммиака



© 2025 chem21.info Реклама на сайте