Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Алкилбензолы ионов

    Рассмотрим принципы свертки информации в масс-спектрах сложных смесей и получения из них групповых масс-спектров. Масс-спектры разных соединений, принадлежащих к одной и той же группе, обладают определенным сходством. Наличие в молекуле функциональной или структурной группы, определяющей принадлежность к соответствующей группе, влияет на основные направления распада молекулы при ионизации электронным ударом. Распад молекул с углеродным скелетом, как правило, происходит по С—С-связям (при этом могут иметь место скелетные перегруппировки и миграция атомов Н). Различия в структуре однотипных молекул, такие, как изменение числа, длины, строения и места присоединения заместителей, положения, размера, типа сочленения колец и т. п., не меняя основных направлений распада, могут приводить к изменению масс соответствующих ионов — к сдвигу на 14и, т. е. к числу, кратному массе СНа-группы, или на 14и + 1 — и перераспределению интенсивности их пиков. (Эти изменения масс-спектров соединений, принадлежащих к одной группе соединений, имеют место в среднем, в отдельных же случаях наблюдаются и другие изменения.) Чтобы выявить характерные распределения интенсивностей пиков, отражающие структуру фрагментов молекул, удобно расположить все ионы масс-спектра по их гомологическим рядам Каждая группа соединений характеризуется наличием в масс-спектре определенных групп ионов, расположенных в одном или нескольких гомологических рядах и соответствующих наиболее вероятным направлениям распада молекул. Даже при анализе индивидуальных соединений точное установление структуры ионов и путей распада является сложной задачей. В сложной же смеси их установить невозможно, так как невозможно разделить вклады в масс-спектр отдельных соединений. Однако можно установить условное формальное соответствие между определенными ионами или группами ионов и соответствующими им по массе структурными фрагментами, характерными для таких групп соединений. Так, для характеристики алканов используют пики ионов С Н л+1 — частей алкильных цепей, для алкилбензолов — ионы С Н п-7 соответствующие алкилзамещенному бензольному кольцу, и т. п. Такое соотнесение всегда предположительно, оно устанавливается на основании изученных направлений распада при ионизации электронным ударом молекул индивидуальных соединений. [c.59]


    На рис. 10 показано специфичное влияние нитрата серебра, растворенного в триэтиленгликоле, на разделение трех типов углеводородов—парафинов, олефинов I типа (СН-2=СН—Н) н алкилбензолов. Ионы серебра действуют на относительное удерживание лишь олефинов I типа. Действительный удерживаемый объем н-пентана (вещество сравнения), как показано в табл. 5, снижается на коэффициент 3. [c.69]

    Образование изобутилбензола объясняется как большой стабильностью в обратимых реакциях этого типа первичных алкилбензолов, так и рядом других факторов, которые будут рассмотрены ниже. Преимущественное образование вторичных ч третичных алкил-ионов и направленность подобных перегруппировок [177] можно объяснить энергетическим.и данными, характеризующими направленность подобных перегруппировок  [c.108]

    Из данных табл. 5.20 следует, что кислород играет определенную роль в каталитических превращениях алкилбензолов. При наличии в изучаемой системе воздуха степень дейтерообмена между а-положениями алкильных групп увеличивается на 10—15% по сравнению с дегазированной системой. По-видимому, образование слабых донорно-акцепторных комплексов компонентов каталитической системы с кислородом облегчает отрыв гидрид-ионов от а-положения алкильных заместителей. [c.222]

    Основное направление диссоциации большинства алкилбензолов— это разрыв связи в р-положении но отношению к бензольному кольцу. Разрыв по р-связи сопровождается миграцией водорода и образованием алкилбензольного иона и олефина [136]. [c.75]

    В масс-спектрах производных бензола пики молекулярных ионов весьма интенсивны, что облегчает установление распределения по молекулярным весам. Этому способствует сравнительно малый разброс величин коэффициентов чувствительности для изомеров с одинаковым числом углеродных атомов в молекуле и отсутствие наложений на аналитические пики со стороны других групп. При расчетах необходимо учитывать наложения иа пики иоиов с массами 78 и 92 со стороны высокомолекулярных алкилбензолов Сю—С12 поправочные коэффициенты приведены в табл. 15. [c.146]

    В спектрах индолов с более длинными цепями у алкильных заместителей также наблюдается тенденция к разрыву р-связи. Например, бутилзамещен-ные индолы легко теряют С3Н7, отрывающийся от молекулярных ионов. Отрыв метильной группы от молекулярных ионов очень мало вероятен для мономе-тилиндола и вполне возможен для ди- и полиметилзамещенных индолов. Эти характеристики сходны с характеристиками алкилбензолов. Можно постулировать следующие положения так же как и в случае алкилбензолов, ионы, образующиеся при отрыве метила от диметил индолов или водорода от моно-метилиндолов, обладают исключительно стабильной стерической конфигурацией образование этих стабильных ионов может происходить с перегруппировкой. Рассмотрим, например, 2,3-диметилиндол. Могут происходить реак- [c.408]


    В масс-спектрах высокомолекулярных алкилбензолов ионы с массой 92 являются основным источником образования ионов с массой 91. Действительно, ионы с массой 92 имеют более низкий потенциал появления. Так, для 1-фенилдодекана потенциал появлений иона с массой 92 равен 10,75 эВ, а иона с массой 91 — 11,82 эВ Расчет теплот образования ионов с массой 91 на основании потен- циалов появления (табл. 3) показывает, что образование их прй отщеплении водорода от иона С7Щ (т/е 92) — процесс энергетиче--ски более выгодный, чем разрыв Р—С—С связи в алкильной ценй молекулярного иона [59]. [c.45]

    Анализируя данные по Сз-дегидроциклизации углеводородов на Pt/ , можно констатировать отсутствие каких-либо признаков того, что реакция протекает по схемам ионного или радикального механизмов. Действительно, ионы, например карбениевые ионы, образуются в реакциях с участием кислотно-основных катализаторов, к которым в первую очередь относятся катализаторы реакции Фриделя — Крафтса, цеолиты, оксид алюминия и пр. По-видимому, ни платина, ни ее носитель — березовый активированный уголь — не являются подобными катализаторами кислотного типа, хотя следует учитывать, что природа древесного угля изучена еще недостаточно подробно. Необходимо подчеркнуть, что ка-талиэаты, получаемые в результате Сз-дегидроциклизации на Pt/ , в основном состоят из исходного углеводорода (алкан или алкилбензол) и соответствующего ему циклана. Продукты с более низкой и более высокой молекулярной массой, образование которых, как правило, наблюдается в реакциях, протекающих как по ионному, так и по радикальному механизмам, практически отсутствуют. Следует добавить, что сравнительно мягкие условия реакции Сз-дегидроциклизации (270— 300 °С, атмосферное давление) исключают, по-видимому, возможность возбуждения молекулы исходного углеводорода до состояния свободного радикала или разрыва ее на осколки — радикалы. Таким образом, протекание в присутствии Pt/ Сз-дегидроциклизации по радикальной или по ионной схеме маловероятно. [c.207]

    Промежуточные продукты, алкилбензольные карбоний-ионы, легко превращаются в алкилбензолы путем гидридного переноса от молекулы тетралина  [c.133]

    Однако 1при алкилировании высшими олефинами и хлорпроиз-водными наблюдается изомеризация алкильных групп, которая происходит юеред алкилированием, поскольку алкилбензолы к ней уже не способны. Эта изомеризация протекает в направлении промежуточного образования наиболее стабильного иона карбония, но без нарушения углеродного скелета алкильной группы, а лишь с перемеш,ением реакционного центра. Вследствие этого из хлорпроизводных н олефинов с прямой цепью углеродных атомов получается смесь вторичных алкилбензолов [c.244]

    Э и же условия ведут к нежелательной деструкции алкильных груп и побочному образованию алкилбензолов с более короткой алки.1Ьпой группой. Так, при реакции с проиилеиом иобочио получается этилбензол, с этиленом — толуол и т. д. Особенно заметна такая деструкция ири алкилировании алкилгалогепидами и олефинами с достаточно длинной углеродной цепью. Реакция, вероятно, происходит иа стадии расщепления иона карбония, образовавшегося нз алкилирующего агента  [c.247]

    Взаимодействие НХ с катализатором протекает по обратимой реакции с высокой скоростью, при этом образуются комплексы с переносом заряда или ионные пары, что подтверждается методами УФ- и ИК-спектроскопии, изменениял дипольного момента и давления паров (подробнее см. гл. 4) последующее образование (т-комплексов в результате взаимодействия их с аренами является более медленной стадией. Большое влияние на дальнейшее превращение ст-комплексов оказывает основность растворителей. Действительно, если реакцию проводить без растворителей или со слабоосновными растворителями, то образующиеся алкилбензолы, обладающие более основными свойствами, чем исходный бензол, накапливаются в виде комплекса [c.45]

    В соответствии с этой схемой существует обратимое равновесие а- и я-комплексов, причем последний взаимодействует с молекулами алкилбензолов с последующим образованием диалкилбен-золоБ. Отсутствие изомеризационных превращений было объяснено тем, что мигрирующая группа в образующемся локализованном л-комплексе хотя и обладает определенной подвижностью, но частично сохраняющаяся связь с ароматическим ядром не позволяет ей претерпеть характерную для ионов карбе-ния перегруппировку. [c.172]

    Сравнение относительных скоростей реакции переалкилирования в двойных и тройных системах показывает, что в последнем случае относительные подвижности -алкильных заместителей по сравнению с этильной группой заметно возрастают. С позиций механизма Стрейтвизера [174, с. 503] подобное явление можно объяснить тем, что лимитирующей стадией переалкилирования н-алкилбензолов является образование алкилфенил-карбониевых ионов, дающих начало цепному механизму карбо-ний-ионных превращений. В соответствии с этим в тройных системах концентрации разных катионов выравниваются за счет цепного механизма гидридных переносов с алкилароматически-ми углеводородами, что и выравнивает различия между их относительными скоростями переалкилирования. [c.183]


    Для алкилбензолов с более длинными алкильными цепями состав продуктов более сложен. Алкильные карбоний-ионы с большим числом углеродных атомов легко распадаются, и образуется смесь парафинов — продуктов ионного распада алкильной цепи с последующим гидрированием олефинов. Кроме того, образуются тетралин и индаи. Реакция идет, по-видимому, по схеме  [c.295]

    В реакциях Фриделя — Крафтса катализаторы быстро дезактивируются из-за присутствия высших алкилбензолов [5]. Например, при работе с метилбензолами возможно образование гепта-метилбензильного иона — более основного, чем пента- и гексаме-тилбензильный. Этот геитаметилбензильный ион обладал настолько большой основностью, что его можно было даже экстрагировать водным раствором соляной кислоты. [c.272]

    Рассмотрим теперь другие гомологические ряды алкилбензолов, имеющих уже неразветвленную алифатическую цепь [7]. В нефтях Самотлора были найдены серии н.алкилбензолов состава Сщ—С32, а также] изомерные им орто-, мета- и пара-метил-н.алкилбензолы, Соответствующий материал приведен на рис. 60. Строение углеводородов доказано хромато-масс-снектрометрией и встречным синтезом некоторых эталонов. Характерными фрагментными ионами являются ионы с mie 91 (для н.алкилбензолов) и mie 105 для метилалкил-.бензолов (в мета-замещенных углеводородах максимальной интенсивностью обладает ион с mie 106). Интересно, что концентрация [c.158]

    Как видно из данных табл. 73, большинство изученных алкилбензолов алкилируется изобутиленом легче бензола, несмотря на практически полное отсутствие бутилнрования в орто- и мета-по ложения к алкильной группе. Это можно объяснить весьма легкой поляризацией изобутилена катализатором с образованием иона с большим эффективным положительным зарядом, сосредоточенным на реакционном атоме углерода. Трет.бутилбензол алкилируется изобутиленом в 1,1 раза медленнее, чем бензол. С нормальными олефинами, например пропиленом, бутиленами и циклогексеном, бензол взаимодействует легче, чем его гомологи. [c.115]

    Аналогичные процессы наблюдались также при диссоциативной ионизации алкилбензолов [136—138], циклогептатри-ена [139], спироциклогептадиена-2,4 [140]. Ионам с массой 91 приписывается циклическое строение тропилия, распад которого, как показали исследования масс-спектров образцов, меченных С , а также энергетические расчеты реакций, происходит путем последовательного отщепления молекул ацетилена. [c.69]

    Алкилбензолы. Наиболее отчетливо влияние эффекта сопряжения на лиссоциатниаую ионизацию можно наб подать в случае беи юла и его гомологов. Бензол и его гомологи характеризуются значительной устойчивостью по отношению к электронному удару эта величина, составляющая 33% для бензола, несколько снижается по мере увеличения молекулярного веса, однако сохраняется достаточно большой, в среднем около 10% от полно] о ионного тока. [c.75]

    Райландер и Мейерсон [137], а также Гануш [139] установили, что образование наиболее интенсивных ионов в масс-спектрах алкилбензолов связано не только с миграцией водорода, но во многих случаях с перестройкой углеродного скелета. Детальное исследование масс-спектров дейтерированных толуолов показывает, что с равной вероятностью от молекулы может оторваться любой из водородных атомов. Это заставляет предположить, что имеет место перегруппировка [c.75]

    Циклическая структура ионов в газовой фазе, в частности иона тропилия и его гомологов, позволяет объяснить отсутствие существенного различия в масс-спектрах изомеров диеновых углеводородов и нх аналогов с масс-спектрами соединений других углеводородов алкилбензолов, циклогепта-триеиа, а также некоторых соединений, содержащих гетероатомы. [c.79]

    В процессе исследования сланцевого керосина возникла задача идентификации тиофенов с молекулярным весом 126— 154. Так как известно лишь небольшое число соединений такого типа, то метод прямого сравнения оказался непригодным. Рассмотрение масс-спектров тиофенов и гомологов бензола позволило установить зависимость между распределением интенсивностей пиков ионов и положением заместителей в кольце. Характерными оказались максимальный пик, пик молекулярного нона М+, ппк на единицу меньше молекулярного (М—])+, пик ионов (М—31)+ и пики ионов с массами 85,84, 79, 78, 59, 43, 41. Например, в масс-спектрах 2,5-диметилтио-фена и изомеров метилтиофена максимальные пики соответствуют ионам (М —1)+ с массой 111 и 97, соответственно. При замене метильного радикала на этильный появление максимальных пиков обусловлено образованием ионов (М—15)+ с массами 97 (2-этилтиофен), 125 (2,5-диэтилтиофен) и 153 (2, 3, 5-трнэтилтиофен). В отличие от производных тиофена в спектрах алкилбензолов, содержащих как метильные, так и этильные радикалы, максимальные пики соответствуют ионам (М—15)+ с массами 91 (1, 4-диметилбензол, этилбензол), 119 (1, 4-диэтилбензол) и 153 (1,3,5-триэтилбензол). Комбинируя эти корреляционные признаки с особенностями масс-спектров производных тиофенов,полученных метилированием и гидрированием, а также ртутных производных, удалось установить структуру гомологов тиофена в диапазоне молекулярных весов 126—154 и моно- и дизамешенных бензолов с молекулярным весом 120—148. [c.119]

    Рассмотрев 83 соединения, Мейерсон [136] предложил полную схему идентификации алкилбензолов. В схеме используются пики молекулярных и псевдомолекулярных ионов, максимальные пики спектра и пики характеристических ионов с массами 77, 79, 91, 93, 105, 107, 119, 133. Учитывались также соотношения пиков ионов с массами 91 и 92. Проведение качественного анализа по указанной схеме возможно, если исследуемое индивидуальное вещество является моно- или полиалкилбензолом. [c.119]

    В спектрах углеводородов с двумя и более кратными связями возрастает количество иоиов, образование которых связано с миграцией водорода. Поэтому для углеводородов с общей формулой С Н . --2 (диеновые и цикломоноолефиновые) характеристическими является не один, а два гомологических ряда ионов (67, 68, 81, 82, 95, 96) диссоциативная ионизация алкилбензолов приводит преимущественно к образованию ионов с массами 77, 78, 91, 92, 105, 106, 119, 120 и т. д. Суммарная интенсивность пиков характеристических иоиов прямо пропорциональна концентрации соответствующей углеводородной группы. Аддитивность указанных свойств позволяет производить анализ и расчет состава сложных смесей аналогично смесям, состоящим из небольшого числа компонентов, а учет взаимных наложений осуществляется путем решения системы линейных уравнений. Все эти закономерности использовались для создания методов определения различных классов и типов углеводородов в сложных смесях (бензины, высокомолекулярные нефтяные фракции) [272— 280]. [c.140]

    Определение состава метановых и нафтеновых углеводородов нефтяных дистиллятов. Метод молекулярных ионов , позиоляющий устанавливать содержание метановых, моноциклических нафтеновых углеводородов и алкилбензолов, не может быть использован для анализа сложных смесей, содержащих конденсированные нафтеновые углеводороды. Для этой цели более пригоден метод осколочных иоиов, который [c.160]

    Анализ ароматических углеводородов нефти. Исследование масс-спектров высокомолекулярных алкилбензолов, конденсированных и других типов ароматических соединений показало, что диссоциативная ионизация их молекул проте кает весьма селективно, вместе с тем опи, как правило, характеризуются высокой устойчивостью к электронному удару. Благодаря этому качестве аналитических могут быть использованы как пики молекулярных, так и осколочных ионов. Методом молекулярных ионов получают сведения о количестве насыщенных колец, присоединенных к ароматическому ядру. По масс-спектрам сложных смесей ароматических углеводородов суммированием высот пиков молекулярных ионов гомологических рядов от СпНгп-о до H2 i8 могут быть идентифицированы различные типы соединений и оценены их относительные количества. Однако чтобы сделать метод достаточно специфичным с точки зрения структурной идентификации, исследуемый образец должен быть предварительно подвергнут адсорбционному разделению на узкие фракции, содержащие преимущественно моно-, би-, три- или полицик-лические ароматические углеводороды. [c.168]

    Анализ масс-спектров показал также, что молекулярномассовое распределение (ММР) гомологических рядов ионов всех групп углеводородов имеет несколько максимумов. ММР характеризуется большим вкладом высокомолекулярной части от С,5 до С . В табл. 12 представлены результаты структурно-группового анализа. Из ее данных следует, что типы ароматических углеводородов, содержащиеся во фракции легкой ароматики, по количественному содержанию можно расположить в следующем порядке убывания алкилбензолы, инданы, динафтенбензолы, нафталины. Общий состав фракции по ММР представлен от С,4 до С о- Следует отметить большое содержание третичного бутилбензола и его производных. ММР легкой ароматики имеет два максимума на С,,,-С,, и Су,-С а. В высокомолекулярной части наибольший вклад принадлежит нафталинам, аценафтенам и алкилбензолам. [c.64]

    В связи с тем, что катодный выход по току в алкилбензоль-ных электролитах составляет 50—80 %, а анодный — близок к 100 %, в электролите происходит накопление ионов алюминия. Избыточный алюминий связывают ионами брома, которые вводят в раствор, пропуская газообразный НВг. Попадание воды в электролит вызывает гидролиз бромида алюминия, однако ее незначительное содержание (равновесная влага) улучплает работу электролита. [c.111]

    Пример 1. Из масс-спектра, приведенного на рис. 5,39, а, следует, что молекулярный вес соединения равен 148. Точные измерения показали, что интенсивность изотопного пика с массовым числом М = 149 в этом спектре составляет 12% интенсивности молекулярного пика, откуда можно заключить о наличии одиннадцати атомов С в молекуле. Соединение не содержит атомов хлора, брома и серы [(М + 2) — пик отсутствует] и либо не содержит атомов азота, либо содержит их четное число (целочисленный молекулярный вес). При помощи табл. 5.37 по характеристическим осколочным ионам с массами 39, 51, 65, 77 и 91 приходим к выводу о вероятном присутствии алкилбензола. О наличии ароматического соединения свидетельствует относительно высокая интенсивность молекулярного пика. Определяя разность масс молекулярного и осколочных пиков, сначала находим величину, равную 15, соответствующую отщеплению СНз-группы. Разности между предыдущими пиками с массовыми числами 133, 119, 105 и 91 составляют по 14 а.е.м. в каждом случае (наличие Hj-rpynn). По этим данным уже можно предположить, что искомое соединение является н-амилбензолом, причем размещение атомов С в боковой цепи вначале весьма произвольно. Распад боковой цепи этого соединения происходит по алкильному или олефиновому механизму, благодаря чему объясняется серия пиков при массовом числе М — 105  [c.294]

    Обзор M. Коптюг.— Изв. АН СССР, сер. хим., 1974, 23, с. 1081 — 1098. Обзор по полифторированным аренониевым ионам см. Штейнгарц.— Усп. хим., 1981, 50, с. 1407—1436. Обзор по протонированию бензола и простых алкилбензолов см. Far asiu, Асс. hem. Res., 15, 46—51 (1982). [c.390]


Смотреть страницы где упоминается термин Алкилбензолы ионов: [c.227]    [c.353]    [c.244]    [c.137]    [c.199]    [c.200]    [c.219]    [c.225]    [c.226]    [c.95]    [c.203]    [c.148]    [c.171]    [c.172]    [c.173]    [c.192]   
Молекулярный масс спектральный анализ органических соединений (1983) -- [ c.92 ]




ПОИСК





Смотрите так же термины и статьи:

Алкилбензолы



© 2025 chem21.info Реклама на сайте