Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Метан влияние поверхности

    Влияние поверхности на образование волокнистого углерода. Первые серии опытов были проведены с метаном при температуре i)25—965°. Углерод выращивался на поверхности диафрагм, сделанных из платиновой фольги и из стальных пластинок, покрытых и не покрытых слоем окиси железа на поверхности медных сеток, покрытых и не покрытых слоем окиси меди на слое закиси кобальта, отложенном на медных сетках, и на поверхности кварца и фарфора. [c.39]


    Метод каталитического обезвреживания газообразных отходов заключается в проведении окислительно-восстановительных процессов при температуре 75—500°С на поверхности катализаторов. В качестве носителей металлов, используемых как катализаторы (платина, палладий, осмий, медь, никель, кобальт, цинк, хром, ванадий, марганец), применяются асбест, керамика, силикагель, пемза, оксид алюминия и др. На эффективность процесса оказывает влияние начальная концентрация обезвреживаемого соединения, степень запыленности газов, температура, время контакта и качество катализатора. Наиболее целесообразное использование метода— при обезвреживании газов с концентрацией соединений не более 10—50 г/м . На низкотемпературных катализаторах при избытке кислорода и температуре 200—300°С окисление ряда низко-кипящих органических соединений (метан, этан, пропилен, этилен, ацетилен, бутан и др.) протекает нацело до СО2, N2 и Н2О. В то же время обезвреживание высококипящих или высокомолекулярных органических соединений данным методом осуществить невозможно из-за неполного окисления и забивки этими соединениями поверхности катализатора. Так же невозможно применение катализаторов для обезвреживания элементорганических соединений из-за отравления катализатора НС1, НР, 502 и др. Метод используется для очистки газов от N0 -f N02 с применением в качестве восстановителей метана, водорода, аммиака, угарного газа. Срок службы катализаторов 1—3 года. Несмотря на большие преимущества перед другими способами очистки газов метод каталитического обезвреживания имеет ограниченное применение [5.52, 5 54 5.62] [c.500]

    С целью исследования влияния водорода на пиролиз метана нами были проведены опыты в реакторе из кварца, с наружным электрообогревом, заполненном кварцевой насадкой (величина зерна 3,5 мм) со смесями 50% СН -Ь 50% На и 50% СН + + 50% Не. Природный газ очищали от высших углеводородов активированным углем при температуре 55° С, газ очищали также от СО2 и осушали, в результате чего получали метан, содержащий не более 2 об.% примеси азота. Внутренний диаметр реактора составлял 14 жлг, длина рабочей зоны — 50 мм. Время пребывания газа вне рабочей зоны было минимальным за счет весьма небольшого проходного сечения подводящей и отводящей трубок. Работу реактора осуществляли в прямоточном режиме, что было доказано специальными опытами по изучению гидродинамики течения. Внутреннюю поверхность реактора покрывали слоем пироуглерода. Анализ продуктов реакции производили на хроматографе ХЛ-4, количество пироуглерода определяли взвешиванием на аналитических весах. Образования значительных количеств сажи не наблюдали. Температуру в реакторе поддерживали с точностью + 2° С. Из рис. 4, на котором представлены результаты опытов в виде зависимости состава пирогаза от расхода смесей, подаваемых на пиролиз при температуре И00 С, видно увеличение количества непрореагировавшего метана при замене гелия на водород, что свидетельствует о общем торможении процесса водородом. Торможение водородом образования пироуглерода намного сильнее (в 3—4 раза), чем торможение общего реагирования метана. [c.226]


    Платиновый катализатор весьма чувствителен к действию различных примесей газообразных и твердых (пыли) веществ. Особенно вредным является углерод, образующийся при разложении нестойких в условиях синтеза углеводородов. Катализатор отравляется необратимо под влиянием этилена, пропилена и высших олефинов и особенно при наличии в газе 0,1% ацетилена. Присутствие в газе до 0,1% сероводорода приводит к обратимому отравлению катализатора. В отсутствие сероводорода в газе катализатор, ранее отравленный сероводородом, быстро восстанавливает свою активность. Содержание окисн углерода до 8—10% не оказывает влияния на действие катализатора, а присутствие водорода в некоторой степени благоприятно сказывается на работе катализатора, предотвращая отложение углерода на его поверхности Резкое снижение активности катализатора происходит при попадании на него л<елеза, меди, свинца, а также при содержании в газе ничтожных количеств (0,00001%) соединений фосфора и мышьяка. Поэтому исходные реагенты — метан, аммиак и воздух — тш.а- [c.482]

    Известно, что поверхность реактора оказывает существенное влияние на протекание реакции окисления метана [1, 15] увеличение отношения площади поверхности к объему реактора способствует увеличению выхода формальдегида, тормозя его цепное окисление. Нами был проведен ряд опытов в реакторе, в котором отношение поверхности к объему было увеличено приблизительно в 10 и 100 раз по сравнению с прежним, составлявшим 15 смГ . При этом для набивки реактора использовался песок и гранулированная окись алюминия. На рис. 7 приведены графики зависимости выхода формальдегида от температуры реакции окисления метана кислородом воздуха для двух значений соотношения воздух метан, полученных в реакторе с неразвитой поверхностью (сплошные кривые). Точки около этих кривых соответствуют результатам опытов в реакторе с развитой поверхностью. Видно, что величина поверхности не играет заметной роли при проведении реакции окисления метана в плазменной струе. [c.128]

    Термодинамические данные дают возможность судить лишь об отборе наиболее устойчивых соединений, входящих в состав литосферы и гидросферы. В той динамической и открытой системе, какую представляет собой Земля, и в особенности ее поверхность, множество факторов нарушали химические равновесия, создавали разности химических и иных потенциалов, повышали и понижали активационные барьеры реакций, определив в итоге необычайно сложную обстановку биохимического старта , т. е. начала развития самоорганизующихся структур. Таким фактором было прежде всего излучение. По Юри [4], даже такое прочное соединение, как метан, под влиянием ультрафиолетовой радиации Солнца способно переходить, теряя водород, в ненасыщенные соединения. Излучение сыграло важную роль в процессе генерации свободных радикалов. Длина волны 1233 А достаточна [5] для возбуждения реакций  [c.43]

    Приведены результаты немногочисленных определений концентраций некоторых углеводородов над морями и океанами. Отборы проб производились в ходе длительных рейсов научно-исследовательских судов и самолетов. Известно, что поверхность океанов за пределами континентального шельфа — весьма слабый источник органических соединений, поэтому определение концентраций углеводородов над ними дает надежду на исключение влияния локальных источников на результаты анализов. Из приведенных в таблице веществ метан имеет преимущественно биогенное происхождение [4], тогда как этан и ацетилен, вероятно, являются антропогенными примесями (по крайней мере, крупных биогенных источников этих соединений не выявлено). Другие углеводороды могут выделяться обоими источ- [c.8]

    Торфяной полукокс оказывает каталитическое влияние на конверсию метана двуокисью углерода, вызывая образование на поверхности углеродной насадки радикалов и промежуточных соединений, в результате чего скорость реакции СО2 + СН4 уменьшается, а расход двуокиси углерода на реагирование с метаном увеличивается. [c.112]

    Условия службы металла в выхлопных трубах авиационных моторов крайне тяжелые, так как продукты сгорания по выходе из мотора имеют температуру 550—950° и содержат двуокись углерода, кислород, окись углерода, водород, метан, азот и следы окислов свинца кроме того, эти газы движутся с относительно большими скоростями. Применяемые для выхлопных труб металлы должны противостоять сильной вибрации и охлаждающему влиянию дождя и морской воды на внешней поверхности горячих труб, а на внутренней поверхности их — должны быть стойкими против коррозии конденса- [c.688]


    Изучено влияние термообработки и облучения катализатора на его активность в реакциях изотопного обмена и крекинга углеводородов на промышленном шариковом алюмосиликатном катализаторе. Показано, что скорость гомомолекулярного дейтероводородного обмена в этилене значительно превышает скорость гетеромолекулярного обмена протона гидроксильной группы поверхности. Изотопный обмен в этане и метане протекает при температуре нише температуры крекинга, поэтому первичной стадией крекинга является разрыв С—Н-связи. Путем радиационного воздействия установлено, что более высокая температура крекинга, по сравнению с обменом, требуется главным образом для активации катализатора, а не углеводородной молекулы. На основе спектров ЭПР установлено, что увеличение активности после облучения обусловлено электронными эффектами, причем на величину и стабильность активности существенное влияние оказывает термообработка до и после облучения. При этом имеет место как отжиг , так и закалка радиационных дефектов. [c.264]

    Согласно приведенной оценке, модели пласта значительно различались удельной площадью поверхности порового пространства. Это отражалось на динамике массообменных процессов в ходе замещения метана смесью, истощения системы и вытеснения остаточных запасов ГКС метаном. Замещение метана ГКС происходило при таких термобарических условиях, которые соответствуют однофазному газовому состоянию ГКС (р > Тем не менее, как свидетельствуют ранее выполненные во ВНИИгазе исследования, поверхность пористой среды сорбирует при этом часть углеводородов из фильтрующегося потока [3]. Чем больше дисперсность пористой среды, т. е. удельная площадь поверхности породы, тем сильнее должно быть влияние сорбционных сил и выше удерживающая способность поверхности породы. [c.47]

    Процесс образования пироуглерода при термическом разложении более тяжелых, чем метан, углеводородов изучен недостаточно, и мы располагаем сравнительно небольшим объемом количественных данных, поэтому вопрос о механизме процесса не может быть решен с такой же определенностью, как для метана. Однако имеются основания предполагать, что если прямое разложение на поверхности возможно для наиболее стабильных углеводородных молекул метана, то этот процесс имеет место и для более тяжелых и менее прочных молекул. Надо подчеркнуть, что при разложении в слое дисперсного материала для любых углеводородов скорость образования пироуглерода, отнесенная к единице поверхности, не зависит от величины поверхности в единице объема. Следовательно, для любых углеводородов лимитирующим является процесс на поверхности. Таким образом, при относительно низких температурах (1000 °С) в отсутствие объемных процессов пироуглерод образуется в результате разложения на поверхности исходных молекул углеводорода. При более высоких температурах, когда практически невозможно избежать влияния объемных процессов, па поверхности одновременно разлагаются и исходные [c.102]

    Повидимому диссощ1ация метана вызывается не только влиянием поверхности, как указывают Вон и Ковард, но также и специфическим действием катализатора. Эти опыты были повторены Слэтером и дали новые результаты. Метан [c.236]

    Реакции (VII) и (VIII), введенные в реакционный механизм для получения желательного уравнения скорости, вполне вероятны, однако предполагаемое отсутствие реакций НОа в газовой фазе реакций СНО3, на поверхности, требует еще доказательств. Тем не менее из очень ограниченного числа возможных схем сделанный нами выбор представляется наиболее правдоподобным. Совершенно ясно, что требуется дальнейшее экспериментальное изучение системы метан—кислород. Желательно получить как можно больше данных о влиянии на процесс диаметра сосуда, давления, состава смеси, добавок инертных газов и температуры необходимо, чтобы при этом обращалось внимание на пблучение хорошо вое-. производимых результатов, путем предотвращения случайных реакций на поверхности. [c.249]

    Особенно заметно влияние поверхностной обработки при применении высокомодульных волокон с модулем упругости более 400 ГПа [9-32]. В этом случае увеличивается активнм площадь поверхности волокна. Механизм и методы активации поверхности аналогичны используемым для саж. Применяются обработка на воздухе при 400-800 С, в озонированном воздухе при 120-150°С, в возбужденных плазмой кислороде или аммиаке, ионной бомбардировкой поверхности волокна кислородом, азотом, водородом, метаном [9-150]. [c.531]

    Как видно из таблицы, продуктами реакции являются непредельные углеводороды, метан, водород, формальдегид, высшие альдегиды, метиловый и этиловый спирты, окись и двуокись углерода и вода, т. е. в основном те же продукты, какие были найдены при окислении пропана и Пизом. Непредельные углеводороды состоят из пропилена и этилена, а под высшими альдегидами следует понимать ацетальдегид. Данные таблицы приводят авторов к выводу о слабом влиянии природы поверхности на химизм окисления пропана. Важным результатом этих опытов, проведенных в статических условиях, явился факт полного [c.141]

    Если при атмосферном давлении или еще меньшем и при температуре порядка 900...1000 °С рассмотреть систему парообразный углерод—алмаз — графит, то изобарно-изотермические потенциалы их будут уменьшаться в таком же порядке. Значит, в атнх условиях из парообразного углерода должен выкристаллизоваться трафит, но с учетом правила ступеней может образоваться с какой-то степенью вероятности и алмаз. Чтобы происходило образование алмаза, следует осаждать атомы углерода на поверхность кристалла алмаза. При этом они будут находиться под влиянием силового поля кристаллической решетки, стремящейся продолжить ту укладку атомов, которая имеет место в кристаллах, находящихся в реакционной зоне. Иными словами, подложка вынуждает новые атомы углерода располагаться а определенном порядке — так называемый эпитаксиальный синтез. Практически эпитаксиальный синтез алмаза осуществляют разложением углеродсодержащих газов (метан, ацетилен и др.) при указанных выше давлениях и температурах над слоем мелких кристаллов алмаза. В этом случае происходит наращивание алмазных слоев на затравочных кристаллах. Опыты [c.141]

    Наиболее остро гюследствия непреднамеренного воздействия на недра, вероятнее всего, могут проявиться на Жирновском месторождении и, как следствие, оказать влияние на жителей г. Жирновска. Это связано с особенностями строения геологического разреза и применяемыми здесь способами воздействия на нефтеносные горизонты с целью повьш]ения коэффициента нефтеотдачи, т. е. увеличения объема извлекаемой нефти. При этом следует учитывать, что на земную поверхность вместе с нефтью поступают значительные объемы минерализованной пластовой воды, которую необходимо захоронять в подземные резервуары. В результате этого осуществляется непреднамеренное дополнительное техногенное воздействие на недра, отдаленные последствия которого пока не определены. При нарушении природного равновесия в геологическом разрезе, содержащем промышленные скопления ))ефти и газа, как правило, возрастает вероятность продвижения к земной гюверхности у1 леводородных газов. В первую очередь это относигся к метану, и подъему грунто- [c.132]

    Избирательная сорбция компонентов пека поверхностью кокса-наполнителя должна оказывать существенное влияние на термические превращения в связующем при обжиге. Это подтверждается результатами анализа летучих, выделяющихся из образцов при нагреве. Методом газовой хроматографии в продуктах пиролиза обнаружены водород, метан, этан, этилен, пропан, пропилен, а также оксид и диоксид углерода. В композиции кокс - связующее скорость выделения метана выше по сравнению со скоростью выделения метана из чистого пека (рис. 61) в результате увеличения глубины пиролиза пека в присутствии наполнителя. Из рис. 61 следует, что помимо изменения количества метана, образовавшегося в интервале 100—600 °С, при увеличении удёльной по- [c.155]

    Восстановление фосфатов водородом, природным газом и другими газообразными реагентами протекает значительно медленнее, чем твердым углеродом. Показано что в присутствии природного газа при температурах до 1250° (до оплавления шихты) восстановление идет преимушественно углеродом, отлагаюшемся при пиролизе метана на поверхности и в порах фосфорита при температурах выше 1300° — водородом, образующимся при пиролизе метана. Для промышленных процессов, протекающих при 1400— 1450°, продувание шихты метаном нецелесообразно, так как восстановление за счет водорода идет медленнее, чем металлургическим коксом. В то же время выделившийся при пиролизе метана углерод обладает большей восстанавливающей способностью, чем кокс. Взаимодействие природных фосфатов с газообразными восстановителями ускоряется в присутствии солей натрия и магния, снижающих температуру плавления шихтыИз щелочных солей наиболее активно действует добавка Ыа2504. Максимальное влияние флюсов наблюдается при температуре плавления шихты (- 1300°). [c.155]

    Однако было выдвинуто предположение, что первоначально соединения кремния играли важную и, по всей вероятности, необходимую роль в происхождении жизни. Гамов [5] отмечал, что переход от неживой материи мог протекать очень постепенно. Опарин [6] выдвинул постулат, согласно которому жизнь возникла посредством ассоциации простых, встречающихся в природе углеродных соединений с неорганическими веществами в коллоидной форме. Бернал [7] предположил, что коллоидные силикаты, вероятно, играли каталитическую роль в процессах формирования сложных органических молеку/ из простых молекул. Он допускал также, что первоначальная атмосфера Земли (до возникновения жизни) должна была состоять нз таких водородных соединений, как метан, аммиак, сероводород и водяные пары. Как показал Миллер [8], аминокислоты могут образовываться из метана, азота и водяного пара под влиянием электрических разрядов, поэтому могли существовать разнообразные органические соединения. Бернал высказал предположение, что обогащение простых органических молекул могло происходить при их адсорбции на коллоидных глинистых минералах, имеющих очень больщое значение удельной поверхностн и сродство по отношению к органическим веществам. Он указал, что небольшие по размеру молекулы, присоединенные к поверхности глины, способны удерживаться на ней не беспорядочно, а в определенных положениях как по отношению к поверхности глины, так и друг к другу. Таким образом, вследствие упорядоченного расположения эти молекулы могут взаимодействовать между собой с образованием более сложных соединений, особенно в том случае, когда осуществляется подвод энергии за счет падающего на поверхность света. Согласно Берналу, вначале могло происходить формирование асимметричных молекул, которые характерны для живых организмов. Это могло осуществляться путем более предпочтительной попарной адсорбции асимметричных молекул на поверхности кварца, так как кварц — единственный общеизвестный минерал, обладающий асимметричной структурой. [c.1006]

    Влияние водорода на процесс синтеза алмаза двоякое. Разбав-,ление водородом уменьшает скорость роста алмаза, но в то же время водород еще более сильно тормозит образование сажи. Поэтому, разбавляя исходный метан водородом, можно значительно дольше вести процесс наращивания алмаза без блокировки поверхности последнего неалмазным углеродом. [c.64]

    Поскольку л гколебаиие трижды вырождено, имеется другая возможная причина уширения этой полосы, а именно силы поверхности могут вызвать слабое распгепление вырожденных энергетических уровней. Этот вопрос может быть решен при изучении спектра в широком температурном интервале. С понижением температуры ширина полосы, обусловленная вращательным движением, уменьшается как функция в то время как ширина полосы, зависящая от расщепления вырожденных уровней, будет возрастать по мере того, как молекула становится более прочно связанной с поверхностью. Из-за экспериментальных трудностей Шеппард, Матье и Йетс [42] изучили влияние температуры на спектр не метана, а бромистого метила. Сравнение дважды вырожденной частоты 4 адсорбированного бромистого метила с частотой, рассчитанной для свободного вращения вокруг оси симметрии третьего порядка при 294° К и 78° К, выявило заметное сужение полосы при пониженной температуре без указания на образование дублета. Это исключает возможность рассмотрения расщепления вырожденных уровней как причину уширения полосы. Независимо от того, обусловлено ли уширение полосы при комнатной температуре низким энергетическим барьером свободного вращения или увеличением коэффициента экстинкции за счет взаимодействия молекулы с ее окружением, остается в силе тот факт, что экстраполяция этих результатов иа систему с метаном позволила согласовать наблюдаемую форму полосы для полностью свободного вращения (случай III) молекулы метана с рассчитанным контуром. Как отмечают авторы, вопрос о вращательных степенях свободы адсорбированного метана является спорным. [c.26]

    В атмосфере метан относят к группе малых газовых составляющих (МГС), концентрация которых в атмосфере невелика, но они оказывают существенное влияние на физико-химические процессы в атмосфере Зешги (табл. 2.2). Метан — главный органический компонент атмосферы Земли. В силу высокой химической инертности он имеет наибольшую продолжительность жизни по сравнению с другими органическими соединениями и поэтому содержится в атмосфере в больших количествах. Роль метана в глобальных процессах не ограничивается его непосредственным участием в поглощении восходящего ИК-излучения подстилающей поверхности, его содержание в значительной степени определяет окислительные свойства атмосферы и, тем самым, судьбу многггх других малых газовых составляющих, в том числе парниковых газов и загрязняющих компонентов. Поэтому источникам, закономерностям про-странственно-времегшого распределения и атмосферной химии метана в настоящее время уделяется пристальное внимание. [c.24]

    Полученные данные по электроокислению метана на платине могут быть объяснены при предположении о замедленности дегидрирования метана па поверхности электрода. Как было показано выше, аналогичные закономерности наблюдаются и при дегидрировании метанола при потенциалах двойнослойной области. Скорость дегидрирования метанола при 20° С, рассчитанная для одинаковой с метаном объемной концентрации, оказывается одного порядка со скоростью дегидрирования метана при 60°. Предположение о дегидрировании как об определяющей скорость стадии стационарного процесса окисления метана согласуется с влиянием pH в кислой области, влиянием специфической адсорбции ионов С1- и парциального давления метана. В отличие от этого окисление продуктов хемосорбции метана, по-видимому, определяется реакцией взаимодействия с частицами ОНадс. [c.309]

    Определенные взгляды сложились относительно влияния геометрических факторов в металлических катализаторах на их активность 5—6 таких примеров приведены в литературе. Известно, что гидрогенизация этилена и этана в метан протекает в 5—й раз быстрее на поверхности (ПО), чем на беспоря- [c.20]

    При работе с химически реакционноспособнымн газами необходимо иметь в виду возможность их термического разложения с образованием других газообразных продуктов. Такой процесс может происходить, например, при контакте сероводорода, двуокиси серы, метана, этилена и озона с нагретыми металлическими поверхностями. Разложение может наступать уже при 300—400°. Горячий водород оказывает неблагоприятное влияние на механические свойства стали, так как он реагирует с содержащимся в ней углеродом, образуя метан. При взаимодействии окиси углерода с некоторыми тяжелыми металлами, особенно с никелем, [c.15]

    Ряд интересных вопросов привел нас к исследованию пентана в адсорбированном состоянии. Первым из них является рассмотрение возможности образования углеводородов нефти в результате облучения некоторых органических веществ. Ранние наблюдения Линда и Бардуэлла [4] показали, что при облучении органических соединений образуются углеводороды, подобные по своему составу имеющимся в нефти. Вычисления Белла, Гудмэна и Уайтхеда [5] и дальнейшие опыты [6, 7] показывают, что жидкие и газообразные углеводороды могут образоваться путем облз чения сложных органических веществ в нефтеносных осадках. Во всех этих исследованиях полученное отношение водорода к метану, образующемуся при облучении органическмх соединений в объеме, очень велико, в то время как газы нефти содержат фактически много метана и мало водорода. В связи с этим мы пытаемся выяснить влияние диспергирования на минеральных поверхностях органического соединения на отношение количеств водорода и метана. Другим доводом в пользу постановки этого исследования было предположение о том, что если распределение органического соединения на минеральном порошке вносило бы существенные изменения в продукты радиолиза, то это исследование могло бы открыть новые пути к практическому химическому синтезу. Более отдаленным соображением было желание пролить свет на основные процессы, заключающиеся в переносе энергии от твердой поверхности к жидкости. [c.135]

    Из исследований реакций обмена углеводородов с дейтерием [36, 48] известно, что реакционная способность С—Н-группы очень сильно растет в ряду метан Сэтан < пропаЖ углеводороды С4, независимо от прочности С—Н-связей в упомянутых молекулах. Одним из возможных объяснений этого является предположение о разном индукционном влиянии групп —Н, —СНз и СН—(СНд)з на реагирующую С—Н-связь. Но возможно также, что причина заключается в самом процессе адсорбции. Чем больше молекула, тем прочнее она может адсорбироваться в виде слабой недиссоциированной формы и тем ближе последняя к поверхности. Это в свою очередь облегчает последующую диссоциацию молекулы и образование прочных форм хемосорбции (см. рисунок). [c.15]


Смотреть страницы где упоминается термин Метан влияние поверхности: [c.83]    [c.109]    [c.92]    [c.179]    [c.29]    [c.479]    [c.176]    [c.179]    [c.58]    [c.290]    [c.998]    [c.334]    [c.11]   
Инфракрасные спектры адсорбированных молекул (1969) -- [ c.0 ]




ПОИСК





Смотрите так же термины и статьи:

Влияние поверхности



© 2025 chem21.info Реклама на сайте