Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Взаимодействие растворитель—растворимое веществ

    Из приведенных примеров следует, что растворимость прежде всего зависит от природы веществ. Кроме того, она зависит также от температуры и давления. Сам процесс растворения обусловлен взаимодействием частиц растворимого вещества и растворителя это самопроизвольный процесс. [c.102]

    Характерным свойством растворов является взаимодействие частиц растворимого вещества с растворителем — сольватация или в случае водных растворов — гидратация. При этом большую роль играют полярность частиц и способность к образованию водородной связи. [c.519]


    Процесс растворения — сложный процесс и следует учитывать все формы взаимодействия между всеми видами частиц, включая и те, которые возникают в результате взаимодействия частиц растворимого вещества с растворителем. Образование и распад любых агрегатов подчиняется закону действующих масс, потому что в растворе возникает динамическое равновесие между всеми его частицами. Исходя из этого, растворы можно характеризовать как равновесную однородную систему, достигшую минимума потенциала Гиббса. К растворам относятся также твердые однородные системы. [c.94]

    Так как взаимодействие между растворимым веществом и растворителем при этих условиях более сложно, 5°,, уже не имеет своего прежнего значения. Кремер и Никольс [1] предложили определять действительную константу седиментации [5] как величину [c.467]

    А. В. Писаржевский показал (1912), что для ионных реакций обмена в Смешанных растворителях (смеси воды со спиртами, глицерином, гликолем) величины изобарных потенциалов реакции меняются с изменением растворителя вплоть до перемены знака. Ни внутреннее трение, ни электролитическая диссоциация, ни растворимость не объясняют полностью влияния растворителя на положение равновесия. Основную роль для ионных равновесий в различных растворителях играет взаимодействие с растворителем растворенных веществ, диссоциирующих ва ионы (сольватация ионов). [c.287]

    В этой главе рассматривается явление растворимости веществ в надкритических газах и жидкостях, сжатых до относительно высоких плотностей, при которых уже отчетливо проявляются силы молекулярного взаимодействия между компонентами растворяемого вещества и растворителя. Отсюда следует, что в основе растворимости веществ в надкритических флюидах лежит то же явление, что и при образовании жидких растворов. Растворение веществ в надкритическом флюиде сопровождается, как правило, изменением объема и тепловым эффектом, так же как и у жидких растворов. [c.5]

    Растворимость веществ существенно зависит от природы растворяемого вещества и растворителя, температуры и давления. Причины различной растворимости веществ пока не выяснены, хотя их связывают с характером взаимодействия молекул растворителя и растворенного вещества. Например, известно, что молекулярные кристаллы, структурными единицами которых являются молекулы с ковалентным неполярным типом связи (сера и др.), практически нерастворимы в воде, так как энергия разрушения кристаллической решетки настолько велика, что не может быть компенсирована теплотой сольватации, которая очень мала. [c.63]


    Экстракция, или извлечение, основана на различной растворимости веществ в двух несмешивающихся жидкостях. Чаще всего экстрагированию приходится подвергать водные растворы. Для этого пользуются делительной воронкой, в которую наливают раствор, содержащий экстрагируемое вещество и экстрагирующую жидкость, т. е, растворитель, в котором это вещество растворяется лучше. Растворитель для экстракции должен а) мало растворяться в другом растворителе, который содержит экстрагируемое вещество б) заметно лучше растворять экстрагируемое вещество, чем растворитель, из которого это вещество экстрагируется в) не должен химически взаимодействовать ни-с экстрагируемым веществом, ни с растворителем, его содержащим г) быть сравнительно безопасным д) легко удаляться при выделении иэ него вещества. [c.37]

    Влияние неводных растворителей на растворимость. При добавлении к водному раствору соли смешивающегося с водой неэлектролита, например ацетона, спирта и др., растворимость соли уменьшается. Это можно объяснить тем, что молекулы неэлектролита гидратируются, причем с увеличением количества неэлектролита гидратная оболочка ионов разрушается, и в итоге соль выпадает в осадок. Однако некоторые соли растворимы и в органических растворителях. Это происходит в том случае, когда силы межатомных взаимодействий в твердых веществах невелики и преодолеваются даже небольшими энергиями сольватации органического растворителя (например, при растворении перхлората бария в ацетоне) или если ионы твердых веществ особенно легко сольватируются (например, при растворении солей Ы+ или перхлората натрия в спирте). [c.197]

    Такой характер зависимости можно объяснить тем, что здесь действуют две причины энергия взаимодействия полярной части молекул или ионов уменьшается при переходе к средам с низкой диэлектрической проницаемостью, и за счет этого растворимость падает, а энергия взаимодействия неполярной части молекул или ионов увеличивается, за счет этого повышается растворимость вещества при переходе к растворителям с низкой диэлектрической проницаемостью. В связи с этим кривая растворимости проходит через максимум, который и наблюдали Семенченко и Шахпаронов. [c.194]

    Отсюда следует, что между величиной константы диссоциации и растворимостью соли должна быть прямая пропорциональность. Однако в более общем случае следует учесть энергию взаимодействия недиссоциированных молекул вещества с растворителем. [c.318]

    Величина энергии кристаллической решетки определяет прочность кристаллов, их растворимость и другие свойства. Как мы увидим ниже (см. стр. 281), зная энергию кристаллической решетки, можно найти энергию взаимодействия ионов растворенного вещества с молекулами растворителя — энергию сольватации, от величины которой во многом зависит поведение вещества в растворах. [c.265]

    Свойства растворов и растворимость веществ зависят от их природы, от взаимодействия частиц растворенного вещества между собой и с молекулами растворителя и молекул растворителя между собой, а также от внешних условий (давления, температуры и т. д.). [c.28]

    Для того чтобы понять, почему эти соединения включаются в образование мембран, необходимо рассмотреть факторы, влияющие на растворимость. Степень распределения вещества в растворителе определяется соотношением сил взаимодействия вещество — вещество в твердом состоянии с силами взаимодействия растворитель — растворитель и вещество — растворитель в жидкой фазе. В полярных соединениях эти силы связывания кристаллической решетки достигают больших величин (например, электростатическое взаимодействие в ионных или цвиттер-ионных твердых веществах либо многочисленные водородные связи в сахарах). Мало вероятно, чтобы такие соединения легко распределились в неполярном растворителе, где взаимодействие вещество — растворитель будет очень слабым и создаваемый при этом небольшой запас энергии будет недостаточен, чтобы компенсировать энергию, необходимую для отрыва молекул из кристаллической решетки. Наоборот, высокополярные растворители, вероятно, будут растворять неполярные вещества, поскольку включение молекул неполярного вещества между молекулами полярного растворителя должно нарушать относительно сильное взаимодействие между молекулами растворителя без какой-либо значительной компенсации взаимодействием вещество — растворитель. Итак, для тех веществ, которые при растворении распределяются в виде изолированных молекул, существует хорошо известное качественное соотношение между растворимостью и относительной полярностью вещества и растворителя. [c.337]


    Процесс растворения кристалла заключается в отрыве частиц под действием силового поля растворителя (электростатического, обменного взаимодействия и т. п.) с последующим распределением их в объеме растворителя. В начальный момент времени процесс растворения идет с большой скоростью. По мере увеличения концентрации растворенного вещества возрастает скорость обратного процесса — выделения вещества из раствора и осаждения его на исходном кристалле. Если количество растворяемого вещества достаточно велико, то наступит момент динамического равновесия, когда скорости растворения и осаждения станут одинаковыми и дальнейшее увеличение концентрации раствора при данных условиях окажется невозможным. Раствор, в котором при данных условиях невозможно дальнейшее растворение вещества, называется насыщенным относительно данного вещества. Таким образом, насыщенный раствор можно определить как раствор, находящийся в равновесии с осадком растворяемого вещества. Концентрация насыщенного раствора определяет растворимость вещества при данной температуре. Растворы с меньшей концентрацией называются ненасыщенными. [c.245]

    Физическое, или как его нередко называют, термодинамическое направление в теории растворов в конце XIX века получило весьма прочный теоретический фундамент благодаря тому, что в 1893 г. Нернст и Томсон заменили понятие диссоциирующая сила растворителя , неопределенность которого вызывала справедливую критику представителями химической теории растворов, понятием диэлектрическая проницаемость . С другой стороны, химическая теория растворов быстро накопляла факты, свидетельствующие о химическом взаимодействии между растворенным веществом и растворителем. Именно в это время были выполнены классические работы Д. П. Коновалова, установившего факт (который на несколько десятилетий стал краеугольным камнем химической теории растворов) образования электролитного раствора при смешении не проводящих в индивидуальном состоянии ток компонентов. Тогда же В. Ф. Тимофеев нашел, что между растворимостью и химическими свойствами растворителя существует тесная связь. [c.173]

    Так, уменьшение энергии адсорбции бензола на угле КАД-иодный нз водных растворов по сравнению с энергией адсорбции пара бензола составляет 9,65 кДж/моль [20] Энергия взаимодействия молекул растворенного вещества с молекулами воды 3 значительной степени определяется структурой самой жидкой воды и темн изменениями ее структуры, которые возникают при растворении в воде органических веществ. Связь молекул растворенного вещества с растворителем прежде всего проявляется в величине растворимости."  [c.85]

    Как было сказано, разделения достигают, меняя элюирующую силу подвижной фазы — растворителя. Элюирующая сила растворителя показывает, во сколько раз энергия сорбции данного элюента больше, чем энергия сорбции элюента, выбранного в качестве стандарта, например -гептана. Растворители (элюенты) делят на слабые и сильные. Слабые растворители слабо адсорбируются неподвижной фазой, поэтому коэффициенты распределения сорбируемых веществ (сорбата) высокие. Сильные растворители сильно адсорбируются, поэтому О сорбата низкие. Растворитель тем сильнее, чем выше растворимость в нем анализируемой пробы, чем сильнее взаимодействие растворитель—сорбат. [c.309]

    Суммарный эффект взаимодействий между молекулами растворителя и растворенного вещества можно связать с так называемой полярностью А и В. Назвав сильно взаимодействующие соединения А А и В В полярными, а слабо взаимодействующие— неполярными (или аполярными), можно различать четыре ситуации, позволяющие качественно предсказать взаимную растворимость веществ (табл. 2.1). [c.28]

    Из-за сложного характера взаимодействий между растворенными веществами и растворителями очень трудно оценить влияние растворителя на скорости реакций и коррелировать это влияние свойствами растворителей. Тем не менее многие исследователи пытались найти эмпирические или теоретические корреляции между константами скоростей реакций или энергией Гиббса активации реакций и такими параметрами растворителя, как диэлектрическая проницаемость т, дипольный момент ц, показатель преломления п, параметр растворимости 6, эмпирические параметры полярности растворителя и т. п., например  [c.192]

    Образование растворов обусловлено протеканием самопроизвольного процесса растворения растворимых веществ. Он, в свою очередь, является следствием взаимодействия частиц растворяемого вещества и растворителя. [c.123]

    К большинству реальных экстракционных систем закон распределения в своей классической форме неприменим, так как в обеих фазах может иметь место взаимодействие вещества с растворителем, а также возможны экстракция вещества в виде нескольких соединений, изменение взаимной растворимости растворителей под влиянием экстрагируемого вещества и т. д. Поэтому для характеристики распределения вещества в таких системах обычно используют коэффициенты распределения. Ввиду того что в основе многих экстракционных процессов лежит химическое взаимодействие между экстрагируемым веществом и экстрагентом, можно рас-сматривать экстракцию как равновесную химическую реакцию, к которой применим закон действующих масс. [c.107]

    Растворители представляют собой однородные структурированные субстанции. При контакте между молекулами растворителя и растворенного вещества имеют место ион-дипольные взаимодействия. Степень сольватации указывает на количество таких взаимодействий. Взаимодействие тем больше, чем ближе контакт между растворимым веществом и растворителем. Дипольные, дисперсионные и индукционные взаимодействия, а также водородные связи действуют совместно с кулоновскими силами, и все вместе определяют стабильность и свойства ионных пар. Поэтому большое значение имеет природа" как растворенного вещества, так и растворителя. Сольватная оболочка уменьшает подвижность и коэффициенты диффузии как ионов, так и ионных пар. Способность апротонного растворителя к сольватированию не зависит от диэлектрической проницаемости, но в значительной степени определяется его элект-ронодонорными или электроноакцепторными свойствами. Рол  [c.17]

    Избирательность растворимости связана с явлением взаимодействия частиц растворяемого вещества с молекулами растворителя, которое называется сольватацией. Продукты этого взаимодеЛстви л, называются сольватами. [c.158]

    Известно, что растворимость ряда соединений (например, парафиновых углеводородов) с увеличением их молекулярного веса снижается, хотя внутреннее давление при этом возрастает. Указанное явление обусловлено энтропийным эффектом размера молекул растворяемого вещества. Особенно это проявляется у веществ, скрытая теплота плавления которых значительно превышает тепловой эффект взаимодействия растворителя с растворенным веществом. Наличие полярных групп в молекуле растворяемого вегпестня способствует усилению их взаимодействия с молекулами растяп -рителя. Если молекула растворяемого вещества содержит несколько полярных групп с различной полярностью, они могут ориентироваться таким образом, что изменение свободной энергии будет максимальным. Сопутствующее этому снижение энтропии может оказаться достаточным, чтобы увеличить растворимость вещества. Вследствие таких затруднений при фракционировании битумов растворителями можно в лучшем случае получить лишь группы компонентов с близкой растворимостью. Разумеется, эти группы можно, в свою очередь, разделить другими способами, но это требует слишком больших затрат времени, что практически невозможно. [c.9]

    Кркстаддязация используется дл е разделения сиеси твердых веществ, а также очистки их от различны загрязнений. Кристаллизация применима, когда растворимость вещества существенно зависит от температуры если растворимости вещества и примесей существенно различны если растворитель не взаимодействует с оч0щае1лым веществом. [c.51]

    Установлен ряд закономерностей, характеризующих влияние природы растворителя на растворимость. К их числу относится правило Семенченко растворимость данного вещества проходит через максимум в ряду растворителей, расположенных в nop iiRe возрастания энергии межмолекулярного взаимодействия в них. Максимум отвечает такому расгворителю, взаимодействие молекул которого близко к взаимодействию молекул растворенного вещества. Это правило иллюстрирусгг рис. 2,19 (иногда создается впечатление несправедливости правила Семенченко, когда экспериментально удае-гся получить только часть кривой, аналогичной представленной на рис. 2.19). [c.252]

    Гидратация — важнейшая предпосылка растворимости данного вещества вообще. От величины адгезионного взаимодействия между растворенным веществом и растворителем вообще зависят многие свойства растворов (растворимость вещества, диссоциируемость его молекул на ионы, вязкость, теплопроводность, плотность растворов и т. д.). [c.163]

    Многие реакции в качественном анализе и титриметрическом методе осаждения (аргентометрия, меркурометрия) основаны на образовании мало растворимых соединений ( 19, 21). Повышенная растворимость галогенидов щелочных металлов объясняется ослаблением сил взаимодействия между ионами в кристаллической решетке. С этим связано отсутствие группового реагента на щелочные металлы. Вещества со слоистыми или молекулярными решетками растворяются лучше, чем вещества с решеткой координационной структуры. Это используют в химическом анализе для разделения катионов подгруппы соляной кислоты от катионов подгруппы сероводорода. Катионы серебра и свинца (II) образуют хлориды, имеющие решетки координационной структуры и поэтому менее растворимы. Хлориды СиС и СсЮЦ имеют слоистые решетки и поэтому хорошо растворимы, как и близкий к ним по строению решетки 2пС 2. Растворимость солеи связана также с радиусами их ионов. Соли с большими катионами и малыми анионами хорошо растворимы, а соли с малыми катионами и большими анионами — плохо (Яцимирский). Растворимость вещества зависит от соотношения полярностей растворенного вещества и растворителя. Установлено также, что растворимость солей зависит от их химической природы, например, для гидроокисей, сульфатов, хлоридов, фторидов элементов 1-й и 2-й групп периодической системы  [c.69]

    Органическое вещество, входящее в состав смешанного растворителя, не должно взаимодействовать химически с веществами, участвующими в реакции титрования. Введение органического растворителя уменьшает растворимость осадка. Например, сульфат свинца PbS04 заметно растворяется в воде, но практически не растворяется в 50%-ном этиловом спирте. Но применение смешанного растворителя может вызвать одновременное осаждение некоторых посторонних ионов. [c.326]

    Следствием сформулированного выше общего правила взаимной растворимости полярных и неполярных веществ в себе подобных является вывод, относящийся к ионным и молекулярным веществам при растворении ионного кристалла в растворе содержатся его ионы, а раствор, образующийся при растворении молекулярного вещества, содержит его молекулы. Например, в растворе ацетата натрия (ионное вещество) раствореннь[м веществом преимущественно являются его ионы, а при растворении ацетата свинца (молекулярного вещества) растворенное вещество остается преимущественно в молекулярной форме. Впрочем, из этого правила имеются и некоторые исключения, к которым в основном относятся вещества, сильно взаимодействующие с растворителем. Так, растворение хлористоводородной кислоты (молекулярного вещества) в воде приводит к образованию ионного раствора, потому что сильное взаимодействие между растворенным веществом и растворителем вызывает появление из молекул НС1 и Н О ионов Н,0 и 1  [c.210]

    Измерение ПМР спектров органических соединений проводится для растворов достаточно высокой концентрации (5—20%). В качестве растворителей могут быть использованы соединения, не имеющие собственных сигналов в исследуемой области и не взаимодействующие с растворенным веществом. Такими растворителями могут быть четыреххлористый углерод и сероуглерод. Но не все соединения достаточно хорошо в них растворимы. Поэтому используются и другие растворители, не содержащие протонов или имеющие лишь один сигнал в спектре ПМР (ОгО, СВС1з, бензол, циклогексан, хлороформ, диметилсульфоксид, диоксан и др.). [c.110]

    В наклонном положении в выбранный растворитель — элюэнт, налитый на дно замкнутой стеклянной камеры, насыщенной его парами. Стенки камеры и ее дно оклеены полосами фильтровальной бумаги). Строгого тер-мостатирования не требуется, но примерное постоянство температуры необходимо. Еще лучше, если растворитель подается на край адсорбента через капиллярную щель. Через 10—30 мин пластинку вынимают и высушивают элюэнт. Вслед за этим проявляют невидимые пятна веществ, пробег которых может составить до 10 см. Если речь идет об окрашенных веществах, пятна видны и проявление не требуется. Отпадает оно и для веществ, люминесцирующих в ультрафиолете. Проявляют или парами иода, растворимыми во многих веществах, или раствором перманганата, дающим пятна двуокиси марганца, или другим реагентом, взаимодействующим с исследуемыми веществами с образованием окраски. Эти приемы обеспечивают сравнение длины пробега компонентов разделяемой смеси и контрольных веществ и идентификацию веществ смеси по величине Проявление , очевидно, служит только для того, чтобы [c.43]

    Растворимость препаратов лигнина, как и других полимеров, определяется строением и молекулярной массой, а также природой растворителя, главным образом, полярностью. Препараты лигнина могут растворяться в некоторых органических растворителях (диметилсульфоксид, диметилформамид, диоксан и др.), тогда как в других они не растворяются или растворяются частично. Известно, что растворимость вещества зависит от соотношения его полярности и полярности растворителя. Растворимость при этом будет максимальной, когда определенные свойства (способность к образованию Н-связей, химическое строение и т.п.) растворителя и растворяемого вещества близки. Наиболее часто растворяющую способность по отношению к полярным полимерам определяют по энергии когезии и способности к образованию водородных связей. Влияние энергии когезии оценивают по параметру растворимости (см. 7.1). Для лигнина этот показатель оценивается значением порядка 22500 (Дж/м ) . Шурх установил, что растворители с параметром растворимости, сильно отличающимся от этого значения, не растворяют препараты лигнина, а у растворителей с близкими значениями параметра растворимости растворяющая способность возрастает с увеличением способности к образованию водородных связей. Чем сильнее разница как в параметрах растворимости, так и в способности к образованию Н-связей, тем в большей степени должен быть деструктурирован лигнин для перехода в раствор. Полярность растворителя удобно характеризовать диэлектрической проницаемостью, связанной с параметром растворимости эмпирическим уравнением линейного типа. Существуют также попытки связать растворимость лигнина с параметрами, учитывающими донорно-акцепторные взаимодействия в системе полимер-растворитель. [c.412]

    Под растворением в узком, общепринятом значении этого слова обычно понимают физико-химический процесс взаимодечствия какого-либо вещества—газа, жидкости или твердого тела—с жидкостью, называемой растворителем, в результате чего образуется раствор—прозрачная гомогенная жидкость. Важнейшим условием этого процесса должно быть отсутствие глубокого химического взаимодействия между растворяемым веществом и растворителем и, следовательно, возможность после удаления растворителя получать исходное вещество неизмененным. В противном случае нельзя говорить об истинном растворении так, например, при взаимодействии металлического натрия с избытком спирта, нерастворимых в воде органических кислот с водными растворами щелочей и т. п. наблюдаются более сложные явления. В этих случаях одновременно происходит химическая реакция, в результате которой образуется уже другое вещество, растворимое в данных условиях в жидкости. [c.7]

    Растворители в реагенты действуют также на бурые угли, но менее активно. Вода на них действует слабо, извлекая лишь от 1 до 3 % растворимых веществ. Разбавленные кислоты H I и H2SO4 с бурыми углями взаимодействуют также весьма слабо. В отличие от зтого разбавленная (1 10) азотная кислота энергично реагирует с бурыми углями и в раствор переходит часть образующихся продуктов окисления и нитрования, придающих ему различную окраску от же лтой до красно-бурой. Каменные угли не реагируют с разбавленными кислотами, в том числё и азотной, поэтому действие разбавленной (1 10) азотной кислоты является качественной реакцией на отличие бурого угля от типичного каменного (реакция Доната). [c.96]

    Из уравнений М. И. Шахпаронова можно сделать выводы о растворимости твердых веществ в различных растворителях, согласующиеся с правилом растворимости, которое ранее предложил В. К. Семенченко. По этому правилу при растворении вещества в растворителе, молекулы которого взаимодействуют друг с другом гораздо слабее, чем молекулы растворяющегося вещества с ними и друг с другом, растворимость будет мала. При усилении молекулярного поля растворителей растворимость будет повышаться и достигнет максимума в том растворителе, молекулярное поле которого наиболее близко к молекулярному полю растворяемого вещества. Дальнейшее усиление молекулярного поля растворителей приводит к уменьшению растворимости. Поэтому кривая растворимости проходит через максимум, но для многих веществ реализуется только одна ветвь кривой. [c.69]


Смотреть страницы где упоминается термин Взаимодействие растворитель—растворимое веществ: [c.132]    [c.71]    [c.235]    [c.155]    [c.331]    [c.185]    [c.159]    [c.29]   
Полимеры (1990) -- [ c.263 ]




ПОИСК





Смотрите так же термины и статьи:

Взаимодействие ион растворитель



© 2024 chem21.info Реклама на сайте