Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Синтез аммиака теория процесса

    Таким образом, по теории энергетического катализа, значительную роль в образовании химически активных частиц в разряде (в приведенных выше примерах — свободных атомов) могут играть электронно возбужденные атомы и молекулы, главным образом, вероятно, в метастабильном состоянии. Аналогия с катализом состоит в том, что сами электронно возбужденные состояния непосредственно в акте химического взаимодействия не участвуют, а служат лишь передатчиками энергии от электронного газа плазмы разряда к активируемым молекулам, облегчая, таким образом, образование активных комплексов. В приведенных примерах роль энергетических катализаторов играют атомы и молекулы добавок. Аналогичные функции могут выполнять и электронно возбужденные участники реакции, передавая энергию при ударах второго рода молекулам, себе подобным, или молекулам других участников реакции. Например, при синтезе аммиака возможен процесс [c.256]


    Монография посвящена одной из самых актуальных проблем современной химической технологии — расчету аппаратуры каталитических процессов на основе количественного описания физико-химических явлений в реакторах. В книге подробно рассмотрены теория и методы расчета химических реакторов для контактных процессов, вопросы использования математического моделирования и методов теории подобия при оптимальном проектировании и проектировании конкретных аппаратов для процессов синтеза аммиака, окисления двуокиси серы, каталитического крекинга нефтяных фракций и др. [c.4]

    В заключение следует отметить работы [192], в которых аппарат теории чувствительности использован для выбора параметров управления процессами конверсии оксида углерода и синтеза аммиака. [c.322]

    Малые примеси к активной фазе катализатора (металла, полупроводника), как это объясняется электронной теорией катализа, могут резко повышать ее каталитическую активность и влиять на селективность каталитического процесса. Вокруг чужеродного атома, внедрившегося в поверхность катализатора, образуется зона напряжений, спадающих от центра к периферии, обладающих различной избыточной энергией, широким набором дополнительных локальных уровней энергий адсорбции. Тем самым повышается вероятность возникновения участков, оптимально соответствующих условиям данной реакции. Это обычный механизм промотирования катализаторов. Эффективность промотирующего действия добавок (активаторов, промоторов) растет с интенсивностью вызываемых ими нарушений решетки. Поэтому особенно эффективным нередко оказывается промотирование весьма малыми количествами таких веществ, которые при более высоких их содержаниях отравляют катализатор. Промотор может содействовать течению гетерогенно-каталитической реакции, способствуя адсорбции реагирующих веществ или десорбции продуктов с поверхности катализатора. Так, добавка оксида калия к железному катализатору синтеза аммиака способствует десорбции образующегося аммиака с поверхности. [c.306]

    Теория синтеза аммиака из простых веществ довольно сложна. Здесь только указываются оптимальные условия процесса, основанные на принципе смещения химического равновесия. [c.191]

    Методом теории активных ансамблей было изучено более 50-ти процессов на различных катализаторах. Соответствующий материал приведен в ряде обзоров 18— 20, 24]. Оказалось, что для всех изученных окислительновосстановительных процессов АКЦ на разных катализаторах (Р1, Р(1, N1, ионные системы) являются одноатомными ансамблями [Ме]]. Для всех процессов дегидрирования и гидрирования кратных связей (С = С С = С С = К) на различных катализаторах основным элементарным центром является двухатомный ансамбль [Ме]г. Для некоторых процессов активными оказываются более сложные центры, например трехатомный при синтезе аммиака. [c.73]


    Существенной особенностью той трактовки кинетики реакций на поверхностях, которая была здесь вкратце представлена, является постулат о существовании определенного вида связи между кинетическими и адсорбционными характеристиками различных мест неоднородной поверхности, а именно связи, выражаемой уравнением [21]. Этот постулат устанавливает определенное соответствие между уравнениями, описывающими адсорбционное равновесие, и кинетическими уравнениями. Опирающаяся на него теория кинетики гетерогенных каталитических процессов дала возможность установить рациональные кинетические уравнения для важнейших контактных процессов химической технологии—синтеза аммиака, окисления сернистого газа, конверсии окиси углерода, чего не в состоянии была сделать прежняя теория Лэнгмюра — Хиншельвуда — Шваба. [c.65]

    Представления об энергетической неоднородности поверхности катализатора были использованы М. И. Темкиным при изучении кинетики многих каталитических реакций и особенно синтеза аммиака. Разработанная им теория объясняет наблюдаемые на опыте дробные порядки реакций. Для процесса синтеза аммиака М. И. Темкин вывел общепринятое в настоящее время кинетическое уравнение, при помощи которого можно объяснить результаты более ранних исследований, а также и поздних исследований, не получивших до этого определенного истолкования. М. И. Темкин установил, что при синтезе аммиака на железном катализаторе единственным адсорбирующимся газом является азот и скорость реакции определяется скоростью его адсорбции. При выводе уравнения было учтено, что активные центры отличаются своими энергетическими характеристиками и на разных активных центрах адсорбция идет с различной скоростью. Упомянутое выше уравнение для скорости синтеза аммиака, находящееся в прекрасном согласии с опытом, имеет вид  [c.278]

    Теория синтеза аммиака из элементов довольно сложная. Здесь только указываются оптимальные условия процесса, основанные иа принципе Ле Шателье (см. 19). [c.238]

    Металлические материалы широко применяют в аппарато- и машиностроении, катализе, электротехнике, радио- и электронной промышленности. Действительно, чтобы осуществить любой процесс, например химико-технологический, необходимо располагать соответствующей аппаратурой. Использование представлений макрокинетики, теории химических реакторов, а также методов математического и физического моделирования в принципе позволяет найти оптимальную для данного процесса конструкцию и размеры аппарата. Но тогда возникает вопрос, из каких материалов следует делать эту аппаратуру, чтобы она была способна противостоять разнообразным агрессивным воздействиям, в том числе химическим, механическим, термическим, электрическим, а в ряде случаев также радиационным и биологическим. Выбор конструкционных материалов осложняется, когда перечисленные воздействия сопутствуют друг другу. Кроме того, в последнее время требования к материалам, используемым только в химической технологии, повысились по двум причинам. Во-первых, значительно шире стали применять экстремальные воздействия, такие, как сверхвысокие и сверхнизкие температуры и давления, ударные и взрывные волны, ионизирующие излучения, биологические ферменты. Во-вторых, переход к аппаратам большой единичной мощности по производству основных химических продуктов создает исключительно сложные проблемы в изготовлении, транспортировке, монтаже и эксплуатации подобных установок. Например, на современном химическом предприятии можно видеть контактные печи для производства серной кислоты диаметром 5 м, содержащие до 5000 различных труб, реакторы синтеза аммиака и ректификационные колонны высотой более 60 м. Сочетание механических свойств, таких, как прочность, вязкость, пластичность, упругость и твердость, с технологическими свойствами (возможность использования приемов ковки, сварки, обработки режущими инструментами) делает металлические материалы незаменимыми для построения химических реакторов самой разнообразной формы и размеров. [c.135]

    Виды взаимодействий между твердым телом и адсорбированными на нем молекулами настолько же многообразны, как и возможности взаимодействия веществ вообще. Именно поэтому в настоящее время нет и, очевидно, нельзя ожидать появления завершенной теории катализа. Однако проведенные исследования углубили понимание механизмов некоторых каталитических реакций. Если в прошлом отдельные катализаторы были подобраны чисто эмпирически (Габер исследовал около 20 тыс. различных веществ в поисках первого промышленного контакта для синтеза аммиака), то имеющиеся в настоящее время сведения о каталитических процессах дают ученому критерии предварительного выбора катализатора и указывают пути создания эффективных каталитических систем. [c.10]


    МёталлыГГл авные металлические катализаторы, применяемые в промышленности, находятся в VIII группе периодической системы и представляют собой, таким образом, переходные элементы, у которых электронные уровни М, id и 5d заполнены полностью или почти полностью. Согласно одной из теорий, электроны адсорбированных молекул могут заполнить свободные уровни в незаполненных оболочках, что обусловливает химическую связь. Что происходит далее, зависит от условий процесса. Детальный химический механизм реакций (например, реакций синтеза аммиака или восстановления водородом), катализаторами которых служат металлы, пока является только умозрительным. [c.313]

    Кинетика и механизм этой реакции будут рассмотрены несколько подробнее, так как теория синтеза и разложения аммиака, развитая в работах М. И. Темкина с сотрудниками [104, 124, 138, 336, 436—438, 492, 523, 525, 757], явилась первым практическим применением и успехом теории процессов на неоднородных поверхностях. [c.214]

    Предположения об адсорбции и десорбции азота как лимитирующих стадий синтеза и разложения аммиака, с точки зрения теории процессов на неоднородных поверхностях, ведут к следующим кинетическим зависимостям. [c.216]

    Таким образом, дробный порядок в кинетических уравнениях синтеза и разложения аммиака с точки зрения теории процессов на неоднородных поверхностях обусловлен значениями коэффициентов соотношения линейности, а также, в общем случае, значениями показателей степени в уравнении изотермы Фрейндлиха (в случае экспоненциального распределения неоднородной поверхности катализатора). [c.217]

    Рассмотрение кинетики синтеза и разложения аммиака, как видно, показывает, что теория процессов на неоднородных поверхностях в состоянии объяснить совокупность наблюдаемых на опыте кинетических закономерностей. [c.221]

    Основные научные работы посвящены изучению тепло- и массо-обменных процессов. Разработал теории многокорпусных выпарных аппаратов, теплового насоса, сложных процессов теплообмена в химических аппаратах, создал аналитический метод расчета ректификации идеальных бинарных смесей. Теоретически н экспериментально исследовал ряд процессов псевдоожижения. Разработал и внедрил в промышленность машины и аппараты для многих химических производств (в частности, для производства фосфорных удобрений, синтеза аммиака, производства ксантогенатов щелочных металлов и др.). [c.135]

    Кроме металлического дублета [MeJj во многих процессах гидрирования, по крайней мере на платине, активным является и шсстиатомпый ансамбль. Появление шестиатомного центра не обязательно связано с реакцией в шестичленном кольце, как этого требует секстетная модель в теории мультиплетов. Так, активность ансамбля [Р1]е была обнаружена как при гидрировании циклогексана, бензола, толуола, так и при гидрировании геп-теиа, малеиновой кислоты, диметилацетиленилкарбинола (связь С=С), бензальанилина (связь = N). По-видимому, простое геометрическое соответствие между центром и реагирующей молекулой не определяет еще состава актив-ного центра. Для выяснения состава активного центра необходимо еще принимать во внимание число и характер разрываемых и образующихся в результате реакции связей. Так, синтез аммиака идет на трехатомном ансамбле железа [Ре]з. Хотя превращающиеся молекулы и просты, но в ходе реакции должно разорваться четыре связи и образоваться шесть новых. Эт(зму и отвечает достаточно сложный и специфичный трехатомный активный центр. [c.363]

    Таким образом, по теории энергетического катализа значительную роль в образовании химически активных частиц в разряде (в приведенных выше примерах — свободных атомов) могут играть электронно-возбужденные атомы и молекулы главным образом, вероятно, в метастабильном состоянии. Аналогия с катализом здесь та, что частицы в электронно-возбужденных состояниях непосредственно в акте химического взаимодействия не участвуют, а служат лишь передатчиками энергии от электронного газа плазмы разряда к активируемым молекулам, облегчая таким образом образование активных состояний. Отличие от обычного катализа состоит в достижении при действии энергетического катализатора более высоких равновесных (равновесно-стационарных) концентраций продуктов реакций. В приведенных примерах роль энергетических катализаторов играют атомы и молекулы добавок. Это, вероятно, не обязательно. Аналогичную функцию могут выполнять и электронно-возбужденные состояния самих участников реакции, передавая энергию при ударах II рода молекулам, себе подобным, или молекулам других участников реакции. Например при синтезе аммиака представляется вероятным процесс [c.58]

    Так как каталитическая реакция протекает обычно на поверхности катализатора, последний должен, естественно, обладать максимально развитой поверхностью. Для достижения этого процессы формирования катализатора (например, осаждение, разложение, восстановление и т. п.) нужно вести в условиях наибольшего удаления их от равновесия (теория пересыщения Рогинского). Чтобы стабилизировать полученную высокую дисперсность, целесообразно вводить в катализаторы примеси, которые, будучи равномерно распределены в исходной массе, например в виде твердого раствора, выделялись бы в виде мелких включений между кристалликами катализатора в процессе формирования его, изолировали бы эти кристаллики друг от друга, что препятствовало бы рекристаллизации. Такова, по-видимому, роль окиси алюминия в железных катализаторах синтеза аммиака. Подобную же роль играют,часто носители. [c.10]

    Анализ кинетических измерений синтеза и разложения аммиака в условиях, свободных от диффузионного торможения или при учете последнего [33, 37, 42—47], позволяет прийти к заключению, что теория кинетики синтеза аммиака, развиваемая М. Темкиным [48—53], находит экспериментальное обоснование. Каталитический синтез и разложение аммиака, протекающие в кинетических режимах при низких и высоких давлениях, на катализаторах разной природы характеризуются, как показано в работах [33, 37, 42—47], теплотами активации разложения аммиака порядка 57 3 ккал/моль и достаточно точно описываются известным уравнением Темкина и Пыжева [48]. Это уравнение, однако, весьма чувствительно к процессам переноса и только с учетом последнего описывает процесс син- [c.28]

    Нернст, пытаясь применить свою теорему к вычислению равновесия реакции синтеза аммиака, на основании измерений Габера в 1907 г. пришел к выводу, что данные Габера преувеличены. Нернст экспериментально проверил свои предположения, впервые проводя исследования процессов разложения [c.454]

    В этих работах важная роль отводилась изысканиям катализаторов процесса синтеза аммиака, особенно катализаторов промышленного значения. Исследованиям каталитических процессов посвящено очень много труда с привлечением разнообразных научных средств, однако из-за сложности задачи пока не удалось создать универсальной теории, охватывающей все явления катализа. Накопленный огромный экспериментальный материал, все время пополняемый новыми данными, образует прочную основу для теоретических обобщений. Такие обобщения результатов эмпирических наблюдений позволят осмыслить на- [c.493]

    Гетерогенные каталитические реакции протекают в процессе адсорбции на поверхности раздела фаз.. Представления о характере этой поверхности и способе ее действия различны и по мере накопления новых экспериментальных данных и появления новых гипотез подвергаются изменения.уг. Большое влияние содержащихся в газе примесей на активность катализатора синтеза аммиака явилось предпосылкой создания одной из наиболее распространенных теорий — так называемой теории активных центров. [c.496]

    Несколько лет тому назад Тейлор высказал предположение, что теорию активных центров возможно согласовать с некоторыми экспериментальными данными, подтверждающими однородность поверхности катализаторов, заменив ее теорией центров загрязнения . По этой теории отравляющее действие молекул кислорода, адсорбированных на катализаторе синтеза аммиака, должно заключаться не в связывании кислородом некоторых, особенно активных атомов катализатора, а в ослаблении нормальной активности многих расположенных рядом атомов железа. При этом влияние активаторов сводится к образованию центров загрязнения , действие которых обратно действию ядов, т. е. увеличивает активность соседних атомов железа. Предлагались различные другие теории процесса катализа, часто соверщенно противоречивые и не объясняющие наблюдавшихся явлений. [c.499]

    Согласно этой теории в процессе синтеза аммиака водород, являющийся донором электронов, передает их катализатору, содержащему металлы и полупроводники (некоторые окислы), Азот как акцептор электронов воспринимает их от катализатора, приобретая при этом повышенную активность. [c.500]

    Основы теории оптимального проектирования таких реакторов даны Хорном [77] вместе с элегантной процедурой учета температурных ограничений. Хорн рассмотрел, однако, только случай реактора с косвенным охлаждением (теплообменник) между слоями. Наши исследования показали, что аналогичная методика возможна для любой формы промежуточного охлаждения и распространяется на случай охлаждения смешением потоков, обыч1Ю применяемого в конверсии СО. Были также развиты процедуры для автоматического учета ограничений иа общий рост температуры, имеющих место при проектировании реакторов для автотермнческих процессов (иапример, в синтезе аммиака). [c.176]

    Гетерогенным называют катализ на поверхности твердых тел, находящихся в контакте с реагирующими веществами в газовой фазе или в растворах. Основные теоретические положения, необходимые для понимания сущности гетерогенного катализа, уже изложены в гл. 14 в связи с обсуждением роли адсорбции в гетерогенных реакциях. При проведении реакции на поверхности твердых тел последняя играет вполне определенную роль благодаря адсорбции на поверхности понижается энергия активации катализируемой реакции. До настоящего времени еще не существует удовлетворительной количественной теории катализа. В любой каталитической реакции важнейшее значение имеет структура поверхности. Катализ протекает не на всей поверхности твердого тела, а главным образом на активных центрах (дислокациях, ребрах кристаллов и других дефектах кристаллов). Кроме того, известно, что каталитическая активность зависит от кристаллографической плоскости, — кристаллы, ориентированные в некоторых определенных направлениях, обладают максимальной активностью. Большое значение в гетерогенном катализе имеют смешанные катализаторы. Примером могут служить почти все известные газовые реакции, используемые в химических технологических процессах (синтез аммиака, синтез 50з, гидрирование угля по Бергиусу или Фишеру— Тропшу, окисление аммиака по Оствальду и многие другие). [c.196]

    Физическая химия позволяет определят[ь наиболее выгодные условия ведения многих технологических процессов, предвидеть их результаты, овладеть теорией этих процессов и научиться ими управлять. Все это имеет фгромное значение для развития химической промышленности (синтеза аммиака, метанола, широкого ассортимента органических веществ, пластических масс, химических волокон, Ьолучения продуктов нефтехимии и лесохимии и др.), металлургии, нефтяной промышленности, производства строительных материалов, сельского хозяйства, медицины и др. В свою очередь тесное единение развития теории с практикой обогащает физическую химию новыми проблемами и способствует ее развитию. [c.5]

    За последние пятьдесят — шестьдесят лет катализ превратился в могучее орудие химического синтеза, существенно преобразовав содержание химии и став основой промышленных химических процессов. Однако практические достижения в oблa т каталитической химии получены преимущественно путем эмпирического подбора катализаторов и оптимальных условий реакций, тогда ак функции теории здесь в лучшем случае ограничивались объяснением и прогнозированием отдельных граней явления. О том, каким мучительным и длинным был эмпирический поиок катализаторов, пишет известный специалист в области катализа А. Митташ, на долю которого выпал труд найти катализатор синтеза аммиака в лаборатории баденских анилиновой и содовой фабрик. Надо было, говорит он, в нескольких тысячах опытов, следуя периодической системе элементов, смешивать. каждый элемент А с любым элементом В как таковым -или в виде соединения в различных соотношениях и каждый вариант испробовать в качестве катализатора [16, с. 146], [c.121]

    Гетерогенный катализ широко применяется в целом ряде важнейших технологических процессов каталитическое окисление аммиака при производстве NN03, каталитический синтез аммиака, гидрогенизация органических веществ. Развитие теории гетерогенного катализа позволило значительно усовершенствовать эти процессы, а всевозрастающее применение катализаторов в промышленности в свою очередь стимулирует исследования в этой области. [c.237]

    Теория синтеза аммиака в присутствии катализаторов получила плодотворное развитие в результате работы ]И. И. Темкина п В. ]И. Пыжева [193]. Авторы показали, что при синтезе аммиака на железном катализаторе, иромотированном окисью алюминия и окисью калия, скорость суммарного процесса определяется кинетикой активированной адсорбции азота на поверхности, свободной от адсорбированного азота. Количество азота на поверхности определяется равновесием с водородом и аммиаком в газовой фазе, так как гидрирование адсорбированного азота в аммиак протекает быстро. Скорость разложения аммиака определяется скоростью десорбции азота. [c.112]

    Несмотря на очевидную значимость вопросов теории управления химическими процессами, они до настоящего времени изучались немногими, главным образом отечественными исследователями (Г. К. Бо-ресковым, А. И, Плановским, С. И. Обрядчиковым, М. Ф. Нагиевым, Б. К. Америком, В. А. Ройтером, В. Л, Волковым, В. А. Каржа-виным, А. П. Зиновьевой и др.) и не получили еще достаточного освещения в научной печати. Исключение составляют некоторые частные решения для процессов окисления сернистого ангидрида, синтеза аммиака, непрерывного синтеза хлорбензола, синтеза бензосульфокислоты, термического крекинга нефтепродуктов, гидрирования олефинов, деструктивной гидрогенизации в паровой фазе, каталитического риформинга бензинов и синтеза углеводородов из окиси углерода и водорода [1, 2, 3, 4, 4а, 5, б, 7, 8, 8а, 9, 10, И, 12 и 13]. [c.3]

    С приведенными замечаниями мы не можем согласиться. В самом деле, как мы уже отмечали, анализ [422] показывает, что только равномерное и экспоненциальное распределение неоднородной поверхности может вести при наличии соотношения линейности к выражениям с дробными показателями степени в кинетических уравнениях. Поэтому не всякое широкое распределение, а только принимаемые теорией распределения, обосноианные экспериментом (например [153, 341]), ведут к опытным кинетическим уравнениям. В основе теории лежит предположение об адсорбции азота как лимитирующей стадии процесса (при небольшом удалении от равновесия). Это предположение вытекает из совокупности различных специальных исследований, упомянутых выше. Поэтому нельзя считать постулаты теории завуалированными, напротив, они весьма ясны. Отметим также, что после выхода в свет монографии [54] основное уравнение теории синтеза аммиака [уравнение (V.247)] было подтверждено многочисленными работами советских и зарубежных исследователей, упомянутых выше, использовавших для этой цели разные кинетические методы, в частности проточно-циркуляционный метод [522, 523, 525, 572, 1113, 1225]. При этом в разных работах, например [104, 522, 524] и других, выполненных различными авторами, были получены близкие значения констант скорости, в большинстве случаев совпадающие по величине или по порядку величины. [c.222]

    Вопрос о роли в катализе кристаллической решетки адсорбента и изменении активности металлического ансамбля при замене типа решетки носителя также решается экспериментально. Во многих случаях, как например для железа на угле и алюмогеле при синтезе аммиака или для процессов гидрирования органических соединений на платине, получаемое различие в активностях невелико. Оно укладывается в пределы одного порядка. Однако независимость свойств активного центра от решетки здесь выступает как результат опыта, а не как условие применимости теории ансамблей. Результатам, полученным с помошью теории ансамблей, не противоречит любая зависимость свойств активного центра от природы решетки адсорбента. Сильная зависимость каталитической активности от природы носителя наблюдается обычно для адсорбированных ионов. [c.108]

    Нанесенные металлические катализаторы широко прш 1еняются в химической, нефтеперерабатывающей и нефтехимической промышленности [1]. Достаточно перечислить важнейшие процессы, в которых они используются, и их огромное практическое значение станет очевидным синтез аммиака конверсия углеводородов с водяным паром в синтез-газ риформинг гидрокрекинг гидроочистка гидро-деалкилирование дегидроциклизация изомеризация парафинов и цикланов гидроизомеризация олефинов, диенов и ароматических углеводородов изомеризация этилбензола в ксилолы восстановление разнообразных органических соединений окисление синтез Фишера—Тропша и др. Исследование металлсодержащих контактов представляет большой интерес для теории катализа, создания новых полифункциональных каталитических систем и разработки новых каталитических процессов. Свойства таких катализаторов, как известно, существенно зависят от состояния и дисперсности металлического компонента [2—6]. И не случайно, когда были синтезированы и стали доступны кристаллические алюмосиликаты (цеолиты), их способность к ионному обмену и иысикая обменная емкость, наличие кристаллической структуры с однородными порами молекулярных размеров были использованы для получения катализаторов-, содержащих высокодиспергированные металлы, обладающие молекулярно-ситовой селективностью и полифункциональным действием. Уже первые исследования, выполненные Рабо и др. [7, 8], Вейсцем и др. [9, 10], показали большую перспективность металлцеолитных систем для катализа, нефтепереработки, нефтехимии. Интерес к этим системам особенно возрос после опубликования результатов изучения внедрения атомов платины в цеолитную структуру, ее дисперсности и установления высокой стойкости к отравлению серой ионообменного катализатора 0,5% Р1-СаУ [И]. [c.154]

    Серьезные успехи получены в области теории отдельных процессов (гидрирование и дегидрирование, синтез аммиака, окисление сернистого газа и окиси углерода, 1лубог<ое каталитическое окисление, ароматизация, дегидратация и т. [c.10]

    Начнем с проблемы подбора катализаторов, которая нам представляется самой трудной из всех проблем теории катализа и разработана меньше других. Подбор неотделим от представлений о глубоком механизме процессов, который нам недостаточно известен, но несомненно, не один и тот же во всех случаях. Он требует четкого представления о химии и структуре активных контактов, а для применяемых многофазных систем эти данные, как правило, отсутствуют. Он требует также объективной характеристики большого числа контактов разного типа и состава, полученных в сравнимых условиях, а такого материала также нет. Трудность усугубляется тем,что,нарядустакими почти универсальными катализаторами, как галогениды алюминия или ионы водорода в органическом катализе или платина и палладий, встречаются контакты с узкой областью применения, как, например, металлический натрий при полимеризации дивинила или серебро при мягких окислительных реакциях и, наконец, ферменты с их сугубой специфичностью . Мы знаем, с одной стороны, такие реаг ции, как разложение перекиси водорода и озона, ускоряемые почти любым твердым телом, и, с другой стороны, такие реакции, как синтез аммиака или окисление этилена в окись этилена, для которых известны единичные катализаторы. Повидимому, —это отражение многообразия глубоких механизмов катализа, с одной стороны, и существования веществ, поливалентных и моновалентных по своим каталитическим функциям, с другой. [c.10]

    Другое исследование, проводимое Русовым, Певзнер и Стрельцовым, направлено на выяснение границ влияния макрокинетических факторов на процесс синтеза аммиака на технических катализаторах. После работ Темкина и Пыжова , Эмметта и Куммера и наших > кинетика этого процесса настолько выяснена, что можно было бы использовать выводы теории для количественных расчетов промышленных колонн синтеза и оптимальных условий его проведения. Как показано автором, в обычно принятых условиях лабораторных исследований макрокипетические факторы не осложняют реакцию. Однако имеется опасность, что при переходе к условиям и масштабам промышленных установок (крупные куски катализатора, высокие давления, возможность перегревов) имеет место наложение влияния диффузии, что не учитывалось авторами цитированных работ. Это обстоятельство может исказить найденные в лаборатории параметры и зависимости. Методика проводимой нами работы сводится, в основном,к исследованию кинетики процесса в циркуляционной установке на отдельных кусках катализатора разной величины, свободно висящих в потоке газа, при разных температурах, скоростях потока и давлениях газа. [c.361]

    Измерения изотопных эффектов привели к пока неустраненным затруднениям в теории синтеза аммиака. По общепринятой теории М. И. Темкина [103], расиад аммиака контролируется десорбцией Ng, а синтез — его хемосорбцией с поддержанием полуравновесия N2 на поверхности с N113газ- При такой схеме изотопный водородный эффект для синтеза должен отсутствовать, а для распада возмоя ен изотопный эффект, вызванный различием в контактах равновесия газообразного аммиака с хемосорбированным азотом и газообразным водородом. Различие нулевых энергий между D, и Н, больше, чем между ND3 и NH,,, поэтому замена в аммиаке Н на D должна увеличивать равновесную концентрацию N2 в адсорбционном слое. Благодаря неоднородности поверхности влияние этого фактора иа скорость распада необязательно, но при наличии влияния можно ожидать а = кц/кх) < 1. Па опыте Тейлор и Юнгерс [104] нашли для 680° С а = 1,6. Работа старая и никем не повторявшаяся, поэтому можно было бы усомниться в результате. Однако новые измерения Гориути и сотрудников, сравнивших скорость реакхщи вблизи равновесия со скоростями изотопного обмена N , показывают, что значения так называемых стехиометрических чисел при широком изменении экспериментальных условий равны двум. Авторы приходят к выводу, что эта величина требует участия водорода на контролирующей стадии. Следует подчеркнуть перспективность оригинального изотопного метода японских исследователей, который было бы желательным применить и к другим процессам [105]. [c.19]

    Описанная теория активных центров не согласуется полностью с соврвлменными представлениями о строении кристаллических веществ. Кроме того, при помощи теории активных центров нельзя объяснить протекание всех каталитических реакций. Исследования процесса гидрирования этилена на катализаторах синтеза аммиака при низких тeмпepaтypax показали, что в отличие от процесса синтеза ННз катализатор И1 чистого железа в реакции гидрирования гораздо более активен, чем катализатор с добавкой окиси алюминия. Активизнрующи.м действием отдельных атомов катализатора трудно также объяснить протекание в разных направлениях ряда процессов органического синтеза, в которых часто принимают участие моле-к Лы очень больших размеров. [c.498]

    К 1920 г. было опубликовано несколько работ, весьма способствовавших развитию учения о гетерогенном катализе. Некоторые из них имели теоретическое значение, а другие — прикладной характер. Так, Сабатье [5] к этому времени уже выдвинул предположение, что никель, который был известен как катализатор реакций гидрирования, проявляет активность благодаря способности легко образовывать промежуточные гидриды, которые в свою очередь разлагаются, образуя свободный металл. Хабер осуществил каталитический синтез аммиака и дал термодинамическое описание этой системы. Ленгмюр уже почти завершил свои работы, показавшие, что теория Нернста, удовлетворительно объясняющая кинетические особенности растворения твердых тел в жидкостях, не пригодна для объяснения кинетики реакций газов на поверхностях. В этот период, после того как Ленгмюр, Райдил, Хиншельвуди сотрудники сконцентрировали свое внимание на изучении кинетики гетерогенных каталитических реакций, оказалось возможным сформулировать некоторые общие принципы, объясняющие найденные ранее экспериментально различные типы зависимости скорости от давления. Согласно предложенному Ленгмюром и Хиншельвудом механизму каталитического процесса, скорость гетерогенной реакции лимитируется реакцией между адсорбированными молекулами, адсорбция и десорбция являются равновесными процессами. В то же время, по мнению Райдила и Или, гетерогенная реакция может происходить между сильно адсорбированными атомами (т. е. хемосорбированными атомами) и молекулами, удерживаемыми у поверхности только слабыми вандерваальсовыми силами (т. е. физически адсорбированными молекулами). [c.16]


Смотреть страницы где упоминается термин Синтез аммиака теория процесса: [c.361]    [c.300]    [c.225]   
Курс технологии минеральных веществ Издание 2 (1950) -- [ c.220 ]




ПОИСК





Смотрите так же термины и статьи:

Синтез аммиака

Синтез аммиака синтеза аммиака



© 2025 chem21.info Реклама на сайте