Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Избирательная десорбция газа

    В общем случае экспериментально определяемая скорость переноса (или разделения) является сложной функцией степени турбулизации газа в камерах пониженного давления, геометрической структуры перегородки и степени адсорбции газа в ее порах, а также совокупности условий, влияющих на длину свободного пробега молекул. Общая скорость массопереноса зависит от интенсивности следующих процессов 1) ламинарного или турбулентного течения газов в камерах высокого и низкого давления 2) молекулярной диффузии через ламинарный пограничный слой в камере повышенного давления 3) избирательной адсорбции на поверхностях соприкосновения перегородки с потоком газа в камере повышенного давления 4) переноса адсорбата вдоль стенок пор под влиянием возникающего в результате адсорбции градиента концентрации 5) переходного или кнудсеновского течения газа совместно с адсорбционным потоком 6) избирательной десорбции газа в камере низкого давления 7) молекулярной диффузии через пограничный слой газа в камере пониженного давления 8) турбулентного переноса в ядро потока в камере низкого давления. [c.615]


    Как известно, из воды можно не только десорбировать сразу все газы, растворенные в ней, но также и осуществлять избирательную десорбцию какого-либо газа. Это достигается согласно закону Генри снижением парциального давления данного газа над водой без снижения общего давления и подогрева воды, что позволяет снизить энергетические потери на процесс десорбции. Практически это осуществляется продувкой [c.122]

    Основное различие газо-жидкостной и газо-адсорбционной хроматографии заключается в том, что в первом случае метод основан на использовании процесса растворения и последующего испарения газа или пара из жидкой пленки, удерживаемой твердым инертным носителем, а во втором случае — процесс адсорбции и последующей десорбции газа или пара протекает на поверхности твердого вещества — адсорбента. Оба вида газовой хроматографии рассматриваются как динамические процессы, в кого- рых компоненты анализируемой смеси селективно (избирательно) удерживаются неподвижной фазой. [c.259]

    Адсорбент, используемый на установке, избирательно адсорбирует н-парафины из смесей их с углеводородами другого строения. Десорбция адсорбента осуществляется нагретыми парами аммиака, который называется вытеснителем последний циркулирует на установке. Используется также водородсодержащий газ, являющийся газом-носителем сырья. Применение циркулирующего газа-носителя препятствует быстрому падению адсорбционной емкости адсорбента и способствует удлинению пробега установки [2, 3]. В целом обе стадии процесса — адсорбция и десорбция — являются парофазными. Для извлечения из циркулирующего водородсодержащего газа попутных паров аммиака используется вода. [c.96]

    Абсорбция — процесс избирательного поглощения компонентов газовой смеси жидким поглотителем (абсорбентом). Процесс выделения из абсорбента поглощенных компонентов газа называется десорбцией. [c.295]

    Химические процессы в производстве катализаторов весьма разнообразны. Они могут проходить гомогенно в жидкой или газовой фазе и в гетерогенных системах. Широко применяют гетерогенные процессы, в которых химические реакции сопровождаются диффузией и переходом компонентов нз одной фазы в другую. В системе газ — жидкость часто используют процессы хемосорбции газовых компонентов и обратные процессы десорбции с разложением молекул жидкой фазы. В системе газ — твердое вещество также применяют хемосорбцию и десорбцию в системах жидкость — твердое вещество и жидкость — жидкость — избирательную экстракцию с образованием новых веществ в экстрагенте. Сложные многофазные процессы с образованием новых веществ происходят при термообработке катализаторов. При этом, как правило, в общем твердофазном процессе принимают участие появляющаяся при нагревании эвтектическая жидкая фаза или компоненты газовой фазы. [c.96]


    Уголь движется непрерывно сверху вниз по вертикальному адсорберу (гиперсорберу). В верхней части аппарата уголь сушится и охлаждается, после чего он попадает в первую секцию, где адсорбируются тяжелые компоненты газа, поступающего на разделение. Легкие компоненты не поглощаются активированным углем и удаляются из аппарата. Ниже места ввода газа в адсорбер уголь встречается с парами тяжелых компонентов, десорбированными в отпарной секции аппарата уголь избирательно поглощает более тяжелые компоненты, которые вытесняют с его поверхности вещества с молекулярным весом, промежуточным между молекулярными весами легких и тяжелых компонентов. Эти промежуточные продукты отводятся из аппарата в виде побочной фракции. В нижней (отпарной) секции, где уголь нагревается и пропаривается, происходит десорбция [c.39]

    Катализатор работает переменными циклами с непрерывной циркуляцией из реактора в регенератор 15 мин при дегидрировании в восстановительной среде и около 30 мин при регенерации (выгорание углеродистых отложений и кокса, образующихся при дегидрировании) в окислительной среде. За счет десорбции сорбированной влаги и углекислого газа с поверхности катализатора последний во время цикла дегидрирования обладает переменной активностью и селективностью (рис. 30). По мере протекания десорбции, продолжающейся 3—5 мин, активность и избирательность катализатора увеличиваются почти вдвое. Для уменьшения этого периода нестационарности проводят специальную подготовку катализатора, которую стараются совместить со стадией его регенерации. [c.141]

    Разделение газовых смесей для выделения одного или нескольких ценных компонентов смеси. В этом случае применяемый поглотитель должен обладать возможно большей поглотительной способностью по отношению к извлекаемому компоненту и возможно меньшей по отношению к другим составным частям газовой смеси (избирательная, или селективная, абсорбция). При этом абсорбцию обычно сочетают с десорбцией в круговом процессе. В качестве примеров можно привести абсорбцию бензола из коксового газа, абсорбцию ацетилена из газов крекинга или пиролиза природного газа, абсорбцию бутадиена из контактного газа после разложения этилового спирта и т. п. [c.11]

    Снижение избирательности поглотителей усложняет регенерацию насыщенного абсорбента и затрудняет разделение газов десорбции.. Выделение метановой фракции из насыщенного абсорбента и возвращение ее в ноток товарного газа требует повышенны энергетических затрат. Поэтому выбор давления процесса при абсорбционной обработке газа должен осуществляться с учетом таких факторов, как требуемая степень извлечения целевых компонентов, затраты на дожатие газа, стой- мость оборудования и т. д. [c.201]

    Двуокись углерода избирательно адсорбируется не только из метана, но и нз высших его гомологов. В связи с этим процесс очистки углеводородных газов от двуокиси углерода распространен на этан, пропан и этано-пропановую фракцию. На типовой установке один адсорбер (или два включенные последовательно) находится на стадии очистки, один на десорбции и один — на охлаждении. Для регенерации используют часть очиш енного продукта, природный газ или иной технологический поток. В США, по крайней мере, три установки очистки находятся в эксплуатации. [c.412]

    Абсорбция. Абсорбцией называют процесс избирательного (селективного) поглощения одного или нескольких компонентов газовой или паровой смеси растворителем (абсорбентом). Обратный процесс — выделение поглощенного газа — называют десорбцией. [c.286]

    В системах твердое тело — газ (пар) протекают процессы адсорбции (избирательного поглощения твердым веществом — адсорбентом одного или нескольких компонентов газовой, паровой или парогазовой смеси) и десорбции (выделения адсорбированных веществ из твердых тел), а также процессы сушки твердых материалов. В системах твердое тело — жидкость осуществляются процессы получения растворов твердых веществ, кристаллизации из растворов и расплавов, избирательного поглощения твердыми телами (адсорбентами или ионитами) отдельных компонентов из растворов (адсорбция, ионный обмен), выщелачивания или экстрагирования растворимых веществ из твердых тел и промывки осадков, получаемых в процессах разделения суспензий. Для систем жидкость — жидкость характерны процессы разделения жидких смесей путем избирательного растворения отдельных компонентов селективными растворителями, ограниченно смешивающимися с исходным раствором (жидкостная экстракция), а для систем жидкость — газ — процессы разделения газовых смесей путем избирательного поглощения из них одного или нескольких компонентов селективными растворителями (абсорбция) и противоположные процессы выделения растворенных в жидкости газов (десорбция). Наконец, в системах жидкость —пар проводятся процессы разделения жидких смесей (дистилляция и ректификация). [c.402]


    На следующей ступени процесса производится абсорбция ацетилена растворителем, обладающим высокой избирательностью и абсорбционной емкостью. Этот растворитель недорог, доступен и неагрессивен. Регенерация осуществляется просто и экономично, а потери растворителя в процессе очень невелики. Десорбцией поглотительного раствора получают товарный ацетилен чистотой 99,8% и выше. Из остаточного газа пиролиза низкотемпературной ректификацией выделяют этилен высокой чистоты. Остаточный газ с вы- [c.46]

    Если с адсорбентом, имеющим такую поверхность, контактирует жидкость или газ, то их молекулы в непосредственной близости от поверхности притягиваются к последней, образуя на ней пленку. Процесс образования пленки носит название адсорбции, пленка является адсорбируемым слоем, а адсорбируемое вещество адсор-батом. При контакте адсорбента со сложными смесями поверхность адсорбента оказывает избирательное действие, в результате чего в адсорбируемом слое концентрируются молекулы, обладающие большей адсорбируемостью, чем другие молекулы смеси. Это происходит до тех пор, пока вся поверхность адсорбента не покроется слоем адсорбируемого вещества. После этого наступает адсорбционное равновесие, т. е. в единицу времени количество адсорбируемых молекул равно количеству молекул, которые переходят обратно в окружающую среду. Явление, обратное адсорбции, называется десорбцией. Типичная простая физическая адсорбция всегда обратима. Поскольку использование хроматографии в нефтяном деле основывается главным образом на физической адсорбции, ей будет уделено особое внимание. [c.5]

    В методе десорбции известное количество газа или пара адсорбировалось на адсорбенте, охлаждаемом до некоторой температуры, после чего температура постепенно повышалась и десорбируемый газ откачивался для получения различных компонентов один за другим. Однако этот метод не очень селективен, и, кроме того, осуществлять десорбцию количественно очень трудно. Поэтому в литературе нет описаний опытов с углеводородами, содержащими более четырех атомов углерода. Авторы опубликованных работ не уделили также достаточного внимания получению резкого фронта в фильтре, что уменьшало избирательность. [c.127]

    На способности жидких растворителей избирательно поглощать тот или иной газ из газовой смеси основан абсорбционный метод разделения газовых смесей. Газовую смесь пропускают через жидкий растворитель (абсорбент). Растворитель подбирают так, чтобы в нем растворялся только тот газ, который хотят выделить. Затем растворитель с поглощенным газом направляют на следующую операцию (десорбцию), где из растворителя выделяют поглощенный газ в концентрированном виде. [c.25]

    На практике требования к выбору применяемого адсорбента обычно сводятся к следующему наличие высокой адсорбционной емкости по отношению к адсорбируемым примесям возможность максимального снижения концентрации примесей в очищаемом газе наличие высокой избирательной способности к поглощаемому компоненту низкая стоимость и высокая механическая прочность обеспечение легкости десорбции примесей, что позволяет упростить процесс регенерации и снизить стоимость оборудования для его осуществления. [c.54]

    Как известно, можно не только десорбировать из воды одновременно все газы, растворенные в ней, но также и осуществлять избирательную десорбцию какого-либо газа. Это достигается согласно закону Генри снижением парциального давления данного газа пад водой без снижения общего давления и подогрева воды, что позволяет снизить энергетические потери процесса десорбции. Практически это осуществляется продувкой воды смесью газов, в составе которой десорбируемый газ или отсутствует, или, что чаще, его концентрация чрезвычайно низка. В схемах водоподготовки, чтобы повысить обменную емкость высокоосповных анионитов, необходимо обязательно удалить из воды СО2. Осушествляется это в специальных аппаратах—декарбонизаторах — путем продувки воды воздухом. По способу распределения воды и воздуха декарбонизаторы разделяются па пленочные и барботаж-ные. Пленочные декарбонизаторы более экономичны, так как имеют низкое гидравлическое сопротивление, что позволяет применять вентиляторы с напором воздуха 2 -10 МПа. [c.148]

    Один лишь нагрев не обеспечивает десорбции углеводородов, так как под действием капиллярных сил упругость их паров настолько снижается, что температура кипения повышается на несколько сот градусов. При насыщении активного угля природным газом первоначально адсорбируются все компоненты газа, но при дальнейшей адсорбции ниэкомолекулярные углеводороды постепенно вытесняются вновь поступающими высокомолекулярными, так как избирательность адсорбции увеличивается с повышением молекулярного веса. В результате вытеснения сначала десорбируются такие низкомолекулярные углеводороды, как метан и этан. Насыщение адсорбента обнаруживается по проскоку пропана. (Более подробное описание этого процесса приведено в главе Синтез Фишера — Тропша , стр. 97). [c.31]

    Адсорбционный метод заключается в избирательном поглощении тяжелых углеводородов твердыми высокопористыми веществами, например активированным углем. Эффективность поглощения в значительной степени определяется величиной поверхности адсорбента. На современных газобензиновых заводах применяются активированные угли, поверхность которых достигает 1200—1600 лtVг. Десорбция углеводородов из насыщенного адсорбента осуществляется при помощи перегретого пара при температуре 125—140°. Десорбированные углеводороды, а также пары воды направляются сначала на конденсацию, а затем на стабилизацию и газофракцинировку. Регенерированный адсорбент подвергается сначала сушке воздухом или отбензинен-ным газом, а затем охлаждению. [c.31]

    Технологическая схема установки изображена на рис. 11.1. Сырье поступает в испаритель 1 и далее в печь 2, пройдя предварительно закалочные змеевики реактора 4. Из печи выходят пары с температурой 500—550 С. Пары углеводородов подаются в нижнюю часть реактора и с высокой скоростью поднимаются вверх, проходя слой катализатора. Во избежание образования избирательных потоков верхняя часть реактора может быть секционирована с помощью провальных тарелок (о конструкции реактора см. т. 1, гл. 3). Необходимое для протекания реакции количество теплоты подводится с потоком нагретого регенерированного катализатора из регенератора 5. Реактор и регенератор соединены двумя и-образными трубопроводами, по одному из которых зауглероженный катализатор выводится из реактора в регенератор, а по другому — возвращается регенерированный катализатор. Транспортирование катализатора в регенератор осуществляется потоком воздуха, а в реактор — парами исходного углеводорода или азотом. В-регенераторе, помимо выжига кокса, протекают процессы окисления хрома, а также десорбции продуктов регенерации (СО, Oj, HjO) с поверхности катализатора. С целью более полного сгорания кокса, а также частичного восстановления хрома в регенератор подается топливный газ. Регенератор также [c.351]

    Изменением рассмотренных свойств можно регулировать избирательность катализатора. Однако во многих случаях катализатор может оказаться настолько активным, что при рабочих условиях процесса избирательность оказывается недостаточной. Стремление увеличить скорость реакции повышением температуры может привести к цепи нежелательных реакций, протекание которых трудно регулировать и которые в конце концов дезактивируют катализатор или значительно снижают выход целевых продуктов в резуль- тате образования побочных газа и кокса. Дезактивация катализатора может вызываться изменением самого катализатора например, при температуре около 760° С активная окись никеля на окиси алюминия превращается в неактивный алюминат никеля, происходит спекание катализатора и уменьшается его активная поверхность. Дезактивация может происходить также в результате действительной потери активного компонента, например вследствие испарения трехокиси молибдена М0О3 при температуре выше 650° С. Недостаточная скорость десорбции образующихся продуктов с поверхности катализатора дает такой же результат, как отравление, так как уменьшает эффективную поверхность катализатора и подавляет дальнейшее протекание реакции. Это явление можно в некоторой степени устранить повышением давления водорода, который способен вытеснять адсорбированные продукты с поверхности катализатора. [c.141]

    Схемы адсорбционных процессов могут быть различными. При одной из них используется установка гиперсорбции, т. е. адсорбции на движущемся слое активированного угля. Эта система в значительной степени аналогична сочетанию обычного адсорбера и отпарной колонны или даже фракционирующей колонны. Предложение в основном сводилось к выделе-лию из крекинг-газов фракции Сз в колонне гиперсорбции, после чего эту (фракцию пропускают через обычный абсорбер навстречу нисходящему дхотоку избирательного растворителя, поглощающего ацетилен. Десорбция ацетилена из раствора осуществляется в другой колонне. При использовании процесса гиперсорбции некоторое количество высших углеводородов. неизбежно будет полимеризоваться на частицах движущегося адсорбента. Эти полимеры удаляют непрерывным пропариванием небольшого потока адсор- бента перегретым водяным паром в отдельной колонне. Удаление полимера под действием водяного пара основано на реакции водяного газа. Очищенный ют полимера уголь после охлаждения возвращают в колонну гиперсорбции. [c.253]

    В противоположность адсорбционному методу, обычный метод жидкостной ОЧИСТКИ газа этаноламипом не обладает избирательностью по кислым компонентам и предусматривает поглощение в равной степени как сероводорода, так и двуокиси углерода. Поэтому экономическое преимущество сероочистки газа цеолитами особенно проявляется, если в исходном газе соотношение СОг НаЗ >>3. При переработке газов с высоким содержанием кислых компонентов на базе газов десорбции может быть осуществлено производство серы и твердой углекислоты. [c.414]

    Абсорбцией называют процесс избирательного извлечения одного или нескольких компонентов из газовой смеси жидким поглотителем (абсорбентом). Обратный процесс — выделение из абсорбента раствореиных в нем газов (паров) носит название десорбции.  [c.907]

    ГИПЕРСОРБЦИЯ — разделение газовых смесей методом избирательной адсорбции слоем поглотителя, движущимся навстречу газовому потоку. Схема установки с Д)зижущимся слоем твердого поглотителя для разделения газовой смеси на 3 фракции приведена на ри-с нке. Основным аппаратом установки является ] олонна 1, состоящая из адсорбционной секции 2 и расположенных под ней ректификационных секций 3. Исходная смесь поступает под распределительную тарелку 4 и поднимается вверх навстречу гранулированному поглотителю, движущемуся вниз под действием силы тяжести. Остаточный газ отводится сверху адсорбционной секции, а насыщенный поглотитель опускается в ректификационные секции, где подвергается десорбции. При повышении темп-ры выделяющиеся тяжелые компоненты поднимаются вверх в виде флегмы, вытесняя из поглотителя более легкие. В результате в ректификационной секции происходит разделение поглощенных компонентов на фракции. Подогрев на-сьаценного поглотителя производится в отнарной секции о глухим паром. [c.472]

    Процесс адсорбции, т. е. поглощение газа или пара поверхностью твердого вещества (адсорбента), является избирательным и обратимым. Это значит, что каждый адсорбент способен поглощать лишь определенные вещества и не поглощать другие вещества, содержащиеся в газовой смеси. Поглощенное вещество может быть выделено из адсорбента путем десорбции — процесса, обратного адсорбцт-г. [c.175]

    При выборе абсорбента необходимо оценивать такие его свойства, как селективность (избирательность) по отношению к поглощаемому компоненту, токсичность, пожарную опасность, стоимость, доступность и т. д. Кроме того, абсорбент необходимо проверять на удерживающую способность при десорбции. При оценке физико-химических свойств системы поглощаемый компонент газа — поглотитель учитывают, что лучшим является тот абсорбент, в смеси с которым поглощаемый компонент имеет наименьший коэффициент активности yi. Это преимущественно те жидкости, которые составляют с поглощаемым компонентом системы с отрицательными отклонениями от идеального поведения (Vi-<1). Примеры таких систем — нестойкие химические соединения в системах Н2О—H2SO4, СО2 —этаноламины, КНз—Н2О, Н2О—НС1 и т. д. [c.326]

    Опыты избирательной адсорбции непредельных углеводородов из коксового газа при различных давлениях были проведены К. А. Беловым в Харьковском политехническом институте. Крупнолабораторная установка состояла из шести последовательно соединенных, заполненных активированным углем адсорберов. Десорбция поглощенных углеводородов производилась перегретым паром. Адсорбция осуществлялась при давлениях от нормального до 12,5 атм с интервалами через каждые 2,5 атм. [c.206]

    Применяемый. в СССР метод разделения реакторных газой путем избирательной абсорбции ВА растворителем (ксилольная фракция) с последующей десорбцией и ректификацией винил-ацетилена предполагает получение ДВА и сопутствующих ему производных в виде растворов в а-бсорбенте. [c.14]

    Разделение продуктов коксования. Сначала производят разделение прямого коксового газд. Из него конденсируют смолу и воду, улавливают аммиак, сырой бензол и сероводород. Затем подвергают разделению надсмольную воду, каменноугольную смолу и сырой бензол с получением индивидуальных веществ или их смесей. Разделение продуктов коксования основано на многих типовых приемах и процессах химической технологии массо- и теплопередаче при непосредственном соприкосновении газа с жидкостью, теплопередаче через стенку, конденсации, физической абсорбции и хемосорбции. Используются также избирательная абсорбция, десорбция, дистилляция, многократная ректификация, фракционная кристаллизация, выделение продуктов в результате протекания тех или иных химических реакций. Во всех этих процессах основным фактором улучшения технологического режима и увеличения скорости процесса служит температура. Именно при понижении температуры увеличивается движущая сила процесса при абсорбции [см. ч. 1 гл. II, уравнение (II.71)], а при повышении температуры ускоряются процессы десорбции. Для снижения диффузионного бопротивления на границе фаз и соответственного увеличения коэффициента массопередачи применяют методы усиленного перемешивания фаз увеличением скоростей подачи газа и жидкости. Особенно хорошо сказывается этот прием при противотоке газа и жидкости в башнях с насадкой. Для создания развитой поверхности соприкосновения газа и жидкости при Переработке коксового газа применяют башни с различными видами насадок, барботажные аппараты, а также разбрызгивание жидкости в потоке газа. [c.156]

    Абсорбция жидкостями — наиболее распространенный и до сих пор наиболее надежный способ газоочистки. Она испо 1ь-зуется в промышленности как основной прием извлечения из газов двуокиси и окиси углерода, окислов азота, хлора, двуокиси серы, сероводорода и других сернистых соединений, паров кислот (НС1, H2SO4, HF), цианистых соединений, разнообразных токсических органических веществ (фенол, формальдегид, фталевый ангидрид и др.) и т. д. Метод абсорбционной очистки основан на избирательной растворимости вредных примесей в жидкости (физическая абсорбция) или избирательном извлечении их при помощи реакций с активными компонентами поглотителя (хемосорбция). Абсорбционная очистка — непрерывный и, как правило, циклический процесс, поскольку поглощение примесей обычно сопровождается регенерацией поглотительного раствора (нагревом или снижением давления) и возвратом его в начало цикла очистки. Одновременно происходит десорбция поглощенной газовой примеси и ее концентрирование (см. ч. I рис. 128). [c.264]


Смотреть страницы где упоминается термин Избирательная десорбция газа: [c.101]    [c.7]    [c.16]    [c.19]    [c.44]    [c.69]    [c.484]    [c.322]    [c.73]    [c.258]    [c.532]   
Физические и химические методы обработки воды на ТЭС (1991) -- [ c.148 ]




ПОИСК





Смотрите так же термины и статьи:

Десорбция

Десорбция избирательная



© 2025 chem21.info Реклама на сайте