Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Распределение фракционирования

    Молекулярно-массовое распределение в кристаллическом полипропилене обычно находят путем фракционирования на колонке или гель-проникающей хроматографией. Получение кривых распределения фракционированием на колонке требует много времени, причем полимер в процессе определения необходимо защищать и от термического разложения. Тем не менее этот метод до сих пор еще находит широкое распространение. Метод гель-проникающей хроматографии быстро входит в практику исследования полимеров, и с его помощью можно довольно легко получить кривые распределения. [c.202]


    В последние годы появилось новое требование к качеству высокооктановых бензинов — равномерное распределение октановых чисел по фракциям бензина [6]. Это свойство имеет важное значение для обеспечения нормальной работы двигателя на переменных режимах, в частности при разгоне автомобиля. Увеличение числа оборотов коленчатого вала двигателя достигается в результате резкого открытия дроссельной заслонки. При этом создаются особенно неблагоприятные условия для распыливания и испарения бензина вследствие того, что в первый момент после открытия дросселя значительно падает скорость подачи воздуха и уменьшается разрежение во впускной системе. Основная часть бензина оседает на стенках впускного трубопровода, а паровоздушная смесь обогащается низкокипящими углеводородами, т. е. происходит фракционирование бензина. Сразу после открытия дросселя в цилиндры поступает лишь паровоздушная смесь, поскольку она обладает меньшей инерцией, чем жидкая пленка. Таким образом, в начале в цилиндры двигателя поступает горючая смесь, обогащенная низкокипящими углеводородами. [c.15]

    Приведенные на рис. 13 кривые показывают изменение характеристической вязкости двух фракций полистирола во времени при температурах вплоть до 340°. Процесс деструкции прекращается после достижения некоторого предельного значения молекулярного веса, причем это предельное значение тем выше, чем ниже температура. Распределение по молекулярным весам некоторых частично деструктированных полимеров представлено на рис. 14. Первоначальное узкое распределение фракционированного образца становится более широким в начальной стадии реакции, а затем, на более глубоких стадиях, снова сужается. Еллинек сопоставил все эти результаты с данными, следующими из представлений о протекании реакции [c.48]

    Было показано, что после введения поправок на перекрывания распределений фракционированных полимеров кривые распределения, полученные фракционированием [c.202]

    При низких скоростях движения в начальный период разгона (см. рис. 5) концентрация низкокипящего гексана в смеси значительно выше, чем в исходном бензине, тогда как концентрация высококипящих ксилолов в смеси меньше, чем в бензине, и опыты совершенно однозначно свидетельствуют о фракционировании бензина во впускном трубопроводе и обогащении смеси низкокипящими фракциями в первый период после открытия дроссельной заслонки. По мере разгона автомобиля неравномерность распределения фракций уменьшается. [c.37]


    Есть несколько вариантов впускных систем, имитирующих разделение отдельных фракций бензина (фракционирование) во впускном трубопроводе. В частности, для стандартной установки СРК предложен специальный впускной трубопровод, в котором по потоку смеси из карбюратора в цилиндр расположена металлическая вставка (рис. 36). Этот участок трубопровода окружен охлаждающей рубашкой, так что часть смеси конденсируется, конденсат отводится и его количество замеряется. Полученное таким методом значение октанового числа названо октановым числом распределения . [c.96]

    Характер аналитических задач, решаемых с помощью важнейшего из этих методов — инструментальной или регистрационной колоночной ЖХ,— определяется природой используемых стационарной и подвижной фаз, а также принципом детектирования элюатов. Универсальные детекторы (рефрактометрический, диэлькометрический, транспортные и др. [109, 111, 2541) использовались для количественного анализа самых различных ГАС (аминов [255, 256], порфиринов [257], жирных кислот [258, 259], фенолов [260], сернистых соединений [261 ]) в условиях адсорбционной или координационной хроматографии, а также для определения молекулярно-массового распределения высокомолекулярных веществ [69, 109, 262, 2631 при эксклюзионном фракционировании или разделении на адсорбентах с неполярной поверхностью, например, на графитирован-ных углях. Качественная идентификация элюируемых веществ в этих случаях проводится по заранее установленным параметрам удерживания стандартных соединений и при изучении смесей неизвестного состава часто затруднена из-за отсутствия таких стандартов. Групповая идентификация ГАС отдельных типов существенно облегчается при использовании специфических селективных детекторов спектрофотометрических (УФ или ИК), флю-орометрического [109, 111, 254 и др.], пламенно-эмиссионного [264], полярографического [111], электронозахватного [265] и др. [c.33]

    Явление фракционирования бензина во впускном трубопроводе известно давно, но до недавнего времени оно не вызывало существенных осложнений. Однако в последние годы в товарных высокооктановых автомобильных бензинах резко возросло содержание ароматических углеводородов в связи с широким развитием процессов риформинга. Ароматические углеводороды имеют октановые числа выше 100 единиц и группируются в основном в хвостовых фракциях бензинов. При среднем октановом числе таких бензинов 93—95, хвостовые фракции имеют октановое число более 100, а головные — всего лишь 70—75. Применение бензинов с таким неравномерным распределением октановых чисел по фракциям снижает надежность и долговечность работы двигателей. [c.15]

    Поскольку с помощью радиоактивного излучения и последующей химической обработки можно получать мембраны с порами заданного диаметра, а распределение пор по диаметрам чрезвычайно узкое, ядерные мембраны очень перспективны для микроаналитических исследований в цитологии и элементном анализе, для фракционирования растворов высокомолекулярных соединений и их очистки. Ядерные мембраны с успехом применялись для изучения размеров и формы различных типов клеток крови (в частности, для выделения раковых клеток из крови), для изучения вязкости крови и слипания ее клеток в зависимости от различных условий, для получения очищенной от бактерий воды в полевых условиях и многих других целей [59, 65—67]. [c.57]

    Теоретические функции распределения по молекулярным массам с экспериментальными данными, получаемыми при фракционировании полимеров, удобно сравнивать графически. Определяя массы фракций и их средние молекулярные массы, строят интегральную кривую распределения по молекулярным массам, т.е. кривую зависимости суммарной массы всех фракций от молекулярной массы. Диаграмму распределения по молекулярным массам в виде непрерывной кривой Л = /(М) можно построить лишь в тех случаях, когда охватывается достаточно широкий диапазон молекулярных масс. Обычно такая кривая имеет 5-образную форму. [c.58]

    Ниже приведен метод технологического расчета периодического процесса фракционирования многокомпонентной смеси, основанный на взаимосвязи молекулярно-массового распределения компонентов исходного раствора, начальных концентрациях компонентов и распределения пор (по размерам) в мембране [191]. [c.251]

    Рис, 2-77. Схема распределения компонентов исходного раствора при непрерывной фракционированной экстракции. [c.210]

    Проблема анализа распределения компонентов остатков по размерам приобрела большое значение сравнительно недавно и в основном связана с развитием процессов их каталитического гидрооблагораживашм. Возможность получать какие-то определенные результаты появилась после разработки метода гель-хроматографического разделения. Метод этот — гель-проникающая хроматография (ГПХ) — впервые нашел широкое применение в биохимии и химии полимеров [31]. При ГПХ разделение органических веществ осуществляется совсем на иных принципах, чем при других хроматографических методах. Принцип метода заключается в том, что во время прохождения раствора исследуемого вещества через колонку, заполненную частицами твердого геля, происходит разделение молекул этого вещества за счет различной способности их проникать в поры геля. Поры в частице геля имеют различный размер. Молекулы образца также различаются по величине. Некоторые молекулы слшиком велики, чтобы войти даже в самые крупные поры, и исключаются из частицы геля. Поэтому они двигаются через слой геля между его частицами и первыми выходят из колонки. Другие молекулы так малы, что входят во все поры геля, полностью проникая в частицу. Эти соединения задерживаются в наибольшей степени и появляются на хроматограмме последними. Молекулы промежуточных размеров могут входить только в некоторые поры и двигаются по колонке со средней скоростью. При разделении смеси с ширркой областью молекулярных масс используют набор гелей с разными пределами исключения. Это позволяет расширить область фракционирования колонки. Использование различных гелей дает эффект только при последовательном соединении колонок с разными гелями. При разделении соединений, мало различающихся по размеру, используют гели с узкой областью [c.36]


Рис. 2-84. Фракционированная экстракция. Распределение концентрации компонента В в сту-пеня х при работе без возврата и с возвратом Рис. 2-84. <a href="/info/129130">Фракционированная экстракция</a>. <a href="/info/332891">Распределение концентрации компонента</a> В в сту-пеня х при работе без возврата и с возвратом
    Фракционированная многоступенчатая, система несимметричная, симметричное распределение компонентов 4 3 = [c.263]

    При кристаллизационном фракционировании парафина, являющегося многокомпонентной смесью, большое значение имеет состав выделяющихся фракций. Количественной характеристикой системы, компоненты которой при кристаллизации образуют твердые растворы, является коэффициент распределения, представляющий собой отношение концентраций одного и того же компонента в жидкой и твердой фазах. Для расчета зависимости коэффициента распределения н-парафинов между жидкой и твердой фа- [c.160]

    I,5—2 раза. Однако при повышении температуры эта разница уменьшается. Отношение коэффициентов распределения компонентов между несмешивающимися фазами в процессах жидкостной экстракции, называемое фактором эффективности разделения, позволяет при кристаллизации определить четкость разделения компонентов в системах, образующих твердые растворы. Предложен метод расчета оптимальной скорости фильтрования и длительности работы вакуумных фильтров в процессе кристаллизационного фракционирования парафина из раствора в избирательных растворителях [56]. Он заключается в расчете мгновенной скорости фильтрования (скорости фильтрования в данный момент времени количества нефтепродукта, проходящего через вакуумный фильтр в течение 1 ч). [c.162]

    В процессе фракционирования нефти можно в какой-то мере регулировать количество металлов в дистиллятах, направляемых на каталитический крекинг. Это вполне выполнимо, поскольку содержание металлов в дистиллятах резко увеличивается по мере утяжеления фракций [176]. Считают, что металлы могут попадать в состав дистиллята при вакуумной перегонке вследствие летучести органических соединений металлов, а также из-за уноса капель жидкости в процессе. Поэтому на характер распределения металлов по фракциям существенное влияние оказывает используемый метод ректификации. По влиянию условий работы колонны и величины отбора вакуумного газойля на содержание в нем металлов весьма показательны данные, приведенные в работе [c.181]

    Проведено систематическое исследование по фракционированию на полистирольном геле и определению молекулярных масс смол и асфальтенов [307, 308]. В этих работах приводятся значения молекулярных масс для 30 узких фракций асфальтенов, полученных фракционированием на полистирольном. геле, равные 760—4000. Молекулярные массы трех фракций смол составляют 550—2500, 650—2000 и 560—750. Сопоставление кривых элюирования асфальтенов и смол указывает на перекрывание диапазонов распределения их молекулярных масс, поскольку для мальтенов также возможны молекулярные массы выше 2000. Однако ввиду [c.152]

    Наиболее трудным видом измерений при исследовании равновесия жидкость — пар многокомпонентных смесей является анализ равновесных фаз. Влияние ошибок анализа было сведено к минимуму путем исключения изомеров из состава экспериментальных смесей и везде, где это было возможно, путем такого регулирования состава смеси, чтобы в опытах получать равновесные фазы таких составов, при которых можно легко определять концентрации компонентов. Большинство приведенных коэффициентов распределения получено из данных экспериментов, для которых мольные доли компонентов одной или обеих фаз находились в области 0,020—0,200. Для этой области концентраций ошибка анализа (путем низкотемпературного фракционирования) составляет примерно 0,001 мольной доли точность анализа на масс-спектрометре при тщательной работе примерно такая же. Погрешность полученного экспериментального значения К вследствие возможных ошибок анализа может быть оценена, если определить какое влияние на коэффициент распределения оказывает изменение на 0,001 мольной доли компонента в каждой из фаз. [c.119]

    Если в результате фракционирования было выделено I фракций, то ордината интегральной кривой распределения по моле- [c.58]

    Для превращения экспериментальной ступенчатой диафам-мы дифференциального распределения в непрерывную кривую Я=(1а/с1М = / М) предполагается, что распределение описывается непрерывной функцией. При фафическом дифференцировании получается непрерывная кривая идеального фракционирования . Следует учитывать, что экспериментальные ошибки, проявляющиеся в разбросе точек на интефальной кривой, становятся более заметными в процессе дифференцирования. Однако практически существенны только основные характеристики дифференциальной кривой база и положение пика (или пиков). [c.60]

    Предварительное фракционирование по молекулярным массам дает большой эффект при последующем фракционировании на хроматографических колонках. Так, если смесь должна быть фракционирована в широком диапазоне молекулярно-массового распределения, то применение гель-хроматографии малоэффективно, так как раствор должен быть пропущен через ряд колонок, чтобы достичь нужной степени разделения индивидуальных компонентов. Но если исходную смесь предварительно разделить с помощью ультрафильтрации на несколько фракций, то дальнейшее фракционирование на хроматографических колонках не представляет труда. При этом разделение будет пр01ведено не только быстрее, но и качественней. Более того, ультрафильтрацией рас- [c.284]

    Решение. Правильность фракционирования можно проверить следующим образом. На интефальной кривой (рис. 1.25) через точку, соответствующую средней молекулярной массе полимера, восставляют перпендикуляр к оси абсцисс и определяют площадь, ограниченную осью абсцисс, перпендикуляром и частью интегральной кривой, находящейся слева от перпендикуляра (52), и площадь, офаниченную продолжением перпендикуляра, интегральной кривой справа от него и горизонтальной прямой, параллельной оси абсцисс и проходящей через а = 100 (51). Если фракционирование проведено правильно, а молекулярно-массовое распределение подчиняется закону Гаусса, то эти площади равны. Оказалось, что контролируемые площади 5 = 15,4 см , а 52 = 15,9 см . Значения 5, и 52 близки. [c.62]

    На рис. VI-3 показано молекулярно-массовое распределение исходного и фракционированного с помощью ультрафнльтрации поливинилпирролидона (использовались мембраны, задерживающие вещества с молекулярной массой от 50 000 и выше). Помимо того что данный процесс очень эффективен, использование ультрафильтрации в гель-хроматографии позволяет быстро оценить молекулярно-массовое распределение простым измерением вязкости или концентрации. [c.285]

    При фракционировании радиационных полимальимидов наблюдалось широкое молекулярнЬмассовое распределение. Фракционирование осуществлялось в растворе хлороформа [23] или этилацетата [24]. В качестве осадителя использовался метанол. Измерение молекулярных весов выделенных фракций позволило впервые определить константы уравнения Марка-Куна-Хаувинка при 20°С для поли-п-ТМй в растворе ДМФА([тх]= 1,55.Ю 2м° , М-поли-2,4-ДМФМИ в растворе бутилацетата [c.69]

    Описанный метод, хотя и надежен, но очень трудоемок. Он обычно требует получения образцов с узким молекулярно-весовым распределением (фракционирования) и тщательного измерения молекулярного веса каждой фракции абсолютным методом. В связи с этим представляет интерес другой метод, предложенный Во-ексом 89 и сводящийся только к измерению рассеяния света нефракционированным полидисперсным образцом. Для- полимеров, не содержащих боковые цепи (ответвления), например для полиметилметакрилата, результаты метода Воекса хорошо согласуются с полученными обычным трудоемким способом. [c.140]

    В работах советских исследователей была показана возможность использования этого соединения при полимеризации сопряженных диеновых углеводородов в среде органического растворителя [25]. На основе 1,3-бутадиена получены жидкие полибутадиен-диолы (ОВД), отличающиеся высокой бифункциональностью и имеющие узкое молекулярно-массовое распределение [26, 27, с. 109—113 28]. Об этом свидетельствуют результаты фракционирования полибутадиендиолов, представленные ниже  [c.422]

    Антидетонатор существенно влияет на распределение детонационной стойкости по фракциям бензина каталитического риформршга. Так, тетраэтилсвинец, имеющий температуру кипения 200°С, концентрируясь при фракционировании бензина в хвостовых высокооктановьк фракциях, увеличивает неравномерность распределения детонационной стойкости действие тетраметилсвинца, выкипающего при 110°С вместе с низкооктановыми средними фракциями, противоположно [45]. [c.42]

    Второй способ предусматривает дооборудование обычной установки для определения октанового числа по исследовательскому методу специальной вставкой во впускной трубопровод. Вставка может иметь различную конструкцию, но назначение ее одно — конденсация и отвод наиболее высококипящих фракций бензина, т. е. ими ация фракционирования бензина непосредственно при определении октановых чисел [56]. Этот метод получил, название метода распределения, а октановые числа бензинов по этому методу — октановые числа распределения (ОЧИР). [c.123]

    Для получения товарного бензина с равномерным распределением детонационной стойкости по фракциям к бензину платформинга добавляют только тот высокооктановый компонент, который кипит в интервале от 70 до ПО—130 °С (см. рис. 46). Пока в стандартах на автомобильные бензины равномерность распределения детонационной стойкости по фракциям никакими показателями не регламентируется. Однако уже сегодня при составлении рецептур товарных высокооктановых автомобильных бензинов явление фракционирования необходимо учитывать. Кроме того, при составлении рецептуры товарного бензина следует иметь в виду, что содержание ароматических углеводородов в автомобильных бензинах не должно быть более 45—50%. Это в стандартах не предусмотрено, однако опыт эксплуатации показывает, что такое содержание ароматических углеводородов является оптимальным. В авиационных бензинах содержание ароматических углеводородов нормируется специальным показателем и, как травило, компонентный состав авиационных бензинов, на заводе изменению не подвергается (воспроизводится шстав того бензина, который прошел государственные испытацийи допущен к применению в установленном порядке). [c.166]

    Нативные компоненты нефтей достаточно устойчивы в условиях недр, но могут претерпевать существенные химические изменения в лабораторных и промышленных условиях фракционирования и переработки нефти. ГАС, особенно содержащие гетероатомы в насыщенных фрагментах молекул, относятся к числу наиболее лабильных компонентов сырых нефтей. Изучать их строение, количественное распределение и свойства следует, соблюдая специальные меры, направленные на сохранение ирходной природы веществ. Такие меры предпринимались, например, в работах Американского Нефтяного Института (АНИ, США) [17—26 и др.]. В этих исследованиях все процедуры проводились в атмосфере чистого азота (примесь О2 не более 0,0002%), температура при операциях, связанных с нагревом образцов, не превышала 225°С, причем воздействие температур выше 100°С продолжалось не более 1 мин действие света, контакты с каталитически активными поверхностями исключались. [c.7]

    Сорбционные и хроматографические процессы, основанные на использовании эксклюзионных (молекулярно-ситовых) явлений — одно из важнейших современных средств фракционирования. Применение в анализе нефтяных ГАС твердых молекулярных сит (цеолитов, широкопорнстых силикагелей и стекол с узким распределением пор по размерам) ограничено из-за сильного проявления адсорбционных эффектов, которые часто действуют противоположно ситовым эффектам, что ухудшает результаты чисто эксклюзионного разделения в соответствии с размерами и формой молекул [109]. Наибольшее распространение получили методы эксклюзионного разделения па пористых, набухающих в растворителях органических полимерах (пространственно сшитых сополимерах стирола и дивинилбензола, полидекстранах и т. д.) или неорганических макропористых сорбентах с поверхностью, модифицированной прочно сорбированной или химически связанной неполярной органической стационарной фазой [117]. [c.16]

    N1, Ге, Со, Сг, Мп, 2п, Си, Hg, ЗЬ, Аз, галогены и многие другие элементы. Часть металлов входит в состав ВМС нефти в форме солей органических кислот и хелатных комплексов, в которых атом металла размещен в центре. порфинного макроцикла или в иных пустотах, могущих образовываться внутри крупных конденсированных ароматических систем однако основная масса металлов содержится в смолисто-асфальтовых веществах в виде сложных полидентатных комплексов [8], образование которых также способствует укрупнению макромолекул вплоть до коллоидных размеров. Многие из таких комплексов обладают сравнительно невысокой прочностью и легко обменивают содержащиеся в них атомы металлов на микроэлементы, присутствующие в растворителях или на поверхностях материалов, с которыми контактируют ВМС при их выделении или фракционировании [1008]. Это обусловливает значительные трудности определения истинного микроэлементного состава нативных нефтяных фракций и выявления закономерностей распределения микроэлементов в нефтях. [c.191]

    Высокая концентрация сильнокислотных центров при их достаточно равномерном распределении, а также возможность достижения высокой степени диспергирования металлов обусловили ряд преимуществ цеолитных катализаторов ГК. Повышенная активность и стойкость к отравляющему действию сероводорода и аммиака дает возможность снизить температуру и давление водорода в процессе ГК и получать бензин с более высоким октановым числом, а также гарантирует большую продолжительность межрегенерационных пробегов даже при переработке сырья с повышенной температурой кипения. Использование цеолитных катализаторов в процессах ГК, направленных на максимальное производство бензина, позволяет перейти от двухступенчатой схемы к квазиодноступенчатой, т. е. исключить стадию фракционирования после первой ступени (рис. .12). [c.113]

    Распределение боковых цепей в полимерах различной молекулярной массы частично зависит от условий полимеризации, и, возможно, от вида а-олефина, используемого в качестве со-мономера, но степень разветвленности всегда выше во фракциях с более низкой молекулярной массой. Это иллюстрирует рис. 6, на котором показана зависимость концентращш боковых цепей от среднемассовой молекулярной массы (М ) фракций, полученных при колоночном фракционировании сополимера этилена и гексена-1 с индексом расплава 0,2 и плотностью 0,94 [52]. Вторая кривая рис. 6 характеризует зависимость молекулярной массы каждой фракции от массового процента полимера, накопленного к средней точке каждой фракции. Обратная зави- [c.179]

    При исследовании распределения мышьяка и сурьмы между фракциями нефти оказалось, что половина мышьяка переходит в высокомолекулярные. Однако, при фракционировании гель-хроматографией было найдено, что сурьма пе реходит во фракции с молекулярной массой 300—1000 [261]. [c.310]

    Интегральная кривая ММР не дает наглядного представления о распределении полимерных молекул по йлине. Дифференциальная кривая ММР лишена этого недостатка. Наилучший способ ее построения - метод графического дифференцирования (несмотря на то, что даже в случае получения очень большого числа фракций данные фракционирования являются приближенными). [c.60]

    В соответствии с термодинамикой сложных иерархических систем полный термодинамический потенциал сложной макросистемы равен сумме термодинамических потенциалов подсистем. Отсюда следует, что при фазовых переходах и фракционировании МСС гауссовское распределение по термодинамическому потенциалу сохраняется. Системы с хаосом состава обладают свойством самовоспроизводимости. Таким образом, концентрационный хаос компонентного состава является причиной дополнительной корреляции системы при ФП. [c.28]

    Авторы рассмотрели два механизма кристаллизации вытянутых цепей при высоком давлении (р>400 МПа) [201—202]. На основе наблюдаемого изменения распределения молекулярной массы и ее уменьшения одновременно с растяжением цепи они предположили, что при термообработке в условиях высокого давления становится возмол ной реакция трансамидирова-ния между —МН- и —СО- группами разорванных ценных складок, принадлежащих соседним ламеллам [201]. В то же время образование ламелл значительно меньшей толщины, чем средняя длина цепи, позволило им сделать вывод, что фракционирование сопровождается кристаллизацией под давлением [202]. [c.393]

    Ключевые слова остатки нефти, фракционирование, парафино-наф-тены.гвдь-хромагографня, распределение, идентификация. [c.168]


Смотреть страницы где упоминается термин Распределение фракционирования: [c.66]    [c.37]    [c.184]    [c.19]    [c.83]    [c.24]    [c.124]    [c.189]   
Фракционирование полимеров (1971) -- [ c.341 , c.342 , c.350 ]




ПОИСК







© 2025 chem21.info Реклама на сайте