Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Метод определения скорости электрофореза

    Причиной электрофореза, как и других электрокинетических явлений, служит наличие двойного ионного слоя (ДИС) на поверхности раздела фаз. При положительно заряженной дисперсной фазе коллоидные частицы вместе с адсорбированными на них положительными потенциалопределяющими ионами движутся к катоду, отрицательно заряженные противоионы диффузного слоя —к аноду. В случае отрицательного заряда частиц движение происходит в обратных направлениях. Дисперсная фаза смещается относительно дисперсионной среды по поверхности скольжения. Поэтому, измерив скорость электрофореза, находят потенциал коллоидной частицы, т. е. электрокинетический или (дзета) потенциал. Величина -потенциала характеризует агрегативную устойчивость золя и зависит от толщины диффузного слоя, концентрации и заряда противоионов. Скорость электрофореза определяют методом подвижной границы — наблюдают за передвижением границы между окрашенным коллоидным раствором и бесцветной контактной жидкостью. Наилучшей контактной жидкостью является ультрафильтрат самого золя. Для приближенных измерений используют воду. Сущность метода состоит в определении времени, за которое граница окрашенного золя переместит- [c.205]


    За время клеточного цикла должны быть реплицированы не только ДНК и связанные с ней белки. Клетка должна между двумя последовательными делениями удвоить все свои компоненты, а значит, и свою массу. Не удивительно поэтому, что в отличие от ДНК подавляющее большинство клеточных белков и молекул РНК синтезируется в клетке на протяжении всей интерфазы. На рис. 11-30 показана типичная кривая, характеризующая в равной мере прирост массы, суммарного клеточного белка или суммарной РНК за время клеточного цикла. Поскольку биосинтетический потенциал клетки увеличивается по мере ее роста, скорость синтеза различных компонентов возрастает в период от Gl до Gj. Методом двумерного гель-электрофореза белков, синтезируемых в синхронных культурах клеток млекопитающих, было показано, что из более чем тысячи выявленных белков лишь очень немногие синтезируются в определенное время цикла (рис. 11-31). [c.169]

    Он выполняется следующим образом. На середину полоски плотной, гомогенной фильтровальной (хроматографической) бумаги, пропитанной буферным раствором с определенным значением pH, наносят каплю исследуемого коллоидного раствора. Затем на полоску бумаги накладывают разность потенциалов. Под влиянием образующегося электрического поля отдельные компоненты, содержащиеся в капле, обладающие разными электрофоретическими подвижностями, передвигаются по полоске с различными скоростями. Через некоторое время компоненты распределяются на бумаге в виде стольких зон, различно удаленных от исходной точки, сколько компонентов содержалось в растворе. Полоску высушивают и прогревают для денатурации и фиксации находящихся на ней белков и после этого окрашивают подходящими красителями. В результате проявляется распределение компонентов по длине полоски. Роль бумаги в этом методе сводится к устранению диффузионного и конвекционного перемешивания белков при электрофорезе. [c.210]

    В начале этой главы описаны явления электрофореза и электроосмоса в самом общем виде. Рассмотрим элементарную теорию электрокинетических явлений и применяемые на практике методы определения электрофоретической подвижности и скорости электроосмотического переноса более подробно, поскольку эти величины позволяют вычислить весьма важную характеристику коллоидных систем — -потенциал. [c.197]

    Цель работы. 1. Изучить явления электрофореза. 2. Ознакомиться с методом определения скорости движения и знака заряда коллоидных частиц. [c.243]


    Электрофорез уже давно использовался в биологии различными авторами для суждения о знаке и величине заряда, главным образом различных бактерий и белков. Определение электрофоретической скорости белков по методу подвижной границы с получением электрофоретических диаграмм, на чем мы остановимся далее подробно, является весьма важным методом не только для изучения сложных белковых систем, но и используется широко для практических медицинских целей. При различных инфекционных заболеваниях специфически изменяется белковый состав плазмы крови, и поэтому электрофоретические диаграммы могут быть успешно применены для диагностики болезней. [c.6]

    Существует два метода определения скорости электрофореза микроскопический и макроскопический, или метод передвигающейся границы. [c.101]

    Аналогичное уравнение будем иметь и для скорости электрофореза, если принять во внимание, что при электроосмосе жидкость движется относительно неподвижной твердой фазы, а при электрофорезе, наоборот, происходит перемещение твердых частиц относительно жидкой фазы. Движение в обоих случаях определяется одними и теми же силами, действующими на двойной электрический слой. Методы определения скорости электрофореза заключаются или в наблюдении за движением границы раздела золь — жидкость в электрическом поле (макроскопический метод), или в случае более крупных коллоидных частиц— в определении электрофоретической подвижности непосредственно под микроскопом (микроскопический метод). [c.89]

    Классические косвенные методы определения размера частиц основаны на изучении адсорбции, скоростей растворения и седиментации, седиментационного равновесия, осмотического давления, рассеяния света, рассеяния рентгеновских лучей под малыми углами, ультрацентрифугирования и явлений электрофореза [1]. Однако эти методы, как правило, дают возможность определить средний размер коллоидных частиц и нри попытках представить полученные данные в виде кривой распределения частиц по размерам возникают существенные затруднения. Заключения о форме частиц могут быть выведены на основании исследования рассеяния света и двойного лучепреломления в потоке, но и здесь установление распределения связано с математическими трудностями. [c.130]

    Для определения относительного содержания отдельных белков в саркоплазме используют метод электрофореза на бумаге. Разделение белков основано на различии в подвижности ионов белковых молекул в электрическом поле. Скорость перемещения молекул пропорциональна величине их свободного заряда. Величина заряда молекул различных белков саркоплазмы неодинакова, а поэтому и скорость их перемещения в электрическом поле тоже разная, что дает возможность разделить белки плазмы на несколько фракций. [c.127]

    Рассмотрим теперь кратко основные методы определения скорости электрофореза, уделяя внимание главным образом их принципиальным особенностям, так как технические подробности экспериментальных методик изложены в соответствующих руководствах к практическим занятиям по коллоидной химии. Поскольку [c.206]

    Метод зонального электрофореза имеет и некоторые недостатки. С его помощью нельзя произвести прямого определения скорости миграции белков. Между исследуемыми белками и поддерживающей средой возможны нежелательные взаимодействия, в результате которых часть белка адсорбируется в среде. Адсорбция происходит сильнее всего на бумаге, менее выражена на ацетат-целлю-лозной мембране и практически ничтожна в агаровом геле. [c.12]

    Кислые полисахариды, содержащие карбоксильные группы, при определенных значениях pH могут давать отрицательно заряженные полианионы, способные передвигаться к аноду под действием приложенной к электродам разности потенциалов. Скорость движения полианионов к электроду зависит от заряда молекулы, ее формы и молекулярного веса, что позволяет разделять различные по составу и молекулярному весу полисахариды. Особенно часто метод электрофореза применяется для установления однородности полисахаридов. [c.48]

    Тонкослойная хроматография (ТСХ английское TL ) и предшествовавший ей метод хродгатографии на бумаге до середины 70-х годов занимали центральное место в исследованиях структуры белков и нуклеиновых кислот. В последнее десятилетие эти методы были явно оттеснены электрофорезом и высокоэффективной жидкостной колоночной хроматографией при высоком давлении. Оба метода превосходят ТСХ но разрешающей способности, а второй из них — и по скорости анализа. Кроме того, в результате ЖХВД экспериментатор получает уже разделенные жидкие фракции исходного препарата, в то время как после ТСХ ему надо еш,е локализовать пятна на пластинке, а в случае необходимости дальнейшего анализа — выполнить длительные операции элюции из них веш,ества. Точное и проводимое в ходе самого фракционирования определение микроколичеств вещества во фракциях прп ЖХВД, которое позволяют осуществить высокочувствительные детекторы и интегрирующие устройства современных жидкостных хроматографов, оставляет далеко позади соответствующие возможности ТСХ — ввиду плохой воспроизводимости процессов элюции из пятен и высокого уровня фона или самопоглощения в слое носителя при использовании оптических, флюоресцентных и радиоактивных методов оценки количества вещества в пятнах на пластинке без его элюции. Наконец, в препаративном варианте фракционирования количественные возможности ТСХ на несколько порядков меньше, чем у обычной колоночной хроматографии и даже у электрофореза. [c.457]


    Другие экспериментальные методы определения потенциала незаряженной поверхности. Величину потенциалов незаряженной поверхности металлов можно получить также при помощи ряда других методов. Один из них основан на том, что при определенных условиях нулевое значение электрокинетического потенциала отвечает незаряженной поверхности металла. Значение электродного потенциала, при котором скорость электрофореза (или электроосмоса) равняется нулю, отождествляют с величиной потенциала [c.274]

    Задача электрофореза в большинстве случаев заключается не в идентификации ионов, образующихся в результате электролиза, и оценке их распределения, а в определении скорости миграции к электродам добавляемых заряженных частиц. При условии, что расстояние между электродами достаточно велико, разницу в скоростях движения индивидуальных частиц можно использовать для разделения смесей. Применяют два метода электрофореза метод свободно движущейся границы — фронтальный электрофорез и зонный электрофорез. [c.465]

    Важнейшей областью применения электрофореза является анализ биоколлоидов, например анализ смесей белков в клиническом анализе. Белки, как амфотерные полиэлектролиты, обладают собственными зарядами, зависящим от pH среды. Регулируя значение pH, можно в широких пределах менять их подвижность и даже изменить направление движения в процессе электрофореза. Для каждого белка при определенном значении pH общее число положительных зарядов равно общему числу отрицательных зарядов. Эта изоэлектрическая точка, при которой отсутствует движение частиц, является характерной величиной для определенного белка. Растворимость белка в этой точке минимальна. Подбирая соответствующие буферные растворы для установления определенной скорости движения и растворимости веществ, можно приспособить процессы электрофореза для решения разных проблем разделения веществ. Таким образом, электрофорез превосходит метод бумажной хроматографии. Кроме того, при помощи электрофореза, особенно при высоком напряжении, можно проводить разделение неионогенных веществ (например, сахар в виде боратного комплекса) [79]. Методом электрофореза можно также определять изоэлектрические точки амфотерных веществ или заряды коллоидных частиц (по направлению движения). [c.387]

    Секретированная форма НА оказывается отличной от белка связывания мембраны дикого типа только в одном отношении — в скорости его гликозилирования. Добавка углевода к белкам происходит в две стадии. Как только образующийся белок появляется на открытой просвету потока стороне грубого эндоплазматического ретикулума, преформированные богатые сахарозой олигосахариды переносятся от липидного носителя к определенным аспарагиновым остаткам [13, 21]. Это первоначальное котрансляционное гли-козилирование кора является только первым шагом в тщательно разработанной программе реакций, которые происходят в грубом эндоплазматическом ретикулуме и позднее в аппарате Гольджи, где сахара упорядочены и добавлены к образующемуся белку [13, 26]. Во время биосинтеза НА переход от гликозилированной по кору молек5щы к полной молекуле можно наблюдать при анализе методом SDS-гель-электрофореза белка, меченного S-метионином, или меченных тритием предшественников сахаров в экспериментах с пульсовой меткой. Конечный состав олигосахаридных боковых цепей на завершенных белках штамма дикого типа и А -бел-ках оказывается одинаковым. Однако в противоположность белку связывания мембраны дикого типа, который быстро и относительно синхронно гликозилирован, популяция секреторных молекул становится терминально-гликозилированной через очень длительный период. Возможно, это различие в некоторой степени отражает относительную эффективность, с которой белки связывания мембраны и относящиеся к просвету потока белки изолируются в транспортные везикулы, перемещаемые от грубого эндоплазматического ретикулума к аппарату Гольджи. [c.183]

    Изучая экспериментальные методы определения скорости электрофореза (например, метод подвижной границы, метод Гиттофа), можно оценить совместное влияние всех внутренних и внешних факторов, воздействующих на механизм разделения [2]. [c.159]

    В последующих исследованиях ряда авторов (Дж. Овербек, Ф. Буф, Д. Генри, С. С. Духин) рассмотрено влияние деформации двойного слоя при наложении внешнего электрического поля (эффекта релаксации) на скорость электрофоретического движения частиц оказалось, например, что при значениях хг, близких к единице, в присутствии трехзарядного противоиона деформация двойного электрического слоя вызывает уменьшение коэффициента k примерно на одну четверть. Все эти поправки должны учитываться при определении -потенциала методом электрофореза. [c.193]

    Электрофорез проводят в присутствии додецилсульфата натрия (ДСН). Таким путем можно определить молекулярные массы субъединиц олигомерных белков [74 — 76]. Молекулы ДСН образуют за счет гидрофобного взаимодействия комплексы с полипептндными цепями, характеризующиеся постоянным отношением ДСН белок. Тогда электрофоретическую поднижность можно выразить как функцию молекулярной массы и сравнить с подвижностью стандартного белка. Метод отличается высоко скоростью (2 — 4 ч) и требует для одного определения, как правило, лишь 10 — 50 мкг белка. В последнее время ДСН-электрофорез проводят также на стеклянных шариках с контролируемым размером пор (120 — 200 нм). Комплекс ДСН — белок не адсорбируется на носителе, интервал определяемых молекулярных масс 3 500 — 12 ООО [77]. [c.362]

    Новый метод разделения латексных частиц посредством электрофореза непрерывного действия может оказаться полезным для разделения коллоидного кремнезема. Мак-Канн и др. [168] обнаружили, что при выполнении определенных условий в отношении ионного заряда и ионной силы различающиеся по размеру частицы будут в процессе электрофореза перемещаться с различными скоростями. Авторы разработали устройство для разделения с учетом преимуществ такого явления. [c.476]

    Определение моносахаридного состава проводится анализом продуктов кислотного гидролиза или. чаще, мета-нолиза сахарида. Состав продуктов кислотного гидролизата анализируется с помощью хроматографии или электрофореза на бумаге. Нередко используется коммерческий углеводный анализатор, разделение осуществляется на ионообменных смолах методом распределительной хроматографии в водно-спиртовой смеси или в виде боратных комплексов сахаров. Скорость гидролиза гликозидных связей, образованных остатками нейтральных, амино- и дезокси-сахаров, различна. Легче всего отщепляются остатки сиаловых (N-ацетилнейраминовой, N-гликолилнейраминовой) кислот, труднее всего расщепляются свяэи, образованные остатками амино-сахаров и уроновых кислот. Фуранозиды гидролизуются значительно быстрее пиранозидов. В итоге при гидролизе олигосахарида может иметь место неполное расщепление связей или кислотная деструкция образующихся моносахаридов, что искажает результаты анализа. Лучшие результаты дает метанолиз в присутствии газообразного хлористого водорода (1.7 н. H l, 80 С, 18 ч) — в этом случае образуются метилгликозиды, устойчивые к кислотной деструкции. Качественный и количественный состав продуктов метанолиза определяется методом газожидкостной хроматографии в виде триметилсилильных или трифторацетильных производных. [c.463]

    В последнее время для установления чистоты белка приобрел большое значение электрофорез. Давно известно (Харди, 1899 г.), что белки мигрируют к аноду в щелочном растворе и к катоду в кислом растворе. Скорость, с которой происходит миграция белка, зависит от соотношения положительных и отрицательных зарядов в макромолекуле, а также и от формы последней следовательно, скорость миграции при определенном pH является характерной константой каждого белка. По методу А. Тизелиуса (1937 г.) раствор белка вводят в нижнюю часть и-образ- [c.417]

    Другие методы опреде.ления потенциала незаряженной поверхности. Величину потенциалов незаряженной поверхности металлов можно получить также при помощи других методов. Один из них основан на том, что при определенных условиях нулевое значение электрокинетического потенциала отвечает незаряженной поверхности металла. Значение электродного потенциала, при котором скорость электрофореза (или электроосмоса) равняется нулю, может отожествляться при этом с величиной потенциала незаряженной поверхности. Для этого же можно использовать результаты опыта по отклонению тонкой проволоки в электрическом поле здесь потенциал незаряженной поверхности можно отожествить с величиной потенциала проволоки, при котором она перестает отклоняться. Далее, приближенное значение потенциала незаряженной поверхности можно получить из данных по влиянию солей на кинетику катодного выделения водорода. Новый метод определения потенциала незаряженной поверхности был предложен Б. В. Дерягиным, Б. Н. Кабановым и Т. П. Биринцевой (1960). Положение потенциала незаряженной поверхности в этом случае определяют, измеряя силы отталкивания, возникающие при сближении двух одинаково поляризованных металлических проволок (метод скрещенных нитей ). Потенциал, при котором сила отталкивания минимальна, принимают за потенциал незаряженной поверхности. [c.256]

    В 1949 г. Полинг (Pauling) и его сотрудники изучали физико-химические свойства гемоглобина в норме, при носительстве признака серповидноклеточности и при заболевании серповидноклеточной анемией. Использованный ими экспериментальный подход состоял в следующем они сопоставляли подвижность исследуемых гемоглобинов в электрическом поле. Метод определения подвижности в электрическом поле называется электрофорезом. Скорость миграции (V) белка (или какого-либо другого соединения) в электрическом поле зависит от напряженности электрического поля ( ), общего [c.90]

    Для определения чистоты (или гомогенности) ферментных препаратов в настоящее время наиболее широко используются ультрацентрифугирование и диск-электрофорез. В основе первого из них лежит различная скорость седиментации в ультрацентрифуге белков с различной молекулярной массой (и различной формой молекул). Одним из ограничений данного метода является то, что разные белки могут иметь одну и ту же величину седиментации и не разделяться при ультрацентрифугировании. С другой стороны, белок в растворе может находиться в виде нескольких форм, различающихся по степени агрегации, а следовательно, и по молекулярной массе. Если эти формы не превращаются одна в другую или превращения осуществляются достаточно медленно, на седиментограмме обнаружится несколько пиков, что, однако, не будет свидетельствовать о наличии примесных белков в исследуемом препарате фермента. Недостатком метода является также его невысокая чувствительность, что не позволяет обнаруживать малые количества примесных белков. [c.205]

    Для отделения монофосфата от монофторфосфата и дифтор-фосфата применяют метод электрофореза на бумаге при 150 в и pH 7 при использовании разбавленного (1 1) водой вероналового буферного раствора [865]. Скорость миграции монофосфата составляет 3,2 см час, а скорость миграции монофторфосфата и диф-торфосфата 6,5 смЫас. Для разделения ионов применяют предварительное осаждение ионами РЬ и иОа . Для повышения чувствительности определения соединений фосфора при высоком напряжении [887] применяют салицилатный буферный раствор с добавлением Н3ВО3 при этом чувствительность повышается в несколько раз. [c.63]

    При разработке технологий получения препарата Бромезида, в качестве критериев, определяющих диагностическое качество этого РФП, были выбраны скорость образования и выход комплекса " Тс-бромезида. С целью их определения были разработаны два метода количественного анализа радиохимического состава растворов с применением высокоэффективной жидкостной хроматографии (ВЭЖХ) и электрофореза (ЭФ) [53]. [c.410]


Смотреть страницы где упоминается термин Метод определения скорости электрофореза: [c.237]    [c.197]    [c.109]    [c.201]    [c.258]    [c.40]    [c.26]    [c.33]    [c.207]    [c.207]    [c.468]    [c.300]   
Курс коллоидной химии (1964) -- [ c.89 ]




ПОИСК





Смотрите так же термины и статьи:

Определение скорости электрофореза

Скорость определения методы

Электрофорез

Электрофорез определение

Электрофорез скорость



© 2025 chem21.info Реклама на сайте