Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Старение механизм

    Таким образом, окисление полимеров молекулярным кислородом— одна из самых распространенных химических реакций, которая является причиной старения полимеров и выхода из строя изделий. Окисление ускоряется под действием ряда химических реагентов и физических факторов, особенно тепловых воздействий. Процесс окисления протекает по механизму цепных свободнорадикальных реакций с вырожденным разветвлением. Механизм и кинетический анализ процесса термоокислительной деструкции полимеров показывают влияние химической природы полимера на его стойкость к этим воздействиям. Стабилизация полимеров от окислительной деструкции основана на подавлении реакционных центров, образующихся на начальных стадиях реакции полимера с кислородом, замедлении или полном прекращении дальнейшего развития процесса окислительной деструкции. ЭтЬ достигается введением ингибиторов и замедлителей реакций полимеров с кислородом, причем одни ингибиторы обрывают цепные реакции, другие предотвращают распад первичных продуктов взаимодействия полимерных макромолекул с кислородом на свободные радикалы. Сочетание ингибиторов этих двух классов позволяет реализовать эффект синергизма их действия, приводящий к резкому увеличению времени до начала цепного процесса окисления (индукционного периода). [c.275]


    Действие света может сопровождаться разогреванием полимеров, приводящим к усилению процессов старения. Механизм старения полимеров, вероятно, сводится к образованию свободных радикалов, которые инициируют целый ряд свободных превращений. Свободные радикалы могут возникать за счет перекисей (инициаторов), внесенных при полимеризации, а также под воздействием тепла и света. [c.122]

    Рациональное применение присадок для смазочных масел основывается на связи между качеством присадок и необходимым уровнем улучшения качества смазочного масла. Этот уровень определяется предельным состоянием, достигаемым машиной или механизмом и устанавливаемым по различным видам износа механический износ, усталостные разрушения, ползучесть, старение материала, коррозионный износ, химический (коррозионно-механический) износ и др. Химический износ особенно значителен при использовании присадок химического действия. [c.129]

    Синтетические полимеры характеризуются значительно более ограниченным сроком службы, чем вещества, входящие изначально в состав материалов произведений искусства. Для многих полимеров в литературе приводятся несопоставимые данные по старению, так как обычно исследуют конкретное соединение в определенных, избранных для данной работы условиях искусственного старения. Механизмы старения полимерных материалов сложны и зависят от взаимовлияния многих факторов. Процессы старения усложняются релаксационными процессами и неопределенной рекомбинацией продуктов деструкции полимеров. Все многообразие этих факторов практически не может быть учтено при искусственном старении материалов. Отчасти поэтому обычно трудно сопоставлять результаты искусственного старения полимеров по различным работам. Следует предостеречь от прямого переноса данных, полученных при искусственном старении полимера, на реальные условия эксплуатации. В то же время натурные испытания не всегда можно провести вследствие их длительности. [c.35]

    Созревание по Оствальду представляет собой упорядочение роста кристаллов больших размеров при одновременном растворении мелких кристаллов. Это представление является классической концепцией старения осадков. Согласно последним исследованиям, такой механизм старения не является столь общим, как предполагалось ранее, поскольку установлено, что скорость старения многих малорастворимых осадков не зависит от перемешивания. Интенсивное созревание происходит в случае осадков бромида серебра в бромидных растворах и коллоидных осадков хлорида серебра. Поэтому можно принять, что такой механизм старения верен в случае довольно хорошо растворимых осадков. [c.207]


    Рассмотренные экспериментальные данные позволяют представить механизм ускоренного старения резин на основе нитрильных каучуков в среде топлив следующим образом. Вначале антиокислители экстрагируются из резин в топливо, вследствие чего резина становится легко уязвимой к действию свободных радикалов. Если в топливе антиокислители отсутствуют или содержатся в малом количестве, оно достаточно интенсивно окисляется Б топливных агрегатах растворенным кислородом. Образующиеся при окислении топлива пероксидные и алкильные радикалы атакуют полимерные цепочки молекул резины и вызывают их сшивку . Это приводит к потере эластичности резин, их отвердению, изменению геометрии резиновых деталей и появлению трещин при механических воздействиях. [c.232]

    Виды старения. Механизмы процессов и методы их определения. [c.182]

    Причины и механизм ускоренного старения резин в гидрогенизационных топливах [c.228]

    Применение в эксплуатации гидрогенизационных топлив (легко-окисляемых) потребовало разработки новых методов испытания топлив на совместимость с резинами с учетом влияния протекающих в топливах окислительных процессов на старение резин. Методы эти основаны на рассмотренных выше представлениях о механизме ускоренного старения нитрильных резин в гидрогенизационных топливах-По одному из методов [339] испытания проводят в две стадии. На первой стадии антиоксиданты экстрагируют из образцов резин в парафиновый углеводород, например гексадекан, который является хорошим экстрагентом антиоксидантов (см. с. 230) и по сравнению с углеводородами других классов сам по себе мало влияет на свойства резины [334, 337, 340]. На второй стадии резины находятся в контакте с окисляющимся топливом. [c.234]

    Механические отказы — отказы, вызванные нарушением целостности конструкций разрушением отдельных деталей и узлов оборудования нарушением режимов движения вращающихся и перемещающихся деталей машин, механизмов и технологического оборудования загрязнением, коррозией и эрозией оборудования и машин неравномерным распределением силовых нагрузок, износом, старением и т. п. [c.18]

    Старение катализатора, вероятно, идет по нескольким механизмам одновременно. Их можно разделить на три группы [c.265]

    Процесс старения полиэтиленов высокого и низкого давления протекает по одному и тому же механизму, но скорость окисления и деструкции этих двух типов полиэтилена различна. При хранении полиэтиленов обоих типов в складских условиях при температуре до 20—25° скорость окисления очень мала и в течение 2 лет механические и диэлектрические его свойства заметно не изменяются. С повышением температуры скорость окисления быстро возрастает, и выше 120° уже наблюдается различие в поведении различных образцов полиэтилена низкого давления. Так, при 150° образцы полиэтилена низкого давления с зольностью 0,05% за 20 час. поглощают кислорода в 2 раза больше, чем образцы с зольностью 1,9% (замедление окисления при повышении содержания золы в полиэтилене происходит по-видимому, благодаря действию соединений титана, содержащегося в золе) [50]. [c.769]

    Блэк не обнаружил влияния старения слоя или изменения начальной концентрации аэрозоля. Анализируя свои результаты, Блэк приходит к выводу, что в данных условиях основными механизмами являются инерционное столкновение и броуновская диффузия, а уравнение (XI.50) может быть выведено из (VII.51). [c.543]

    Из рис. 1 видно, что разброс экспериментальных данных относительно невелик, особенно если учесть, что опыты проводились разными авторами. Интересно, что не обнаруживается разницы в поведении катализаторов, подвергнутых термической и термо-паровой обработке. Удельная глубина превращения, оказывается, зависит только от величины его поверхности, но не от метода или длительности предварительного спекания катализаторов, что согласуется с выводами работы [1]. Этот факт тем более примечателен, что имеется значительное различие в механизмах термического и термопарового старения катализаторов. [c.98]

    Износ, поломки и старение это основные причины, по которым любые предметы утрачивают свою полезность. Износ обычно определяют как удаление материала с твердой поверхности в результате механических воздействий [16]. Количество материала, утраченного поверхностью, как правило, очень мало, и его с трудом удается замерить. Однако при воздействии высоких давлений и скоростей его оказывается достаточно для того, чтобы полностью нарушить нормальную работу механизма. [c.89]

    Существует обширный класс очень важных для приготовления катализаторов соединений — малорастворимых гидроксидов металлов, образование и переход из аморфного в кристаллическое состояние которых при старении осадков не укладываются в рамки классических представлений. Вместе с тем, как это ни странно, не существует какой-либо удовлетворительной теории, которая объясняла бы, по какому механизму идет кристаллизация осадков, имеющих ничтожно малую растворимость и, следовательно, не кристаллизующихся за счет классического механизма — через растворение. [c.256]


    Окислительная деструкция является одной из основных причин старения полимеров и выхода из строя многих полимерных изделий. Поэтому проблема защиты полимеров от старения является комплексной. Учитывая все известные виды деструктирующих воздействий на полимеры, можно заключить, что главными из них являются термическая и термоокислительная деструкция, усиливающиеся при одновременном действии света. Эти процессы протекают главным образом по механизму цепных радикальных реакций. Следовательно, меры защиты должны быть в первую очередь направлены на подавление этих реакций в полимерах. Высокомолекулярная природа полимеров является причиной того, что очень малые количества низкомолекулярных химических реагентов способны вызывать существенные изменения физических и механиче- [c.266]

    Рассмотрим влияние миграции пластификатора на изменение Гд материала покрытия, т. е. оценим вклад, вносимый миграцией в общий процесс старения материала. Молекулы пластификатора в поверхностном слое материала, соприкасающегося с почвенной воздушно-влажностной средой, с течением времени переходят в газообразную фазу и улетучиваются. Далее, под влиянием образующегося градиента концентрации пластификатор перемещается из глубины материала к поверхности. При этом на скорость данного процесса влияет тип пластификатора и его сродство к материалу покрытия, но наибольшее влияние оказьшает диффузия. Представляло интерес рассмотреть кинетику данного процесса, исходя из диффузионного механизма переноса вещества и учитывая длительное время эксплуатации покрытия. [c.56]

    Понимание законов химии и их использование исключительно важно при решении проблемы повышения эффективности производства и качества продукции, так как ухудшение качества и надежности продукции во многих случаях вызывается нежелательными химическими процессами, например коррозией металлов, старением полимеров и т. п. Изучение механизмов химических реакций позволяет выбрать рациональные методы охраны окружающей среды, создавать новые безвредные процессы. [c.8]

    Позднейшие исследовательские работы, проведенные у нас и за рубежом, по изучению окисления и старения каучуков и анализ экспериментальных данных по кинетике окисления каучука позволили установить, что механизм их окисления является более сложным. [c.64]

    Отсутствие обоснованных разработок, касающихся характера изменения структуры и защитных свойств покрытий трубопроводов в грунтовых средах, затрудняет объяснение многих вопросов, возникающих в практике противокоррозионной защиты подземных сооружений, а также препятствует проведению эффективных исследований в части изучения механизма старения покрытий в грунте и усложняет оценку их долговечности. [c.51]

    Основываясь на результатах проведенных исследований, процесс изменения проницаемости поливинилхлоридных покрытий в первом приближении можно представить с помощью схемы (рис. 45). В периоде I проницаемость покрытия уменьшается. Продолжительность его зависит от скорости протекания процессов старения материала покрытия. Период II делится на два участка. Первый участок характеризуется сравнительно небольшими изменениями проницаемости покрытия. Изменение проницаемости покрытий на втором участке зависит от концентрации кислорода почвенного воздуха, вида, температуры и влажности грунтовой среды, типа покрытия и суммарного напряжения растяжения, приложенного к покрытию. При этом возможны два различных механизма изменения проницаемости покрытий. [c.84]

    Одной из важнейших функций стабилизаторов шинных резин является заш ита от озонного старения. Механизм анти-озонантного действия аминных стабилизаторов основан на их миграции на поверхностный слой пневматических шин с последующим взаимодействием с молекулами озона, способными деструктировать макромолекулы каучука. [c.275]

    Механизм биоповреждений имеет специфические особенности, связанные с попаданием микроорганизмов на поверхность конс1рук-ций, адсорбцией их и загрязнением поверхностей, образованием микроколоний, накоплением продуктов метаболизма, стимулированием старения полимерных материалов и покрытий, эффектами синергизма. Установлена закономерность обрастания полимерных материалов и покрытий одними и теми же грибами в идентичных условиях [c.121]

    Динамйческая прочность. Поскольку полимерным конструкционным материалам в процессе эксплуатации довольно часто приходится испытывать циклические нагрузки, немаловажное значение имеют их усталостные свойства. Смеси некоторых пластмасс и смеси каучуков имеют повышенное сопротивление утомлению, получившее название эффекта взаимоусиления (рис. 16) [57]. Случаи снижения динамической прочности в смесях полимеров по сравнению с этими же параметрами для индивидуальных полимеров до настоящего времени не известны. Повышенное сопротивление утомлению любого полимерного материала обеспечивается высокой статической прочностью, низкими значениями механических потерь, высоким сопротивлением старению. Механизм увеличения динамической прочности не вполне изучен [58]. Поскольку полимерная двухфазная система характеризуется различием модулей фаз, вероятно, что при образовании трещины в фазе с меньшим модулем ее рост затормозится либо прекратится из-за релаксации перенапряжений при встрече с высокомодульной частицей. Если же микротрещина зародилась в фазе с более высоким модулем (дисперсионная среда), перенапряжения в ее вершине релаксируют при встрече с низкомодульной частицей [57]. [c.27]

    В первой главе приводится краткий литературюй обзор, в котором рассматриваются вопросы о влиянии внемних условий эксплуатации на свойства ряда полимеров. Изменение свойств полимеров в отсутствие механических нагрузок часто называет "старением". Механизм этого явления ощ>еделяется хшическим, адсорбционным или диффрионным характером взаимодействия. [c.6]

    Процессы окисления натурального каучука достаточно подробно рассмотрены во многих работах, которые обобщены в ряде монографий [1, с. 13—22 3, с. 379—391 8, с, 21]. Наибольщее значение для выяснения механизма окисления натурального каучука и каучукоподобных полимеров имели работы Боланда, Хьюджеса, Бевиликуа, Майо и других исследователей. Этими исследованиями однозначно показано, что процесс окисления эластомеров является цепным, инициированным кислородом и перекис-ными радикалами. В результате этого процесса наблюдается не только присоединение к молекуле полимера кислорода, приводящее к появлению в полимерной цепи кислородсодержащих заместителей, но и разрыв полимерной цепи, обусловливающий уменьшение молекулярной массы исходного полимера. Последнее обстоятельство является основным фактором, вызывающим изменение свойств полимера при старении. [c.620]

    Как отмечалось ранее, разрушения делят на хрупкие и вязкие. Промежуточным между ними является квазихруп-кое разрушение, как наиболее часто встречаюшееся в реальных условиях эксплуатации конструкций. Заметим, что хрупкие разрушения реализуются не только в (природно) хрупких материалах. При определенных условиях пластичные стали могут разрушаться по механизму хрупкого разрушения в результате действия ряда охрупчивающих факторов, которые можно разделить на три основные группы механические (большая жесткость конструкции и напряженного состояния, локальное стеснение деформаций в дефектах и концентраторах напряжений, механическая неоднородность, скорость нагружения и цикличность) внешняя среда (коррозия, радиация, низкая температура) структурные изменения (деформационное старение, распад метастабильных фаз и др.). [c.77]

    Печеный Б.Г.О механизме старения битумов при различных тенпера турах, В кв. Проблемы переработки тяжелых ивфгеЛ, Материалы [c.85]

    В работе Б. В. Лосикова [21 ] специально рассматривается механизм действия антиокислительных присадок, применяемых для моторных масел, под углом зрения пассивирующего воздействия их на металлические поверхности. Автор приводит данные, свидетельствующие о том, что антикоррозийные присадки обладают при работе в двигателе также и антиокислительными свойствами, т. е. снижают накопление в масле в процессе его работы продуктов окисления. Однако присадки эти, обладающие в условиях эксплуатации антиокислительным действием, в лабораторных условиях при искусственном старении масел (в отсутствии металла) не только не проявляли себя как антиокислители, а, наоборот, ускоряли окисление. Опыты, поставленные в sex же условиях (180°, 50 час., продувание воздухом), на тех же маслах и с теми же присадками в присутствии металлических катализаторов, показали, что испытанные присадки заметно снижают окисление масел, т. е. проявляют себя как антиокислители. [c.312]

    Установлены факторы механохимической повреждаемости и раскрыт механизм технологического наследования при производстве оборудования. В результате анализа кинетики МХПМ получены функциональные зависимости долговечности конструктивных элементов, изготовляемых упруго-пластическим деформированием, от величины остаточных напряжений и степени предварительной деформации, исходных механических свойств материала, уровня напряженности при эксплуатации и коррозионной активности рабочей среды. Предложен критерий оценки влияния предварительной пластической деформации и деформационного старения на охрупчивание сталей в рабочих средах. [c.5]

    Лютцау В.Г. Современное представление о структурном механизме деформационного старения и его роль в развитии разрушения при малоцикловой усталости //Структурные факторы малоциклового разрушения металлов.-М. Наука, 1979.-с.5-21. [c.412]

    Исследование старения битумов производилось при температурных режимах, охватывапцих стадию объединения битума с наполнителем 170-100°С и эксплуатационные условия - ниже 80°С. Ранее было показано различие в механизме старения битумов при высоких и низких темпетатурах [4]. В частности, при температурах 170--ЮО°С старение обусловлено протеканием химических реакций, а при эксплуатационных температурах - также и за счет формирования равновесных надмолекул/фных структур. [c.213]

    Применение ряда современных методов исследования, например метода электронного парамагнитного резонанса, позволяющего определять структуру и концентрацию свободных радикалов, образующихся при окислении, термическом, фотохимическом, радиационном, механическом распаде полимеров, метода ядерного магнитного резонанса и других дало возможность изучить механизм старения и стабилизации полимеров н разработать эффективные методы стабилизации различных классов полимеров. Для многих из них предложены меры комплексной защиты от теплового, термоокислительного, светоозонного, радиационного старения. При этом оценка эффективности противостарителей осуществляется не только по активности в химических реакциях, но и по растворимости в полимере, летучести, термостабильности и другим факторам. Полиэтилен, например, хорошо защищается от термоокислительной деструкции в присутствии небольших количеств (0,01 /о) фенольных или аминных антиоксидантов, что важно для его переработки. При эксплуатации полиэтилен достаточно стабилен, тогда как полипропилен нуждагтся в защите от старения при эксплуатации. Здесь более эффективны такие антиоксиданты, как производные фенилендиаминов. Для защиты полиэтиленовых пленок от действия ультрафиолетового света применяют <5г < -фенолы. Весьма важна проблема стабилизации ненасыщенных полимеров (каучуков), где достаточно эффективны аминные про-тивостарители или их сочетание с превентивными антиоксидантами. [c.273]

    Фотохимическая деструкция имеет большое практическое значение. Изделия из полимерных материалов при эксплуатации на воздухе всегда подвергаются действию света. Это приводит к их преждевременному старению , связанному с разрывом полимерной цепи под действием энергии света с длиной волны от 300 до 400 нм. При этом активными центрами чаще всего являются карбонильные и другие кислородсодержащие группы. В реальных условиях необходимо учитывать и влияние кислорода воздуха, который способствует окислению полимера (фотоокисление). Фотохимическая деструкция, протекающая по цепному радикальному механизму, вызы- [c.410]

    Гидроксиды многих металлов (Л1, Т1, Ре, Си, п, Ве и др.) практически нерастворимы в воде, Свежеполучеииые, они легко реагируют с кислотами, амфогерр1ые из них — и со щелочами. Уравиеиия реакций получения гидроксидов названных элементов (взаимодействие растворимых солей со щелочами, поскольку их оксиды с водой не реагируют), которые обычно приводят [нанример А1 ++ЗОН = А1 (0 1)з1, не отражают сложности механизма этой реакции. Гидроксиды этих металлов имеют сложный состав, особенно при старении (длительном стоянии). В условиях отвердевания (старения) подобных гидроксидов наряду с межмолекулярным взаимодействием и образованием, например, [А1(0Н)з] , [Т1(ОН) , [Ве(0Н)2]п и других (где п — число молекул гидроксида) имеет место межатомное взаимодействие (см. 5.10), протекают химические реакции молекул гидроксидов друг с другом с разрывом межатомных связей и образованием новых молекул. Так, молекулы гидроксида алюминия при взаимодействии образуют кислородные мостики  [c.33]

    Теория состоит из трех крупных взаимосвязанных разделов, в которых рассмотрены закономерности поликонденсации акваионов осаждаемых металлов и формирования аморфных гидроксидов, закономерности перехода гидроксидов из аморфного в кристаллическое состояние при старении осадков и твердофазные превращения гидроксидов при термообработке. В ходе исследований, проведенных в русле этой теории, был раскрыт неизвестный ранее механизм образования аморфных малорастворимых гидроксидов, изучена кристаллизация гидроксидов при старении, установлен механизм твердофазных превращений гидроксидов при прокалива- [c.256]

    После стадии, на которой происходит слияние островков, структура пленки напоминает сетку. Электропроводность таких пленок, связанная с островками, мостиками и зазорами между ними, очень чувствительная к физическим и электрическим изменениям прежде всего нитевидных мостиков из-за старения, отжига и адсорбции. Температурный коэффициент сопротивления такой пленки есть сумма положительного металлического (островки) и отрицательного активационного (зазора) вкладов. Электропроводность пористых пленок в значительной степени определяется рассеянием на межгранулъных границах, диффузным рассеянием от поверхностей зерен и межгранульным туннелированием. Этими же механизмами определяется электропроводность сплошных сильно гранулированных пленок различных материалов, таких как тугоплавкие металлы. Сложный механизм электропроводности пористых пленок труден для анализа [3]. По мере заполнения сетчатой структуры пористость убывает, пленка в конце концов становится сплошной. [c.490]


Смотреть страницы где упоминается термин Старение механизм: [c.262]    [c.27]    [c.64]    [c.307]    [c.34]    [c.179]    [c.164]    [c.84]   
Биохимия растений (1968) -- [ c.534 ]




ПОИСК





Смотрите так же термины и статьи:

Глава V. Применение антиокислителей для торможения старения нефтяных масел Современные представления о механизме действия антиокислителей

К а с к. О механизме процесса старения сланцевых битумов

МЕХАНИЗМ ПОЛУЧЕНИЯ ПОЛИМЕРИЗАЦИОННЫХ ПЛЕНКООБРАЗОВАТЕЛЕЙ, ФОРМИРОВАНИЯ И СТАРЕНИЯ ПОКРЫТИЙ НА ИХ ОСНОВЕ

Масла нефтяные механизм образования кислот при старении

Механизм старения полимеров

Механизм термического старения

Молекулярные механизмы старения

Печеный Б. Г., Ахметова J1. А. Исследование механизма старения битумов в эксплуатационных условиях

Причины и механизм ускоренного старения резин в гидрогенизационных топливах

Регуляция механизм, старение

Старение

Старение механизм биологический

спектроскопии метод исследования механизма старения покрытий



© 2024 chem21.info Реклама на сайте