Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Проницаемость паров константы

    В случае ПАР константы ионизации зависят не только от диэлектрической проницаемости среды, но и от природы растворителя 1216]  [c.29]

    Было найдено, что проницаемость паров большинства исследованных растворителей через найлоновую пленку исчезающе мала, в противоположность проницаемости паров спиртов и воды, как это видно из приведенных ниже величин констант проницаемости  [c.194]


    Потенциальная энергия двух противоположно заряженных ионов на этом расстоянии равна 2 кТ, при этом кинетическая энергия недостаточна для преодоления взаимного притяжения ионы остаются связанными в пару, которая не участвует в электропроводности, хотя и не является настоящей молекулой. Можно подсчитать число ионов, которые находятся вокруг иона противоположного знака между критическим расстоянием д и расстоянием наибольшего сближения. Таким способом определяется число ионных пар, степень их диссоциации и константа диссоциации ионных пар по закону действия масс. Б воде при 25° С для одно-одновалентного электролита критическое расстояние невелико (( = 3,57 А), число ионных пар очень мало, имеется почти полная диссоциация. Для ионов с большими зарядами, а также в растворителях с небольшой диэлектрической проницаемостью величина д имеет большие значения, и ассоциация увеличивается. Ассоциация зависит также от радиуса ионов и растет с уменьшением этого радиуса (т. е. увеличением расстояния наибольшего сближения), Так, в растворах ЬаРе (СМ) 6 в смешанных растворителях, диэлектрическая проницаемость которых О <57, константа диссоциации ионных пар уменьшается с уменьшением О в количественном согласии с теорией. Это падение константы лежит в пределах от 10" до 10 . В растворе с /п=0,01 степень диссоциации ионных пар по мере уменьшения О изменяется от 0,3 до 0,03 число ионных пар очень велико. В водных растворах с 0 = 81 содержание ионных пар при малых концентрациях составляет доли процента. [c.416]

    Главное различие между свободными ионами и ионными парами состоит в том, что растворы, содержащие только ионные пары, не проводят электрический ток. Таким образом, измерение проводимости позволяет определить содержание свободных ионов. Что касается криоскопии и измерения давления паров,, то в этих случаях ионные пары ведут себя как отдельные частицы. Константы диссоциации ионных пар известны для многих растворителей. Как правило, при низких концентрациях в растворителях с диэлектрической проницаемостью больше 40 находятся главным образом диссоциированные ионы. В растворителях с диэлектрической проницаемостью ниже 10—15 даже при высоком разбавлении свободные ионы почти полностью отсутствуют. [c.17]


    Нефтезаводские газы, подлежащие разделению, представляют собой смесь углеводородов с водородом. Основные физические константы водорода и газообразных углеводородов приведены в табл. 12. Водород из этих газов вьщеляют методами глубокого охлаждения, абсорбцией, адсорбцией, диффузией через мембраны с избирательной проницаемостью для водорода. Метод глубокого охлаждения нашел промышленное применение для выделения Нз из водородсодержащих газов. Для получения водорода высокой степени чистоты используют метод короткоцикловой адсорбции на цеолитах. Водород очень высокой степени чистоты в небольших количествах получают диффузией через мембраны из сплавов палладия, проницаемых для водорода, но непроницаемых для других газов и паров. Разрабатываются и полимерные мембраны, обладающие аналогичными свойствами, Метод абсорбции углеводородами с последующей ректификацией, особенно при пониженной температуре, может быть также использован для концентрирования водорода. Этот процесс имеет место в системах гидроочистки (см, стр, 20). [c.42]

    Однако когда часть растворенного электролита, находящаяся в виде ионных пар, мала, что имеет место для растворителей с высокой диэлектрической проницаемостью, константы, подсчитанные по этим уравнениям, не точны. Это является следствием эффектов, которые не учитываются уравнениями, но оказывают влияние того же порядка, которое вызывает ассоциация. Вследствие влияния таких эффектов, а также ассоциации ионов [c.129]

    Возрастание электропроводности при высоких концентрациях он объясняет, не прибегая к представлениям об образовании ионных тройников. В концентрированных растворах возрастает диэлектрическая проницаемость, а это приводит к увеличению константы диссоциации ионных пар, в результате чего возрастает электропроводность. Сухотин считает, что этим путем легко объяснить малое изменение чисел переноса в области аномальной проводимости и что эти представления не противоречат данным о высокой степени ассоциации ионов, полученным на основании криоскопических исследований в средах с низкими диэлектрическими проницаемостями. [c.135]

    Таким образом, для одной и той же пары кислот растворенное веш е-ство — растворитель по мере перехода к растворителю с более низкой диэлектрической проницаемостью будет уменьшаться константа диссоциации. Наоборот, с ее возрастанием член e N J RTr будет стремиться к нулю. В среде с бесконечно большой диэлектрической проницаемостью член e Njf-RTr будет равен нулю, а способность веш ества к диссоциации будет определяться разностью собственных констант кислотности. [c.270]

    В растворителях, подобных безводной уксусной кислоте, т. е. обладающих низкой диэлектрической проницаемостью, даже самые сильные электролиты лишь очень слабо диссоциируют на ионы. В таких средах преобладают ионные пары с малыми константами диссоциации. [c.394]

    Для ионов с большими зарядами, а также в растворителях с небольшой диэлектрической проницаемостью величина го имеет большие значения и ассоциация увеличивается. Способность к ассоциации зависит также от радиуса ионов и растет с уменьшением этого радиуса. Так, в растворах ЬаРе(СЫ)е в смешанных растворителях, диэлектрическая проницаемость которых О < 57, константа диссоциации ионных пар понижается с уменьшением величины В в количественном согласии с теорией. Это падение константы лежит в пределах от 10 з до 10 . В растворе с /п = 0,01 степень диссоциации ионных пар по мере уменьшения О изменяется от 0,3 до 0,03 число ионных пар очень велико. В водных растворах с Д = 81 содержание ионных пар при малых концентрациях составляет доли процента. [c.118]

    Для описания свойств растворителей можно использовать следующие физические константы температуры плавления и кипения, давление паров, теплоту испарения, показатель преломления, плотность, вязкость, поверхностное натяжение, дипольный момент, диэлектрическую проницаемость, удельную электропроводность и т. п. Физические свойства распространенных органических растворителей суммированы в табл. А.1 (см. приложение). [c.93]

    В противоположность этому соли, состоящие из катиона щелочного металла и большого органического аниона, могут обладать значительной растворимостью в органических растворителях. Однако даже в растворителях с относительно высокой диэлектрической проницаемостью концентрация свободных ионов в растворе невелика. В нитробензоле (е = 35,7) пикраты калия, натрия и лития присутствуют главным образом в виде ионных пар с константами диссоциации на свободные ионы, равными 6,9-10", 2,8-10" и 6-10" соответственно [10]. [c.302]

    Предположения, на которые опирается уравнение (74), подтверждаются и следующими соображениями. Нитро метай имеет диэлектрическую проницаемость 39, что больше, чем 33 у метанола, но не обладает такой выраженной способностью к сольватации анионов, как гидроксилсодержащие растворители. Из данных по электропроводности следует, что в нитрометане константа ассоциации бисульфата пиридиния равна 600 [62]. При такой константе степень диссоциации ионных пар в 0,1 М растворе будет составлять только 15%. Это и не удивительно, так как в похожем растворителе — нитробензоле, диэлектрическая проницаемость которого всего на 3 единицы мень- [c.392]


    Для описания физических свойств органических растворителей используют ряд констант, таких как температура кипения и плавления, плотность, вязкость, диэлектрическая проницаемость, дипольный момент, давление насыщенных паров, предельно допустимая концентрация (ПДК) и другие параметры. В табл. 1.2 приведены некоторые физические свойства ряда распространенных растворителей. [c.63]

    Теоретические обобщения в области соотносительного влияния физических и химических факторов на силу электролитов (см. параграфы 1.2.2. и 1.4.5) позволяют осуществлять целенаправленный подбор растворителя, обеспечивающий максимально высокую для данного электролита величину константы электролитической диссоциации в неводных средах. При этом один из компонентов смешанного растворителя может быть сольватирующим агентом, доставляя системе энергию сольватации, необходимую для образования соответствующей ионной пары, второй из компонентов смешанного растворителя определяет диэлектрическую проницаемость, достаточно высокую для существенного распада ионной пары на [c.130]

    Если органическая фаза обладает диэлектрической проницаемостью, равной 3—5, то константа диссоциации б, согласно теории электролитов, имеет величину — 10" для ионных пар [c.61]

    Константы а, В находятся из экспериментально (или, если можно, теоретически) найденных значений е для смеси трех составов. Уравнение (ХХХ.26) применялось для изотерм диэлектрической проницаемости, плотности и объема, теплоемкости, давления пара и особенно часто для поверхностного натяжения. Оно дает возможность экстраполировать вето кривую свойства по изученному ее участку. [c.476]

    В качестве растворителя для титрования слабых оснований была предложена ледяная уксусная кислота. При детальном рассмотрении кислотно-основного равновесия в этом растворителе в связи с его низкой диэлектрической проницаемостью (е = 6,1 при 25 °С) чрезвычайно важно учитывать образование ионных пар. Константа автопротолиза уксусной кислоты равна 3,5-10 , т. е. в ней можно дифференцировать достаточно широкий набор слабых оснований. В то же время ледяная уксусная кислота оказывает нивелирующее действие на все сильные основания. [c.167]

    Поступление и распределение в организме. Пары Д. проникают через неповрежденную кожу. Состояние динамического равновесия между уровнем Д. в организме и во внешней среде наступает через 30 мин независимо от содержания Д. в воздухе. Константа проницаемости паров Д. через кожу крыс составляет 1,12 см/ч и не зависит от уровня в воздухе (Мс Doygal et al.). О биотрансформации — см. Бромпроизводные алканов. [c.580]

    Отношение полиамидов и полиуретанов к проницаемости паров органических соединений аналогично их отношению к растворителям. Симрил и Хершбергер определили константу проницаемости (Р) для полиамидной пленки, полученной выливанием раствора смешанного полиамида из адипиновокислого гексаметилендиамина, себациновокислого гексаметилендиамина и капролактама (в соотношении 40 30 30) в смесь изопропилового спирта с водой. Эта константа определяется как число молекул пара или газа, проникающих через 1 см пленки толщиной 1 сж в 1 секунду при разности давлений 1 см рт. ст. при 35°. [c.189]

    Представление о тройниках и теория равновесий тройников используются для объяснения аномальных кривых электропроводности. В растворах с невысокой диэлектрической проницаемостью (смеси вода — дноксан) удается путем обработки данных по электропроводности установить наличие ионных пар и Т1 С1Йников, их концентрации и константы диссоциации. Установлено наличие таких образований, как ВаС1+, А С1 , Ь1С1 , даже в водных растворах. [c.417]

    В этом случае информацию о механизме реакции можно получить, измеряя отношение константы скорости изотопного обмена ке) к константе скорости рацемизации (йа). Если отношение кс к значительно больше единицы, это означает, что реакция происходит с сохранением конфигурации, поскольку процессы изотопного обмена не вызывают изменения конфигурации. Величина отношения ке ка, близкая к единице, указывает на рацемизацию, а величина этого отношения, равная /г, говорит об обращении конфигурации (разд. 10.1). В зависимости от природы К, основания и растворителя наблюдается один из трех типов стереохимического поведения. Как и в реакции расщепления алкоксидов, в растворителях с низкой диэлектрической проницаемостью обычно наблюдается сохранение конфигурации, в полярных апротонных растворителях — рацемизация, а в протонных растворителях — обращение конфигурации. Однако в реакциях обмена протона появляется и четвертый тип стереохимического поведения. Было найдено, что в апротонных растворителях и с апротонными основаниями, подобными третичным аминам, отношение кс1ка. меньше 7г это свидетельствует о том, что рацемизация происходит быстрее, чем изотопный обмен (такой процесс известен как изорацемизация). В этих условиях сопряженная кислота амина остается ассоциированной с карбанионом в виде ионной пары. Иногда ионная пара диссоциирует достаточно медленно, для того чтобы карбанион успел вывернуться и снова захватить протон  [c.415]

    Теорию равновесий тройников используют для объяснения аномальных кривых электропроводности. В растворах с малой диэлектрической проницаемостью (например, в смеси вода — диоксан) удается обработкой данных по электропроводности установить наличие ионных пар и тройников, их концентрации и константы диссоциации. Установлено, например, присутствие таких образований, как ВаС1+, Ag l7, даже в водных [c.119]

    Карбоновые кислоты относятся к слабоионизированным средам. Вследствие их низкой диэлектрической проницаемости растворенные в карбоновых кислотах сильные минеральные кислоты и соли находятся в основном в виде ионных пар с низкими константами диссоциации. Поскольку индикаторные основания Гаммета протонируются и протонами, входящими в состав ионных пар, и протонами, находящимися в растворе отдельно, линейную зависимость IgA от Hq раствора следует трактовать как зависимость константы скорости реакции от суммарной прото-нодонорной способности среды. Изменение Яд в изученных растворах достигалось при изменении и концентрации минеральных кислот, и концентрации воды при этом все данные зависимости gk2 от Hq описывались общей прямой линией. Это позволяет сделать вывод, что катализ осуществляется протонированиём одного из реагентов, а не в результате ассоциации его с молекулой катализатора. [c.303]

    Скорость дифф знойного массопереноса в разл в-вах или материалах иногда добыо характеризовать константой их проницаемости П = О / где у - константа Г енри, определяющая равновесную р -римость переносимого компонента В частности, выражение для стационарного потока молекул газа, диффундирующих через разделит перегородку (мембрану) толщиной 6, имеет вид J — ПАр/Ь, где Д/ -разность парциальных давлений разделяемых компонентов газовой смеси по обе стороны перегородки [c.103]

    Р-ры сильных электралитов не являются идеальными и для их описания необходим учет межионного взаимод. даже в области предельного разведения. При определенных условиях, напр, в р-рителях с малой диэлектрич. проницаемостью, при низких т-рах или при образовании многовалентных ионов, благодаря сильно1иу электростатич. притяжению противоположно заряженных ионов мо1ут образовываться ионные ассоциаты, простейшими из к-рых являются ионные п ры. Равновесие между сольватир. ионами и ионными парами характеризуется константой диссоциации, аналогично исходному распаду молекул, или обратной ей величиной - константой ассоциации. В приближении электростатич. взаимод. между ионами константа диссоциации контактных ионных пар, образованных двумя ионами с радиусами и г. и зарядовыми числами z . и г., м. б. рассчитана по ф-ле  [c.433]

    Поскольку практически невозможно найти растворители, отличающиеся друг от друга только диэлектрической проницаемостью при равных кислотности и основности, расчеты по уравнению (4.10) обычно плохо согласуются с экспериментальными даннылми. Кроме того, сольватирующая способность и полярность растворителя определяются не только его диэлектрической проницаемостью. Помимо чисто электростатического кулоновского взаимодействия существуют другие типы специфического и неспецифического взаимодействия, в том числе ион-ди-польное, диполь-дипольное, образование водородных связей и ионных пар и т. д. К тому же модель, используемая для описания электростатического взаимодействия, не учитывает реальные форму и размеры конкретных ионов. Например, в отличие от карбоновых кислот константа кислотности пикриновой кислоты при переходе от этанола к воде возрастает только в 1500 раз (см. табл. 4.1). Это объясняется делокализацией отрицательного заряда аниона пикриновой кислоты по всей довольно большой молекуле, в результате чего энтальпия сольватации этого аниона значительно уступает энтальпии сольватации анионов карбоновых кислот. Это означает, что при повышении сольватирующей способности растворителя стабильность пикрата меняется в иной степени, чем у анионов карбоновых кислот, в которых отрицательный заряд в большей или меньшей степени локализован только на двух атомах кислорода. [c.131]

    Изучение динамики давления паров и последующее определение констант равновесия переноса из водной среды в газовую фазу позволило оценить степень гидрофильности п-бензохино-на и -гидрохинона [227]. По сравнению с п-бензохиноном п-гидрохинон сольватируется водой примерно в 3200 раз эффективнее, поэтому его восстанавливающая способность в воде примерно на 18 кДж-моль (0,2 В) ниже, чем в среде с диэлектрической проницаемостью, равной единице. В этой связи становится понятным, почему среда должна оказывать большое влияние на редокс-потенциал биологически важных гидро-хинон-хиноновых систем, особенно если соответствующая реакция с переносом электрона является частью цепи переноса электронов в митохондриальных внутриклеточных мембранах [227]. [c.180]

    Совершенно противоположные эффекты среды наблюдались в спектрах ЭПР растворов анион-радикалов в недиссоциирующих растворителях. Если последние обладают низкой диэлектрической проницаемостью, то в силу образования ионных пар в спектрах ЭПР анион-радикалов может возникнуть специфическое сверхтонкое расщепление линий, обусловленное взаимодействием между неспаренным электроном и ядром диамагнитного противоиона (катиона) [204, 223—225, 391]. Так, в спектре ЭПР ионной пары типа Ыа А каждая резонансная линия, отвечающая А , вследствие взаимодействия с ядром На, имеющим ядерный спин /=3/2, расщепляется на четыре линии (квартет). В общем случае, чем сильнее сольватирован катион и, следовательно, чем больше диссоциирована ионная пара, тем меньше будет соответствующая константа СТР. Сильное связывание катиона растворителем приведет к уменьшению его эффективного сродства к электрону. В конечном счете между анионом и катионом могут внедряться молекулы растворителя, в результате чего образуется сольватноразделен-ная ионная пара (см. рис. 2.14 в разд. 2.6). Процесс образования последних может происходить скачкообразно или путем постепенного увеличения расстояния между катионом и анионом, чему особенно благоприятствуют растворители, эффективно сольватирующие катионы, например диалкилолигоэтилен-гликоли (глимы) (см. разд. 5.5.5). [c.464]

    Реакция ионов гидроксония с фторид-ионами протекает несколько быстрее, чем реакция ионов гидроксония с гидросульфид-ионами. Небольшое различие в наблюдаемых скоростях в этом случае может быть обусловлено действием чисто статистических факторов, поскольку фторид-ион располагает четырьмя парами электронов, способными присоединять протон, тогда как в гидросульфид-ионе таких пар только три. Электростатические взаимодействия оказывают лишь слабое влияние на константу скорости, что, по-видимому, связано с высокой диэлектрической проницаемостью воды, выполняющей здесь роль растворителя. В грубом приближении можно считать, что константа скорости переноса протона от иона гидроксония уменьшается в два раза при введении в молекулу каждого дополнительного положительного заряда, если размер молекулы при этом не изменяется. Так, например, реакции иона гидроксония с комплексами ионов металлов различного заряда характеризуются следующими значениями константы скорости [л/(моль-с)] для Н0Си(Н20)5+ 10 , для НОСо(ЫНз)5 + 5-10 и для НМНР1(еп)2 + l,9 10 . [c.26]

    Растворитель может оказывать очень сильное влияние на константы скорости реакций между ионами и органическими молекулами, будь то нуклеофилы или основания. Например,, при переходе от воды к ацетону константа скорости второго порядка реакции между хлорид-ионом и метилиодидом возрастает приблизительно в 10 раз. Другой пример — рацемизация оптически активного 2-метил-З-фенилпропионитрила под действием метоксид-иона. Скорость этой реакции в диметилсульфоксиде в 10 раз больше, чем в метаноле [8]. Эти эффекты ускорения могут быть отчасти обусловлены влиянием диэлектрической проницаемости среды, однако в основном они определяются специфическим действием растворителя. Как указывалось выше, наибольшие различия замечены между протонными и апротонными растворителями. Переход от протонного растворителя к апротонному может приводить к последствиям двоякого рода с одной стороны, к смещению равновесия между ионными парами и свободными ионами, а с другой — к изменению специфической сольватации ионов, которая обычно является более сильной в среде протонного растворителя. Важнуку роль процесса ассоциации ионов в определении кажущейся нуклеофильности можно проиллюстрировать на примере галогенидов лития и тетра- -бутиламмония. В реакции с -бутил-п-бромбензолсульфонатом в ацетоновом растворе эти соли соотносятся по реакционной способности следующим образом (все соли берутся в концентрации 0,04 моль/л)  [c.49]

    При О °С сернистый ангидрид представляет собой слабо диссоциирующий растворитель с диэлектрической проницаемостью 15,6. Типичные константы диссоциации ионных пар равны 2,14-10 для бромистого тетраэтиламмония, 1,43-10" для бромистого калия, 2,7-10 для бромистого лития. Лихтин и Pao [43] установили, что удельная скорость o/ j [RBr] обменной реакции /г-нитробензил-бромида с бромидами щелочных металлов и четвертичным аммониевым бромидом уменьшается в 3,6 раза при увеличении концентрации соли от 10" до 5-10 . Изменение скорости количественно описывается уравнением [c.272]

    В метаноле или в нитрометане константа ассоциации бромида тетрабутиламмония в ионную пару слишком мала для прямых измерений (т. е. меньше 10), но в нитробензоле она равна 56 [31]. Различие между метаноль-ными и нитробензольными растворами можно объяснить образованием водородной связи между метанолом и бромид-ионом, однако не очевидно, может ли нитрометан вообще в значительной степени ассоциироваться с каким-нибудь ионом. Хайн [32] предполагает, что нитробензол сдецифически взаимодействует с ионной парой. Все три растворителя имеют примерно равные диэлектрические проницаемости. [c.296]

    Влияние растворителя. Широкое применение органических реагентов в аналитической химии ставит проблему изучения влияния растворителей на кислотно-основные свойства лигандов и устойчивость комплексов. Если реагент присутствует в растворе в протонированной форме (протонирован гетероатом), его константа диссоциации возрастает при уменьшении диэлектрической проницаемости раствора, если же реагент присутствует в молекулярной или анионной форме, то его кислотные свойства уменьшаются при уменьшении диэлектрической проницаемости раствора. Эта закономерность справедлива для 2-ХАН-1 [691], ПАН-2 и ТАН-2 [211], ПАР и ТАР [216], ТАМР [688, 694, 706[, 2-(3,4-диоксифенилазо)-4-оксиметил-5-карбметокситиазола [374], 4-(2-тиазолилазо)пирокатехина [3751. [c.96]

    Х=ехр[ - е /е(г+ +г )АГ], где е — заряд электроаа, k — константа Больцмана, е — диэлектрич. проницаемость р-рителя. В соответствии с этой ф-лой диссоциация ионных пар возможна лшпь в полярных р-рителях, напр, в воде (е 801 и этаноле (е 30У В неполярных р-рителях, напр, в ССЦ (е 2), К настолько малы (порядка 10 ), что Э. д. по существу невозможна. Качественно этот вывод сохраняет силу и для Э. д. молекул в р-рах слабых электролитов. [c.699]


Смотреть страницы где упоминается термин Проницаемость паров константы: [c.39]    [c.58]    [c.101]    [c.297]    [c.454]    [c.460]    [c.473]    [c.46]    [c.53]    [c.40]    [c.493]    [c.76]    [c.214]    [c.214]   
Полиамиды (1958) -- [ c.189 , c.194 ]




ПОИСК





Смотрите так же термины и статьи:

Константа парах



© 2025 chem21.info Реклама на сайте