Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Крахмал энергия

    За исключением семейств растений, в ядрах которых много крахмала, энергия запасается в семенах в форме липидов. Так, например, в ядрах семян, богатых крахмалом (зерновые культуры, горох, конские бобы), содержание липидов очень мало (ниже 5%). В ядрах семян люпина содержание липидов варьирует в зависимости от вида растения в пределах 8—18% [19], и в случае повышенного содержания экстрагирование их может быть оправдано. В сое находится около 20 % липидов, а семена некоторых масличных культур (арахис, рапс, хлопок, подсолнечник и пр.) могут содержать их до 65 %. [c.377]


    В организмах животных в виде жиров сохраняется запас энергии. Молекула жира может дать вдвое больше энергии, чем молекула крахмала такого же размера. Объясняется это тем, что в молекуле жира все атомы водорода присоединены к атомам углерода. Процесс выработки энергии в организме состоит в том, что связи между водородом и углеродом разрываются, и атомы водорода соединяются с кислородом. В молекуле же крахмала почти половина атомов водорода уже соединена с атомами кислорода, и из этой связи никакой энергии извлечь нельзя. (Правда, крахмал перерабатывается организмом легче, чем жиры, так что и у него есть свои преимущества.) [c.198]

    Затем в растениях глюкоза превращается в крахмал или целлюлозу — их основную структурную часть. Сахароза и крахмал быстро усваиваются человеческим организмом, что делает их удобной формой для запаса энергии. Целлюлоза же не усваивается в организме человека, поскольку отличается от крахмала по способу соединения остатков сахаров друг с другом (рис. 1У.5). Из-за такой структуры большинство животных (за исключением жвачных животных, многих насекомых, в том числе термитов) не могут использовать целлюлозу как источник энергии. Неперевариваемая человеком клетчатка играет, однако, важную роль в поддержании нормального состояния желудочно-кишечного тракта. [c.246]

    Сахара и крахмал — главные поставщики энергии человеческого организма. Любое движение мышц или мыслительная деятельность невозможны без энергии. Большая ее часть поступает от переработки сахаров и крахмала. Каждый грамм углеводов при расщеплении дает 4 ккал энергии. [c.246]

    Когда телу требуется энергия, глюкоза и жир легко выходят из хранилищ. После длительных физических упражнений концентрация жирных кислот в крови увеличивается в четыре раза. Реакция образования АТФ при сгорании крахмала подобна аналогичной реакции для глюкозы. [c.449]

    Углеводы в форме крахмала являются важнейшими источниками энергии в пище. Для получения этой энергии мы либо употребляем в пищу зерна, в которых накапливается крахмал, либо скармливаем эти зерна животным, которые синтезируют мясные белки, а затем съедаем их. В любом случае потребляемая нами энергия в конце концов поставляется крахмалом, полимерным продуктом фотосинтеза. Целлюлоза входит в состав хлопка и льна, а также искусственных продуктов - ацетата целлюлозы и вискозного волокна. Дерево, из которого сделана наша мебель, также содержит целлюлозу. Бумага этой книги получена в процессе обработки целлюлозы. Даже деньги давно перестали делать из благородных металлов, заменив их целлюлозой. В этом разделе будет кратко рассмотрено, что представляют собой углеводы и как они используются. [c.308]


    Крахмал-также полимер глюкозы, но с а-связью, показанной на рис. 21-16, б. Крахмал представляет собой стандартную форму, в которой хранится глюкоза, использующаяся в качестве источника пищи в растениях и являющаяся основным источником запасенной солнечной энергии. Крахмал накапливается в стеблях растений, листьях, корнях и семенах. Все организмы обладают ферментами, необходимыми для усвоения крахмала. Первой стадией ферментации независимо от того, происходит она в желудке или в пивном чане, является расщепление крахмала в глюкозу. Если долго подержать во рту хлеб, он в конце концов приобретает сладкий вкус, потому что ферменты нашей слюны могут превращать в сахар содержащийся в хлебе крахмал. [c.312]

    Молекулой, синтезируемой в процессе фотосинтеза в качестве накопителя энергии, является глюкоза, один из простейших углеводов. Углеводы играют роль не только накопителей химической энергии, но и важного строительного материала в растениях из них состоят древесина, хлопковое волокно, ткани стеблей более мягких растений и др. Глюкоза полимеризуется в целлюлозу, которая является основой структурных материалов и не может быть пищевым продуктом для человека, и в крахмал, который накапливается в семенах, зернах и корнях растений и может использоваться в пищу, так как при его разложении в организме человека снова получается глюкоза. [c.338]

    Реакции гидролиза, т. е. расщепления органических высокомолекулярных соединений действием воды, имеют большое биологическое и техническое значение. Путем гидролиза происходит распад белковых веществ, крахмала, гликогена, клетчатки, жиров, восков, глюкозидов и тому подобных веществ, причем образуются более простые низкомолекулярные соединения. Реакции гидролиза противоположны по направлению реакциям межмолекулярной дегидратации. В животных и растительных организмах между этими процессами существует биологическое равновесие. В организмах путем дегидратаций происходит образование полисахаридов, белков, жиров и других сложных соединений. Эти эндотермические по своему характеру процессы осуществляются при участии солнечной энергии, которая таким образом вовлекается в биосферу земли. Поэтому сложные химические вещества растений являются как бы аккумуляторами солнечного тепла. [c.534]

    Деструкция, являясь одним из видов старения полимеров, — довольно распространенная реакция в химии высокомолекулярных соединений. Она может играть как положительную роль (например, для установления строения полимеров, получения некоторых индивидуальных веществ из природных полимеров аминокислот из белков, глюкозы из крахмала и целлюлозы и т. д.), так и отрицательную. Являясь необратимой химической реакцией, деструкция приводит к нежелательным изменениям в структуре полимеров при их эксплуатации. Это необходимо учитывать при использовании полимерных материалов в строительстве, когда они подвергаются многим неизбежным отрицательным воздействиям. Факторы, приводящие к деструкции полимеров, можно разделить на физические (тепло, свет, ионизирующее излучение, механическая энергия и др.) и химические (гидролиз, алкоголиз, окисление и т. д.). [c.409]

    ПАВ, уменьшая поверхностную энергию дисперсной системы, как бы защищают ее от возможного нарушения устойчивости. Поэтому повышение устойчивости дисперсных систем под влиянием ПАВ называют коллоидной защитой или стабилизацией коллоидов. В качестве стабилизирующих веществ для золей обычно, используют высокомолекулярные ПАВ, желатин, альбумин, казеин, крахмал, пектин, каучуки, мыла поливалентных металлов, гемоглобин, мыла щелочных металлов и т. д. [c.282]

    Крахмал (разд. 25.4)-общее название группы полисахаридов, которые служат резервными источниками энергии в растениях. [c.466]

    Многие свойства полимеров (высокая вязкость растворов, растворение с предварительным набуханием, механические свойства, нелетучесть, неспособность переходить в парообразное состояние и т. д.) тесно связаны с большой энергией межмолекулярного взаимодействия. Именно резко возрастающая роль межмолекулярных сил является одной из важнейших особенностей полимеров, качественно отличающей их от низкомолекулярных соединений. Высокомолекулярные соединения широко распространены в природе — это животные и растительные белки, углеводы (целлюлоза и крахмал), натуральный каучук, смолы и др. С каждым годом растет число полимеров, создаваемых синтетически. Сегодня химия в состоянии не только воспроизводить многие природные полимеры, как, например, натуральный каучук, некоторые белки, но и создавать массу новых синтетических полимерных веществ, которых в природе не существует. В качестве примера можно привести элементорганические полимеры, которые обладают комплексом свойств, присущих как органическим, так и неорганическим полимерам. [c.327]


    Крахмал является продуктом фотосинтеза, происходящего в зеленых растениях при участии зеленого пигмента растений — хлорофилла — и солнечной энергии. В большом количестве содержится в клубнях карто ля (до 24%), в пшеничных зернах (64%), в зернах риса (до 75%), кукурузы (70%), из которых в промышленности и получают крахмал. [c.164]

    Крахмал. Крахмал накапливается в клубнях, плодах, семенах некоторыми растениями в качестве резервного материала (энергии) (злаки, картофель, рис, кукуруза, пшеница). Крахмал — белый порошок. Зерна крахмала состоят из двух продуктов более растворимого — амилозы (20%) и менее растворимого — амило-пектина, которые отличаются по молекулярной массе и строе 1ию. Вследствие присутствия амилозы крахмал окрашивается иодом в синий цвет. Молекула амилозы имеет линейное строение, амилопектина — разветвленное. Амилоза и амилопектин — полимеры, мономером которых является а-глюкоза. Процесс образования крахмала можно представить так  [c.248]

    Гликоген, или животный крахмал, ( 6H o05)J .. Представляет собой полисахарид, являющийся резервным материалом животных организмов накапливается в тканях, особенно в печени и в мышцах служит источником энергии при мышечной работе. Является ценной составной частью пищевых продуктов животного происхождения (содержится в рыбе, в мясе, в печени и др.). [c.262]

    Они служат источником запасной энергии (в растениях— крахмал, в животных организмах — гликоген). В растительных организмах углеводы являются основой клеточных мембран. В качестве одного из структурных компонентов остатки углеводов входят в состав нуклеиновых кислот. [c.607]

    Крахмал — один из продуктов фотосинтеза, главное запасное питательное вещество растений. Остатки глюкозы в молекулах крахмала соединены достаточно прочно и в то же время под действием ферментов легко могут отщепляться, как только возникает потребность в источнике энергии. [c.625]

    Крахмал широко распространен в природе. Он содержится в различных растениях в виде крахмальных зерен и является для них запасным питательным материалом. Наиболее богаты крахмалом зерна злаков риса (до 86%), пшеницы (до 75%), кукурузы (до 72%), клубни картофеля (до 24%). В клубнях картофеля крахмальные зерна плавают в клеточном соке, в злаках они плотно склеены белковым веществом клейковиной. Крахмал является одним из продуктов фотосинтеза, который, как показал К- А. Тимирязев, протекает с участием зеленого пигмента листьев — хлорофилла и солнечной энергии. [c.401]

    Углеводы (сахара и крахмал) —важные пищевые продукты, за счет которых организм человека получает большую часть необходимой ему энергии (разд. 14.8). Энергию для синтеза сахаров, крахмала и целлюлозы растения получают в виде солнечного света. Этот процесс, называемый фотосинтезом, осуществляется при участии зеленого вещества— хлорофилла, содержащего атом магния. Формула хлорофилла имеет следующий вид  [c.401]

    Содержащиеся в пищевых продуктах жиры и углеводы служат основными источниками энергии. Чистые жиры обладают калорийностью (теплотой сгорания) 37,6 кДж-г-, чистые углеводы (сахар) имеют калорийность около 17 кДж-г (крахмал—17,5, сахароза—16,5 и глюкоза— 15,6). Калорийность пищевых продуктов определяют при помощи калориметрической бомбы, как описано в приложении VI. Третьей основной составной частью пищевых продуктов являются белки, необходимые главным образом для обеспечения роста и восстановления тканей. Взрослому человеку среднего роста необходимо получать ежедневно около 50 г белков. Обычно же человек потребляет несколько больше— 80 г калорийность этого количества составляет примерно 1400 кДж, поскольку теплота сгорания белка равна около 18 кДж-г . Таким образом, за счет жиров и углеводов человек должен получать около 10 600 кДж из 12 000 кДж, необходимых ему ежедневно. Обычно же человек за счет жиров получает около одной трети от общего количества необходимой энергии (100 г дает 3760 кДж), а за счет углеводов около 60%. Люди, выполняющие очень тяжелую физическую работу, например лесорубы или исследователи Арктики, нуждающиеся в усиленном питании, могут повысить суточное потребление жиров до 250 г жиры — более концентрированный источник энергии, чем углеводы. [c.406]

    Глюкоза человеку необходима, она - один из главных поставщиков энергии. Но в хлебе, в картошке, в макаронах содержится преимущественно крахмал, а в организме он превращается в глюкозу под действием ферментов. [c.57]

    Крахмал первоначально подвергается воздействию находящегося в слюне фермента, птиалина, но в основном гидролиз крахмала происходит в тонком кишечнике, где под действием ферментов поджелудочной железы и других высокоактивных ферментов крахмал превращается в глюкозу. Часть простых сахаров, к числу которых относится глюкоза, переносится кровью в печень, где происходит их отложение в составе гликогена. Другая часть сахаров поступает непосредственно в общий кровоток, где они сгорают с выделением энергии, превращаются в жиры либо накапливаются в мышцах в виде гликогена. Гликоген может высвобождаться при первой же необходимости и служит источником энергии. Метаболизм углеводов регулируется таким гормоном, как инсулин. Механизмы превращения углеводов в СО2 и Н2О очень сложны и не будут рассматриваться в данной книге. [c.486]

    Энергию дает практически любая пища, но углеводы (сахар и крахмал) содержат ее больше других продуктов. Чтобы успешно строить клетки нашего организма, нужны более специфичные вещества. Основной строительный материал в этом сллчае — белки и жиры. Также абсолютно необходимы витамины и минер 1льные соли, хотя и в очень небольших количествах. [c.233]

    В растениях молекула глюкозы полимеризуется в цепи, состоящие из тысяч мономерных единиц, в результате чего получается целлюлоза, а если полимеризация происходит несколько иным образом, получается крахмал. Близкородственный к глюкозе К-ацетилглюкозамин в результате полимеризации образует хитин - вещество, из которого состоит роговица насекомых. Другое близкое по составу вещество, Ы-ацетилмурановая кислота, сополимеризуется в другую последовательность цепей, из которых построены стенки бактериальных клеток. Глюкоза разлагается в несколько стадий, выделяя энергию, которая требуется живому организму. Избыток глюкозы переносится кровотоком в печень и превращается в животный крахмал - гликоген, который при необходимости снова превращается в глюкозу. Глюкоза, целлюлоза, крахмал и гликоген относятся к углеводам. [c.308]

    Механизм действия коллоидных растворов поверхностно-активных веществ также основан на понижении поверхностной энергии на границе раздела фаз, однако при использовании этих коагулянтов на поверхности поляризуются не отдельные ионы или молекулы, а коллоидные частицы. В качестве коллоидных растворов поверхностно-активных веществ применяют вещества растительного происхождения (крахмал и его производные, щелочные вытяжки из торфа и бурого угля, сульфитноспиртовая барда), а также синтетические соединения, главным образом производные эфиров целлюлозы (например, карбоксилметилцеллюлоза). [c.119]

    Крахмал представляет собой не однородное вещество, а смесь содержащихся в растениях полисахаридов. КрахмальЕ служат основной формой пищи, запасаемой растениями в семенах и клубнях. Значительные количества крахмала содержатся в пшенице и кукурузе. Эти продукты служат главными источниками необходимой для человека энергии. Ферменты, имеющиеся в пищеварительном тракте организма человека, катализируют гидролиз крахмала в глюкозу. [c.457]

    Целлюлоза-главный строительный материал растений. Древесина приблизительно на 50% состоит из целлюлозы хлопчатобумажные нити представляют собой почти чистую целлюлозу. Целлюлоза состоит из неразветвленных цепей, построенных из остатков глюкозы ее молекулярная масса в среднем превышает 500000. Структура целлюлозы показана на рис. 25.12. На первый взгляд она очень напоминает структуру крахмала. Однако между ними имеется важное различие, которое заключается в способе связывания остатков глюкозы. Отметим, что в целлюлозе глюкоза находится в своей Р-форме. Ферменты, легко гидролизующие крахмалы, вовсе не гидролизуют глюкозу. Так, вы можете разжевать и проглотить фунт ( 0,5 кг) целлюлозы, не получив при этом вообще никаких калорий, хотя теплота сгорания целлюлозы в расчете на единицу массы почти не отличается от теплоты сгорания крахмала. В отличие от целлюлозы фунт ( 0,5 кг) крахмала обеспечивает значительный запас калорий. Дело в том, что крахмал гидролизуется в глюкозу, которая затем окисляется с выделением энергии. В отличие от крахмала целлюлоза не гидролизуется никакими ферментами, имеющимися в человеческом организме, и поэтому выводится из него неиспользованной. Многие бактерии содержат ферменты, называемые целлюлазами, которые гидролизуют целлюлозу. Эти бактерии присутствуют в пищеварительной системе жвачных животных, например лошадей, использующих целлюлозу в пищу. [c.458]

    Углеводы, образующиеся из полиок-сиальдегидов и полиоксикетонов, служат важнейшим строительным материалом растений и источником энергии для растений и животных. К трем важнейшим группам углеводов относятся крахмал, содержащийся в растениях, гликоген, обнаруживаемый [c.464]

    Согласно современным представлениям, фотохимическая стадия Ф. заключается в поглощении хлорофиллом кванта света с переходом хлорофилла в восстановленное состояние вследствие присоединения к нему электрона или водорода из какого-либо восстановителя. Восстановленный хлорофилл с помощью нескольких последовательно действующих ферментов передает электрон или водород, а тем самым и поглощенную энергию на восстановление углекислоты. Что касается химизма фотосинтетиче-ского превращения углерода, то согласно современному представлению первичная фиксация СО2 происходит на углеводе, содержащем пять атомов углерода,— рибулозодифосфате, который при этом распадается с образованием фосфоглицериновой кислоты. Последняя восстанавливается до фосфоглицериново-го альдегида, который конденсируется с фосфодиоксиацетоном и образует фруктозодифосфат, а затем свободные сахара — гексозы, сахарозы и крахмал — в процессе, обратном гликолитиче-скому распаду. Очень важно, что растения могут осуществлять Ф. не только при естественном солнечном свете, но и при искусственном освещении, что дает возможность выращивать растения в разное время года. [c.269]

    Крамер детально исследовал свойства циклодекстринов, полученных при частичном гидролизе крахмала и представляюш,их собой кольца, составленные из остатков глюкозы. Проникновение молекулы иода в полость циклодекстрина объясняет иодкрахмальную реакцию. Полость циклодекстрина как бы выстлана гидроксильными группами, здесь отмечается повышенная электронная плотность, способствующая енолизации гостевых молекул и приводящая к повышению их реакционной способности. Подобная топохимическая основность проявляется в форме основного катализа химических реакций при участии циклодекстринов. Они похожи на ферментативные системы, поскольку функционируют по механизму структурного соответствия и снижают энергию активизации ряда реакций гидролиза диарилпирофосфатов, декарбоксилирования ацетоуксусных кислот и т. п. [c.99]

    Фотосинтез в растениях. В зеленом листе растения под во действием энергии солнечной радиации протекает целый комплекс фотосинтетических процессов, исходным материалом для которых служат СОа, НаО и минеральные соли. Конечными продуктам.I являются крахмал, клетчатка, белки, жиры и другие сложные оргя-нические вещества. Процесс фотосинтеза осуществляется при непо средственном участии важнейшего природного фотокатализатора — хлорофилла . В этом процессе участвуют также и многие друпк-окислительно-восстановительные ферменты (бнокатализаторы). [c.144]

    Ферменты, обладающие амилазным действием, широко распространены в природе. Они находятся в зернах злаковых растений, клубнях картофеля, в печени, выделениях поджелудочной железы, слюне. С помощью амилаз крахмал подвергается в растительных и животных организмах превращению в растворимые углеводы — мальтозу и глюкозу, которые соками растений или кровью животных доставляются к местам потребления и при своем сгорании дают организму необходимую энергию. [c.310]

    Энергия взаимодействия (притяжения) сталкивающихся частиц может уменьшаться при адсорбции на их поверхности молекул других веществ, особенно иоверхностноактивных (ПАВ) ири этом поверхность из лиофобной может стать лиофильной с соответствующим повышением стабильности системы. Этим пользуются для стабилизации гидрофобных золей, например золотого гидрозоля прибавлением крахмала, желатина и т. п. [c.260]

    Важной количественной характеристикой энергетики смачивания, а вместе с тем и характера твердой поверхности (ее гидрофильности и гидрофобности, олеофильности и олеофобности) служит теплота смачивания — количество энергии, выделяемое при смачивании единицы поверхности твердого тела, равное разности полных поверхностных энергий границ раздела фаз твердое тело — газ и твердое тело — жидкость. Эта величина особенно широко используется для характеристики смачивания тонкопористых тел и порошков. По Ребиндеру, отношение теплот смачивания твердых поверхностей водой Жа) и углеводородом Жм) служит характеристикой гидрофильности поверхности для гидрофильных поверхностей для гидрофобных — Р< 1. Так, например, для активированного угля рл i0,4 (гидрофобная поверхность), для кварца рд 2 (гидрофильная), для крахмала р 20 (сильно гидрофильная). При этом в обоих случаях при контакте с водой и углеводородом тепловой эффект смачивания может быть отнесен к единице массы порошка (адсорбента), и, таким образом, отпадает необходимость измерять поверхность исследуемого порошка. [c.98]

    Известно, что в химическое взаимодействие вступают только активные молекулы, обладающие определенной избыточной энергией по сравнению со средней энергией всех молекул — энергией активации ( 1), выражаемой в кДж-моль . Количество акпшных молекул в каждый данный момент составляет лишь небольшую долю их общего числа, и, поскольку необходимое распределение энергии занимает конечное время, гидролиз крахмала происходит с измеримой скоростью, определяемой величиной энергетического барьера (энергии активации), который должен быть преодолен реагирующими веществами. [c.177]

    По этому уравнению и известным из опыта кинетическим константам можно вычислить энергию активации, которая для ферментативного гидролиза крахмала (при величине ее, принятой в первые стадии гидролиза) оказалась равной около 45кДж-кмоль- (для кислотного гидролиза — около 130 кДж-кмоль ). [c.180]

    При сбраживании сусла дрожжами необходимо предохранять их от посторонних микроорганизмов — бактерий и диких дрожжей, вносимых с сырьем, водой и воздухом. Попадая в дрожжевые и бродильные аппараты, они могут накапливаться в значительных количествах и даже вытеснить производственную культуру дрожжей, Инфицирующие микроорганизмы потребляют из сусла часть питательных веществ, что снижает выход спирта. Кроме того, они образуют органические кислоты и другие продукты, инактивирующие ферменты осахаривающих материалов и снижающие бродильную энергию дрожжей, в результате чего в зрелой бражке повышается количество несброжениых сахаров и крахмала. Хлебопекарные дрожжи, выделенные из инфицированной мелассно-спиртовой бражки, имеют низкую ферментативную активность и стойкость, [c.209]

    ГЛЮКОЗА (декстроза, виноградный сахар) iHi206, моносахарид сладкого вк,уса (структурную ф-лу см, в ст, Мута-ротация). В природе распростр, D-Г, для ее а- и -аноме-ров Гпл 146 и 148—150 °С, [ ]d +112 и +18,7° соотв,, равновесное [а]о +52,7° раств, в воде (в 100 мл 82 г при 25 С и 154 г при 15 °С), Содержится в соке растений и в кровн структурный фрагмент мн, олиго- и полисахаридов. Гл. источник энергии для большинства организмов, Получ, кислотным или ферментативным гидролизом крахмала или целлюлозы. Сырье в произ-ве витамина С, глюконата Са входит в состав напитков и конд, изделий питат. в-во и компонент кровезаменителей в медицине, [c.139]

    КРАХМАЛ. Крахмал представляет собой основной источник резервной энергии в растительных клетках. Он встречается в виде крахмальных гранул, которые содержат две основные фракции — амилозу (около 20 %) и амнлопектпи (около 80 %). Амилоза и амилопектин при кислотном гидролизе дают только п-глюкозу. Следовательно, различное поведение амилозы и амилопектина должно быть обусловлено характером связывания глюкозных мономеров в этих двух полисахаридах. [c.459]

    К отдельному подклассу относят Т., катализирующие перенос гликозильных остатков (гликозилтрансферазы). Нек-рые из этих Т. обладают также гидролитич. активностью, к-рая может рассматриваться как перенос гликозильного остатка на молекулу воды. Акцептором может служить также Н3РО4 в случае фосфорилаз. Наиб, распространен перенос остатка углевода от олигосахарида или богатого энергией метаболита на др. молекулу углевода. К наиб, изученным Т. этого подкласса можно отнести ферменты синтеза гликогена [напр., гликоген(крахмал)синтетазу и га-локтозилтрансферазу]. [c.625]

    В работах [85, 86] выявлены закономерности в устойчивости комплексов иод-олигосахариды крахмала в ряду от мальтотетрозы (число глюкозных остатков N4) до мальтопентадекаозы (Л 15). Зависимости констант устойчивости комплексов олигосахарид-иод от числа глюкозных единиц представлены на рис. 1.4. Анализ результатов позволил авторам предположить, то изменение энергии Гиббса реакции образования комплекса Ц с декстрином может быть представлено выражением  [c.38]


Смотреть страницы где упоминается термин Крахмал энергия: [c.3]    [c.229]    [c.445]    [c.302]    [c.23]    [c.140]    [c.173]    [c.572]   
Фотосинтез 1951 (1951) -- [ c.54 ]




ПОИСК





Смотрите так же термины и статьи:

Крахмал



© 2024 chem21.info Реклама на сайте