Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Смазка при формировании

    Функциональные присадки н отличие от модификаторов структуры, действие которых направлено на регулирование структурообразования, в минимальной степени должны воздействовать на первый уровень образования структуры смазки — формирование мицелл. Вхождение молекул присадок пли их ассоциатов в структуру Волокон смазок нежелательно как из-за влияния яа реологические свойства, так и из-за ослабления функци- [c.81]


    А. С. Ахматов рассматривает формирование граничных смазочных слоев как одно из явлений кристаллизации. Граничные слои, по мнению А. С. Ахматова, представляют собой моно- или поликри-сталлические тела, возникающие за счет зародышевой функции первичного слоя. Смазочные материалы в очень тонких слоях под двусторонним влиянием поверхностей трущихся металлов обнаруживают исключительные антифрикционные свойства. Молекулы смазочных веществ в граничных слоях обеспечивают достаточно большую прочность на сжатие и легкость сдвигов в горизонтальном направлении. Этим и объясняются небольшие коэффициенты трения при скольжении смазанных поверхностей. Тонкие смазочные слои могут не только в значительной степени снижать силу трения, но и оказывать большое влияние на величину износа. Причем, как показали исследования П. А. Ребиндера. Б. В. Дерягина и др., во многих случаях смазка, достаточно интенсивно снижающая силу трения, может значительно увеличивать износ. [c.131]

    При охлаждении мыльного расплава протекают одновременно два процесса зарождение и формирование кристаллов (волокон) и связывание их друг с другом с образованием структурного каркаса смазки. Размеры и форма волокон зависят от условий кристаллизации. прежде всего от исходной температуры охлаждения и его скорости. Быстрое охлаждение способствует образованию мелких, а медленное — крупных волокон загустителя. Изотермическое охлаждение (постоянная температура 100—150 °С) приводит к образованию однородных по размерам кристаллов, что способствует получению смазки с наиболее упорядоченной, структурой. [c.299]

    В дальнейшем устраняется механической обработкой. Большое влияние на процессы кристаллизации и формирования структуры смазки оказывают ПАВ (свободные кислоты, глицерин и т. п.) И присадки, вводимые в смазки для улучшения их свойств. [c.367]

    Для предотвращения растрескивания крепежа нефтегазопромыслового оборудования его изготавливают из коррозионно-стойких материалов или применяют защитные покрытия [25]. В условиях ОНГКМ наиболее перспективна защита крепежа с помощью плазменных и диффузионных покрытий или нанесения ингибирующей смазки. Согласно [29], механизм защитного действия ингибирующих смазок заключается в том, что с поверхности металла вытесняется вода, и под действием сил адгезии образуется защитный адсорбционный слой, который предохраняет металл от коррозии благодаря механической изоляции его поверхности от влаги и кислорода воздуха. Пленка покрытия замедляет коррозию и защищает металл в результате формирования на его поверхности хемосорбционных слоев маслорастворимых ингибиторов коррозии. [c.41]


    Граничная смазка характеризуется присутствием очень тонкой пленки смазки — монослоя, покрывающего всю фактическую площадь поверхности контакта или часть ее. Твердая пленочная смазка, которая близка к граничной смазке, характеризуется формированием на поверхности контакта сравнительно толстого мягкого слоя. [c.91]

    Для получения мягких капсул используются автоматы, выполняющие одновременно формирование, заполнение и запечатывание заполненных капсул, а также оборудование, необходимое для последующего формования капсул (закрепление формы и удаление избыточного содержания влаги в оболочках). Комплексация оборудования, предназначенного для изготовления мягких капсул, зависит от способа их получения для ротационно-матричного должно быть обеспечено осуществление операций первоначального закрепления формы, сушки и удаления следов загрязнений (от смазки, наполнителя, возможных механических загрязнений) для капельного — выстаивания, отделения ох- [c.468]

    Процесс пиролиза может использоваться как составная часть более развернутой схемы переработки нефтешламов. Так, во Всероссийском НИИ железнодорожного транспорта создана технология утилизации нефтешламов с получением сорбента. В технологическую схему входят гидросепаратор для сортировки нефтеотходов (мусор, загрязненный нефтепродуктами, ветошь, нефтешлам моечных машин, отработанные масла и смазки, пр.) двухсекционная пиролизная установка комбинированная печь для сжигания жидких и твердых нефтеотходов совместно с конечными горючими продуктами пиролиза установка переработки твердого остатка пиролиза в сорбент. Последняя включает, в частности, смеситель-гранулятор для смешивания твердого продукта пиролиза со смолой и формирования гранул, камеру их сушки, активатор гранул, реактор-охладитель выгружаемого сорбента. Его используют для очистки нефтесодержащих сточных вод. [c.244]

    Наряду с интересом к синтезу фторсодержащих гетероциклических соединений эти соединения начали применять и для технических целей. Это прежде всего жидкие диэлектрики, высокотемпературные теплоносители, смазки для прессформ формирования изделий из пластмасс и металлов, комплексоны и экстрагенты. Показана возможность создания на основе ряда гетероциклов, в частности перфтор-4-метил-1,3-диоксолана [37], нового класса высокотемпературных аморфных фторопластов, используемых для производства световодов. [c.9]

    Заключительным этапом приготовления мыльных и углеводородных смазок является стадия охлаждения и кристаллизации. Скорость охлаждения раствора загустителя в жидкой основе в значительной степени определяет структуру и свойства смазок. Размеры и форма волокон загустителя зависят от максимальной температуры, с которой начинается охлаждение, и скорости его осуществления - быстрое, медленное или изотермическая кристаллизация. Медленное охлаждение приводит к образованию крупных кристаллов, быстрое - способствует формированию мелких волокон мыльного загустителя. Изотермическая кристаллизация (постоянная высокая температура 100-150°С) приводит к образованию однородных по форме и размерам волокон, что способствует получению смазки с наиболее упорядоченной и стабильной структурой. [c.46]

    Как следует из самой природы малополярных, но легко поляризуемых ПАВ типа мыл жирных кислот, влияние избыточной кислоты или щелочности, других ПАВ, воды и иных рецептурных и технологических факторов имеет решающее значение при формировании структуры системы и определении ее функциональных свойств при сравнительно незначительных колебаниях этих параметров. Как и пластичные смазки, ПИНС могут быть приготовлены только при определенном соотношении между анионами и катионами, т. е. в строго заданном, узком диапазоне щелочных чисел. Независимо от технологии изготовления мыльных ПИНС и смазок избыток кислоты (повышение кислотности) сильно (иногда в десятки раз) уменьшает дисперсность загустителя, укрупняет волокна вплоть до получения общей гелеобразной, аморфной структуры. Это связано с понижением полярности и степени ионности системы в направлении мыло — кислота . [c.153]

    Не вызывает сомнения существенное влияние вязкости дисперсионной среды на низко- и высокотемпературные свойства, механическую и коллоидную стабильность смазок. Поэтому важно учитывать вязкость масла и ее изменение от температуры при выборе основы для приготовления смазки. Однако критерий вязкости при выборе того или иного масла является недостаточным, поскольку более сильно на формирование структуры смазки влияет химический состав дисперсионной среды — содержание смол, полициклических ароматических углеводородов и кислородсодержащих соединений. [c.296]


    Присадки чаще всего вещества органического происхождения. Они растворяются в дисперсионной среде и заметно влияют на формирование структуры и реологические свойства смазок. Для присадок характерно значительное изменение эффективности действия в зависимости от их концентрации, а также от состава, свойств, условий производства и применения смазок. Действие в смазках большинства присадок в отличие от действия наполнителей осложняется сильным побочным влиянием их на структуру и реологические свойства. [c.297]

    В последнее время развиваются и другие направления получения стойких пленок, защищающих металл от износа и задиров. К ним относятся избирательный перенос, т. е. формирование на поверхности металла тонких пленок меди и некоторых других мягких металлов, и трибополимеризация. Механизм смазочного действия может быть не связан непосредственно с исходной смазочной способностью смазки или масла. Смазочный материал выступает в роли носителя реагентов химической реакции, а узел трения — как реактор, процессы в котором регулируются составом смазочного материала, природой трущейся поверхности и условиями трения. [c.305]

    Важным преимуществом наполнителей в антифрикционных смазках по сравнению с серо- и хлорсодержащими присадками является то, что эффект их действия проявляется как при низких, так и при высоких температурах. В то же время для более эффективного действия присадок необходимы повышенные температуры. Увеличение концентрации и степени дисперсности наполнителей повышает активность их действия. Действие наполнителей более четко выражено в смазках, приготовленных на маловязких маслах или в смазках с малым содержанием загустителя. Увеличение вязкости дисперсионной среды и повышение концентрации загустителя понижают приемистость смазок к наполнителям. Снижение эффективности наполнителей при увеличении вязкости и прочности базовой смазки связано с низкой подвижностью последней в рабочих условиях. Это создает менее благоприятные условия для поступления наполнителя к поверхностям трения и для формирования прочной смазочной пленки. В высокопрочных смазках наполнители удерживаются структурой и не поступают в зону трения. Так, введение дисульфида молибдена в литиевые смазки с целью снижения фреттинг-коррозии оказалось неэффективным для прочных смазок и привело к положительному результату в мягких смазках. [c.311]

    Взаимодействие смазки с полимером менее эффективно, чем с металлом. Природа Т. полимеров в присутствии жидкой смазки мало изучена. Наиболее вероятны след, механизмы смазочного действия формирование двойного электрич. слоя толщиной порядка 100 A, к-рый ослабляет межмолекулярное взаимодействие при соприкосновении (для полимеров с низким модулем упругости) растворение поверхностного слоя полимера смазкой. Хорошими смазочными материалами служат амиды олеиновой и стеариновой к-т для полиэтилена, вода — для поликапролактама и фторопластов, мыла — для резин. [c.326]

    При помощи специального плунжера смазку выталкивают из формы на тщательно очищенную стеклянную пластинку. Чтобы смазка не прилипала к плунжеру, ее прикрывают с той сто- / роны, которая соприкасается с плунжером, промасленной бумагой, вырезан- Рис. XXIV. 17. Форма-плунжер для ной по размерам поверхности плуннгера. формирования смазки нри определении Когда комок смазки устанавливают термической стабильности, [c.727]

    При всем многообразии форм и размеров частиц загустителя, образующихся при охлаждении, смеси компонентов, общим для них является способ формирования структурного каркаса. В процессе охлаждения коллоидного (мыльные смазки) или истинного (углеводородные смазки) раствора происходит кристаллизация загустителя с одновременным ростом и связыванием кристаллов (bo iokoh) друг с другом и образованием кристаллической сетки. В обычных коллоидных системах (с малым содержанием твердой фазы) частицы дисперсной фазы при столкновениях коагулируют и выпадают в осадок. Высокая концентрация дисперсной фазы в смазках препятствует коагуляции частиц, они формируют пространственный структурный каркас. Чем выше анизометричность (соотношение их длины и ширины) частиц загустителя, тем более прочную структуру они образуют. [c.356]

    Повышение температуры в большинстве случаев вызывает уменьшение предела прочности смазок. Темпе ратура, при которой предел прочности приближается к нулю, свидетельствует о переходе смазки из пластичного состояния в жидкое и характеризует верхний температурный предел работоспособности смазок. Все факторы, влияющие на формирование структуры смазок (тип и концен11рация загустителя, химический состав и свойства дисперсионной среды, состав и концентрация поверхностно-активных веществ и, наконец, технологические, особенности приготовления смазок), влияют и на их прочность. [c.359]

    Формирование частиц мыльного загустителя проходит через следующие стадии образование центров кристаллизации (зародышей), рост и развитие этих центров. Первичный центр кристаллизации мылнной частицы представляет собой определенную комбинацию молекул мыла (ассоциат), дальнейший рост которого и образование частицы оптимальных размеров осуществляются в результате диффузии молекул мыла из пе1ресыщенного раствора к поверхности кристаллического зародыша. Таким образом, формирование структуры мыльных смазок связано с образованием ми-.целл, последующего построения из них волокон (надмицеллярных структур) и формирования структурного каркаса смазки, придающего ей пластичность и другие характерные свойства. [c.364]

    На стадии охлаждения расплава загустителя в масле формируется структура смазок, в значительной степени определяющая их свойства. При охлаждении мыльного расплава протекают процессы образования и роста кристаллов, проходящие через стадии формирования мицелл и надмицеллярного структурообразования, и связывания кристаллических частиц друг с другом. Размеры и форма частиц загустителя зависят от условий кристаллизации, начальной температуры охлаждения и режима его проведения (быстрое, медленное или изотермическое). При медленном охлаждении образуются крупные частицы мыльного загустителя, при быстром — мелкие. Изотермическая фисталлизация (охлаждение до достаточно высокой температуры—ПО—140°С и выдерживание при ней в течение 1—2 ч) приводит к образованию значительно более однородных по форме и размерам частиц, чем при режимах быстрого и медленного охлаждения. В результате может быть получена смазка с наиболее упорядоченной и стабильной структурой. [c.366]

    Стадия обезвоживания осуществляется в реакторах-испарителях 9 и 10 при 105—110 °С в течение 1,5—2 v- По завершении обезвоживания реакцио,нную смесь нагревают до 210 °С и выдерживают в течение 30 мин для получения однородного расплава мыла (стадия термообработки). Далее при непрерывном перемешивании в реакторы через дозатор 8 ранномерно подают необходимое количество обезвоженного масла. Температура смеси при этом понижается до 180—185 °С И при перемешивании-начинается формирование структуры смазки. После этого в рубашку реактора подают хладоагент и охлаждают смазку до 160°С (для зтого необходимо 2—2,5 ч). [c.373]

    При фрикционном взаимодействии в условиях трения скольжения происходит деформирование и разрущение металлизированных углеродных присадок. Это приводит к образованию активных наночастиц, способных к адсорбции на поверхности трения и формированию устойчивой разделительной пленки, предотвращающей процессы изнашивания и заедания. Нанодисперсные частицы вследствие высокой пластичности способны к переформированию без разрушения и заполнению микрорельефа на контактных поверхностях. Вследствие трибохимических процессов образуются металлосодержащие соединения типа солей высших кислот, которые усиливают благоприятное воздействие металлизированных присадок на процессы трения и изнашивания. Образующаяся металлсодержащая пленка обеспечивает не только износостойкость пары трения, но и обладает невысоким электрическим сопротивлением. Это позволяет использовать такие смазки в узлах трения скольжения электрических контактов. Установлено, что динамическое равновесие системы металл -металлсодержащие соединения зависит от параметров эксплуатации трибосистемы (температуры, давления, скорости). [c.136]

    Исследован механизм изнашивания углеродных материалов на основе графита и политетрафторэтилена при трении без смазки по модифиш<рованным металлическим поверхностям. Углеродные материалы были разработаны на полимер - олигомерных матрицах и содержали армирующие компоненты и смазки. Для модифицирования поверхностей трения применяли механические, химические и физико-химические методы создания заданных параметров микрорельефа и поверхностной активности. Триботехнические исследования проводили на машине трения типа УМТ по схеме вал-частичный вкладыш при нагрузке до Ю МПа и скорости скольжения до I м/с. Анализ фазового состава и строения поверхностей трения осуществляли методами растровой электронной и атомной силовой микроскопии. Газоабразивная обработка поверхностей трения приводит к формированию специфического рельефа с высотой микронеровиости 1-3 мкм. Химическое фосфатирование образцов из стали 45 образует мелкозернистую пленку фосфатов марганца и железа с размерами единичных фрагментов до 10 мкм. Обработка поверхности трения разбавленными растворами фторсодержащих олигомеров с формулой Rf-R , где Rf. фторсодержащий радикал, Rj - концевая фуппа( -ОН, -NH2, -СООН) вызывает заполнение микронеровностей рельефа и выглаживания поверхностей. [c.199]

    Энергия связи хемосорбированной фазы с ювенильным металлом значительно вьиие энергии связи с ним адсорбированной фазы. При хемосорбции отсутствует процесс миграции молекул ПАВ по поверхности и наблюдается эффект последействия. Маслорастворимые ингибиторы хемосорбционного действия вытесняют воду в связи с тем, что энергия связи ПАВ и металла больше или равна свяэи металла и воды. При разрьше пленки воды происходит адсорбция ПАВ на металле. Процессы хемосорбции развиваются во времени. Применительно к пластическим смазкам и ингибированным тонкопленочным покрытиям закономерности адгезии и когезии обусловлены кинетикой испарения летучих растворителей и явлениями, связанными с формированием защитной пленки. [c.173]

    Формирование слоя смазки в основном определяется характером изменения давлений в заколечных объемах. [c.152]

    Дисперсионная среда. Жидкая основа в значит, мере определяет вязкостно-температурные характеристики, стабильность н др. св-ва П. с. В качестве дисперсионной среды, содержание к-рой в смазках составляет 70-90% по массе, используют товарные нефтяные масла малой и средней вязкости (не более 50 мм /с при 50 °С). Прн подборе жидкой основы учитывают также хнм. состав (содержание смол, полициклич. ароматнч. углеводородов, кислородных соед.), заметно влияющий на формирование структуры смазок. Для приготовления П.с., работоспособных при высоких [c.566]

    Определение основных смазывающих характеристик - критической нагрузки и диаметра пятна износа базовых компонентов и опытных образцов по ГОСТ 9490-75 на ЧШМ-3 - показало, что увеличение содержания тяжелых нефтяных остатков в смесях существенно улучшает параметры этих характеристик (см.рис.5, 6). Сопоставление полученных данных с углеводородным составом базовых основ показало, что граничный слой смазки, образующейся на металлической поверхности, характеризуется более высокими адгезионными свойствами за счет адсорбции кислородсодержащих соединений - сложных эфиров, кислот и спиртов и присутствием в нем асфальто-смолистых соединений, которые придают граничному слою смазки высокое сопротивление сближению контактирующих тел под действием нормальной нагрузки. При формировании мультимолекулярного граничного слоя происходит чередование адсорбирующихся молекул различного вида, неактивные молекулы оттесняются в периферические области структуры. [c.17]

    Литиевые консистентные смазки представляют собой пастообразные-коллоидные системы, дисперсная фаза которых состоит из волокнистых кристаллических частиц литиевого мыла, образующих трехмерную сетку, удерживающую углеводородное масло. Формирование той или иной структуры смазок, обусловленное процессами кристаллизации мыла, сильно зависит от ряда факторов. К ним следует отнести, в первую очередь, два 1) режим охлаждения смазки и 2) действие добавок различной природы. Влияние обоих факторов сводится к модифицированию первичных частиц мыла и их агрегатов, что заметно изменяет коллоидно-химические свойства смазок. Выяснение зависимости свойств и структуры смазок от условий их охлаждения и влияния добавок имеет, помимо теоретического интереса, большое практическое значение в связи с выявлением оптимальных условий приготовления смазок при их промышленном производстве. В литературе описаны попытки выяснения влияния на свойства и структуру смазок медленного охлаждения ( от 220°) изотропного раствора стеарата лития (Ь151) в углеводородных жидкостях [1—5] с задержкой охлаждения в течение определенного времени формирования структуры при различных температурах (/1). В работах [1—3] было показано, что задержка охлаждения на время не-менее 2—3 часов при /1 = 100° способствует образованию смазки с минимальной пенетрацией, что в нашем обозначении соответствует, по-видимому, максимальной сдвиговой прочности структуры Рг- При исследовании режима медленного охлаждения модельной смазки Ы81 — неполярное вазелиновое масло [4] — в широком интервале г (50—170°) установлена симбатность изменения Рг с tl и ни ири какой tl не было обнаружено максимума на кривой Рг 1 ). Отсутствие экстремального значения Рг для этой модельной смазки связано, по-видимому, с неполярной природой масла, а также, возможно, и с его сравнительно высокой вязкостью, так как оба фактора могут оказывать заметное влияние на формирование структуры смазки. В исследовании [5] было показано, что медленно охлажденная Ы81 — смазка, содержащая добавку щелочи (0,02%. [c.569]

    NaOH), имела наибольшую прочность структуры при /i = 130°. Смешение температуры максимального упрочнения структуры с /i=100 до ij = 130° связано, по-видимому, с влиянием добавки щелочи. Следует подчеркнуть, что в цитированных выше работах [1—5] применялся лишь режим медленного охлаждения, который не давал возможности выявить четкую зависимость характера роста зародышей кристаллов при той или иной температуре роста (задержки охлаждения). Это связано с тем, что на рост зародышей сильное влияние оказывают температуры более высокие, чем tx, которые смазка должна неизбежно проходить ири охлаждении. Поэтому, чем выше скорость охлаждения смазки до температуры tx, тем меньшее влияние оказывают промежуточные температуры на характер роста частиц загустителя. Следовательно, остался совершенно не выясненным характер формирования структуры литиевой смазки в процессе ее быстрого охлаждения от изотропного раствора. В связи с этим нами было проведено специальное исследование ио новой методике быстрого охлаждения смазки [6] в тонком слое. В качестве модельной использовалась система LiSt — неполярное вазелиновое масло, причем было показано, что зависимость Р,- и отпрессовываемости масла из смазки (S) от /ь изменявшейся в широких пределах (О—180°), имеет сложный характер с резким максимумом Рг (минимумом S) при = = 130°. [c.570]

    Несмотря на многообразие форм и размеров частиц загустителя, образующихся при охлаждении смеси компонентов, общим для них является способ формирования структурного каркаса. В процессе охлаждения коллоидного (мыльные смазки) или истинного (углеводородные смазки) раствора диспергированный в масле загуститель начинает формировать кристаллическую структуру с одновременным ростом кристаллов, или волокон, и связыванием их друг с другом. В обычных коллоидных системах, в которых содержание твердой фазы невелико, частицы при столкновении слипаются, т. е. коагулируют, и выпадают в осадок. Высокая концентрация дисперсной фазы в смазках препятствует коагуляции частиц, и они образуют в объеме дисперсионной среды пространственный структурный каркас. Чем больше анизометричность частиц загустителя, т. е. чем больше соотношение площади и объема, тем, как правило, выше прочность структуры смазки. [c.280]

    Значительное влияние на формирование структуры смазок оказывают органические полярные соединения — присадки и модификаторы структуры. Причины присутствия модификаторов структуры в смазках различны 1) вносятся дисперсионной средой, как, например, смолы, нефтяные кислоты 2) образуются в смазках при их изготовлении, так называемые технологические ПАВ (это — продукты окисления дисперсионной среды, избыток жирового сырья и продукты его превращений) 3) накапливаются при хранении и применении смазок — кислородсодержащие соединения. Вот почему смазки всегда являются трехкомпонентными системами и роль поверхностно-активных веществ в формировании структуры, несмотря на их малые концентрации, чрезвычайно велика. В значительно меньшей степени на формирование структуры — на построение мицелл и надмицеллярных образований — влияют наполнители. Наполнители — твердые высокодисперсные частицы, как правило, неорганических продуктов они не растворяются в смазках и не обладают заметным загущающим действием. [c.281]

    Таким образом, в основе формирования граничной пленки смазки лежат явления адсорбции и частично хемосорбции. Последняя проявляется в образовании на поверхности металла различных химических соединений, которые обеспечивают более прочную связь граничного слоя с твердой поверхностью. Если при жидкостном трении основную роль в антифрикционном действии играет состав базовотю масла (смазки), то при граничном трении этот эффект зависит прежде всего от состава полярных компонентов и специально вводимых добавок. [c.303]

    Для изготовления подшипников скольжения, сепараторов подшипников качения, направляющих поршневых штоков и других машиностроительных деталей, работающих в узлах трения в условиях ограниченной смазки при высоких температурах, в вакууме и т.д., разработаны антифрикционные самосмазывающиеся материалы амальгопласты. Это материалы каркасно-диоперсного типа формируемые на основе теплостойких полимеров и растворов твердых металлов в жидких поверхностно-активных металлах (ртути, галлии и др.) с использованием различных добавок (оксида кадмия, олеиновой кислоты и др.), сухих смазок (графита, дисульфида молибдена, нитрида бора и др.), волокнистых и других наполнителей (стеклянного воло кна, асбеста, углеродного волокна, свинца и др.). Последовательность технологических операций при формировании амальгопластов следующая приготовление раствора металлов совмещение раствора металлов с полимером и добавками прессование полученной композиции при [c.88]


Смотреть страницы где упоминается термин Смазка при формировании: [c.239]    [c.275]    [c.261]    [c.250]    [c.211]    [c.365]    [c.199]    [c.250]    [c.248]    [c.289]    [c.296]    [c.27]    [c.241]    [c.677]    [c.326]    [c.250]   
Новое в технологии соединений фтора (1984) -- [ c.329 ]




ПОИСК





Смотрите так же термины и статьи:

Формирование



© 2025 chem21.info Реклама на сайте