Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Кристаллы жидкие строение

    Жидкое состояние. Внутреннее строение жидкостей выяснено только Б самых основных чертах, и до настоящего времени не создано общей теории жидкого состояния. Поэтому нет еще возможности предвидеть и рассчитывать различные свойства жидкостей, как это во многих случаях можно делать для газов и кристаллов, основываясь на теориях состояния газообразных и кристаллических веществ. [c.161]


    АНИЗОТРОПИЯ — явление, состоящее в том, что физические свойства тел (механические, оптические, электрические, магнитные и др.) в отличие от изотропии, в зависимости от направления, различны. А. обусловлена строением тела, наличием кристаллической структуры или асимметрией молекул. Практическое значение имеет А. кристаллов, жидких кристаллов, полимеров. [c.26]

    Каждому данному химическому соединению или простому веществу соответствует одна форма газообразного состояния и одна форма жидкого состояния (не считая жидких кристаллов). В твердом же состоянии одному и тому же веществу могут отвечать две, три и больше форм (модификаций), различающихся по внутреннему строению и свойствам. Это явление существования нескольких модификаций данного соединения или простого вещества называется полиморфизмом. Сравнительная устойчивость той или иной из этих модификаций зависит от температуры и давления. [c.91]

    Полиэтилен имеет жидкую консистенцию при 143---288° вследствие кристалли-чности строения, и поэтому литье цдд давлением, может проводиться при меньших удельных давлениях, чем литье таких вязких материалов, как полистирол и ацетилцеллюлоза. Обычно для литья полиэтилена достаточно применять удельное дав- [c.266]

    Жидкий Р е(СО)5 — желтый, т. пл. —20°С т. кип. 103 С. Молекула — тригональная бипирамида, (Ре—С) = 180 пм (аксиальное) и 184 пм (экваториальное). Сог(СО)8 (рис. 3.126) — оранжевые кристаллы, т. пл. 51 °С. N1(00)4 — бесцветная жидкость, т, пл. —19°С, т. кип. 43 °С строение молекулы тетраэдрическое, (N1—С) = 184 пм. Как и другие вещества с молекулярной кристаллической решеткой, карбонилы практически нерастворимы в воде и хорошо растворяются в органических растворителях. Все они очень ядовиты. [c.561]

    Жидкое агрегатное состояние вещества по своему строению является промежуточным между газообразным, в котором частицы распределены в пространстве случайным образом, и твердым кристаллическим, в котором расположение частиц строго упорядочено. В расположении частиц жидкости наблюдается сложное сочетание элементов порядка и беспорядка. В отличие от газа в жидкости имеется так называемый ближний порядок, т. е. каждая частица окружена одинаковым числом ближайших соседних частиц — это число называется координационным числом. Наличие ближнего порядка в некоторой г ере роднит строение жидкостей со строением кристаллов (см. 8.3). Однако в отличие от кристаллов, в которых частицы совершают колебания около строго фиксированных положений, частицы жидкости способны к перемещению. [c.114]

    Растворимость веществ в кристаллическом состоянии в Общем значительно меньше, чем в жидком. Поэтому полная смешиваемость данных веществ в жидком состоянии еще отнюдь не означает, что они будут образовывать твердые растворы в кристаллическом состоянии. Неограниченная взаимная растворимость в кристаллическом состоянии — явление сравнительно редкое. Большей частью только вещества, очень близкие по составу и строению молекул, обладают способностью в любых относительных количествах замещать друг друга в кристаллах, образуя твердые растворы замещения. Но зато весьма распространены, в особенности в металлических системах, твердые растворы (замещения или внедрения) в пределах небольших концентраций (см. 133). [c.338]


    Например, степень кристалличности полиэтилена может достигать 80%. Наиболее выражена способность к образованию кристаллов у полиолефинов, полиамидов и полиэфиров. Кристаллическое строение имеет полимер карбин. Свойства кристаллических и аморфных полимеров существенно различаются. Так, аморфные полимеры характеризуются областью температур размягчения, т. е. областью постепенного перехода из твердого состояния в жидкое, а кристаллические полимеры — температурой плавления. [c.359]

    Теплоемкость одних и тех же веществ в жидком и твердом состоянии практически одинакова. Это указывает на то, что характер теплового движения частиц при плавлении существенно не меняется это движение сводится к колебаниям частиц около некоторых положений равновесия [174]. Величина теплоты плавления зависит от состава, строения, формы и взаимного расположения структурных единиц в кристалле. Температура плавления кристаллического тела зависит от энергии его решетки, определяемой ее основными параметрами [175], [c.158]

    Электролиз расплавленных солей проводится при температурах, незначительно превышающих температуру их кристаллизации. При таких температурах строение расплавов сохраняет некоторое сходство со строением твердых веществ. Такие свойства веществ, как объем и теплоемкость, упорядоченность кристаллической структуры и др., при плавлении изменяются несущественно. Это объясняется тем, что характер химической связи кристаллических веществ в твердом состоянии-—ионная, ковалентная, металлическая, — сохраняется и для веществ в расплавленном виде. Однако различие существует. При плавлении изменяется характер движения частиц. При повышении температуры степень неупорядоченности, имеющаяся в твердых кристаллах, возрастает и соответственно увеличивается электропроводность. Одновременно нарушается порядок расположения частиц в твердом веществе, т. е. уменьшается дальний порядок. При достижении температуры плавления дальний порядок полностью исчезает и вещество переходит в жидкость, но ближайшее окружение иона в жидком виде — так называемый ближний порядок — остается таким же, как и в твердом теле.. [c.465]

    Водородная связь обусловливает также строение воды и льда (стр. 136), жидкого и твердого аммиака (стр. 391), кристаллов кислых солей (стр. 294) и т. д. [c.108]

    АКТИВНОСТЬ ОПТИЧЕСКАЯ - отклонение (вращение) плоскости поляризованного Света при прохождении его через вещество, находящееся в жидком, газообразном, твердом состоянии (кристалл) или в растворе. А. о. является следствием асимметрического строения вещества — иона, молекулы или кристалла и связана с существованием антиподов (см. Антиподы оптические). [c.14]

    Повышенный порядок в расположении молекул у жидких кристаллов обусловлен особым строением молекул, способных взаимодействовать боковыми частями, что приводит к взаимной ориентации молекул. В зависимости от типа ориентации молекул жидкие кристаллы разделяются на несколько групп. [c.165]

Рис. 4.7. Строение жидких кристаллов Рис. 4.7. <a href="/info/478351">Строение жидких</a> кристаллов
    Ские жидкие Кристаллы отличаются более высоким порядком ориентации молекул по сравнению с нематическими. Молекулы располагаются также параллельно вдоль своих длинных осей. Центры масс молекул скоординированы. Вследствие этого жидкий кристалл имеет слоистое строение. Однако слои могут располагаться по-разному один к другому. Так, в разновидности смектической фазы а (рис, 111.56, Б) центры масс молекул в слоях лежат в плоскостях, перпендикулярных длинным осям молекулы. В этих плоскостях расположение центров масс беспорядочно. У смектической фазы б центры молекулярных масс в слоях располагаются в плоскостях, параллельных длинным осям молекул. У фазы а одна ось симметрии, а у фазы б две оси симметрии. Третья разновидность смектической фазы в наблюдается в случае гексагональной упаковки молекул в отдельных слоях. У фазы в единственная степень свободы трансляционного движения — скольжение слоев относительно друг друга. [c.244]

    В жидком состоянии энергия взаимодействия молекул соизмерима с энергией тепловых колебаний, поэтому они могут перемещаться, вращаться и колебатьсй. Сжимаемость жидкостей мала, плотность их близка к плотности твердого тела, но более заметно меняется с температурой. Внутреннее строение жидкостей выяснено только в самых общих чертах. Оно более сложное, чем строение газов и кристаллов. Сохраняя отдельные черты указанных состояний, жидкости обладают своими характерными особенностями и прежде всего текучестью. Подобно кристаллам, жидкости сохраняют свой объем, имеют свободную поверхность, обладают определенной прочностью на разрыв и т. д. С другой стороны, жидкости принимают форму сосуда, в котором находятся, что сближает жидкое и газообразное состояния. Принципиальная возможность непрерывного перехода жидкости в газ также свидетельствует о близости жидкого и газообразного состояний. [c.135]


    В. И. Касаточкина, который рассматривает графитацию как гомогенный процесс. Положения о фазовых состояниях гомогенной системы были развиты В. А. Каргиным и Г. Л. Слонимским [96] по отношению к полимерам. Под фазой они понимают гомогенную систему, находящуюся в термодинамическом равновесии. Гомогенная система, в которой нет поверхностей раздела между ее частями, может быть химически неоднородной. Понятие фаза не отождествляется с понятием агрегатное состояние . Так, твердые стеклообразные тела термодинамически являются жидкими фазами к твердым фазам относятся только кристаллические тела. Гомогенность понимается без учета неоднородностей, обусловленных молекулярным строением тела, и аморфный полимер считается гомогенным телом, а микрокристаллический полимер, в котором имеются неупорядоченные области, — гетерогенным. При этом авторы утверждают, что внутренние напряжения в полимере отражаются на форме кристаллов и ограничивают их рост. Пластинчатые и игольчатые формы вызывают меньше напряжений и потому быстрее растут. Развивающаяся кристаллизация приводит к минимуму внутренних напряжений и к наилучшим условиям для их релаксации, т. е. к уменьшению внутренней энергии. [c.203]

    Водородные связи способствуют образованию разнообразных структур и играют большую роль среди факторов, определяющих геометрические конфигурации и свойства многих химических систем. Эти связи существуют в кристаллах льда и в жидкой воде, стабилизируют спиральную форму молекул белков (наряду с ди-сульфидными связями), обусловливают полимеризацию молекул органических кислот, цепное строение бикарбонатных ионов О О [c.133]

    АНИЗОТРОПИЯ — явление, состоящее в том, что физич. свойства тол (механич., оптич., электрич., магнитные и др.) в зависимости от направления характеризуются различными величинами. Часто в-во, изотропное в отношении одних свойств, проявляет А. в отношении других. В случае однородной А. зависимость физич. свойств от направления одинакова в различных точках среды она обусловлена строением тела — наличием кристаллич, структуры или резко выраженной асимметрии молекул. Неоднородная (местная) А. во.эникает в результате односторонних деформаций тела (напр., при механич. обработке металлов). Поверхностный слой всякого тела также вызывает местную А, на границе раздела фаз (см. Поверхностные явления). Практически наиболее важны явления А, кристаллов, жидких кристаллов и полимеров. [c.114]

    Все эти особенности строения кристаллических тел должны учитываться при рассмотрении процессов формирования и развития кристаллических осадков в условиях электролиза, в частности при пропессах катодного осаждения металлов. Близость процессов электролитического выделения металлов и образования кристаллов из газообразной, жидкой или твердой фаз подчеркивается в названии электрокрисгаллтищия, предложенном для их описания В. А. Кистяковским. [c.335]

    Наибольшей адсорбируемостью на активированном угле обладают парафиновые углеводороды нормального строения, которые характеризуются неравномерным распределением сил межмолекулярного взаимодействия. Наибольшее значение имеют силы, направленные перпендикулярно оси молекул нормальных парафинов. Такой характер распределения сил взаимодействия, а также значительные дисперсионные молекулярные силы в направлении, перпендикулярном оси углеводородной цепи, обусловливают ряд явлений, свойственных углеводородам с прямыми цепями способность ориентироваться параллельно Друг другу с образованием жидких кристаллов и совместная кристаллизация углеводородов разных гомологических рядов. Высказана [4, 5] гипотеза, согласно которой наибольшая адсор бируемость нормальных парафиновых углеводородов на угле обусловлена их взаимодействием с поверхностью угля под влиянием тех же дисперсионных сил, направленных перпендикулярно к оси углеводородной цепи. [c.261]

    Основываясь на различии в кристалличности и температурах плавления твердых нефтяных парафинов различного молекулярного веса и строения, пытались применить для очистки и разделения их метод зонной плавки. Испытывались два образца заводского нефтяного парафина микрокристаллический парафин (т. плавл. 79,5— 80,6° С) и кристаллический (т. нлавл. 55° С). Второй образец заводского парафина (как можно судить по микрофотографии) по кристалличности приближается к синтетическому эйкозану, Н-С20Н42, т. е. имеет хорошо выраженные крупные кристаллы. Тем не менее этот образец, так же как и микрокристаллический нефтяной парафин (т. плавл. 79,5—80,6 С), не поддавался очистке и разделению методом зонной плавки. Причину этого Эльдиб [177 ] видит в том, что даже узкие фракции твердого парафина представляют собой сложные смеси компонентов, сильно различающиеся между собой по температурам плавления. Зонная плавка базируется на следующем принципиальном положении, вытекающем из анализа идеальной бинарной системы при замораживании системы более низкоплавкие примеси будут концентрироваться в жидкой фазе. Реализация этого положения в случае такой многокомпонентной смеси, как парафин, практически исключается, так как при этом возможно образование ди-, три- и многокомпонентных систем, имеющих близкие температуры плавления. [c.28]

    Ассоциаты различного строения являются структурными элементами алкансодержащих дисперсий, топливных и масляных фракций, нефтяных остатков. Активно исследуемым коллоидным объектом нефтяного происхождения являются алкансодержащие дисперсии. Высокомолекулярные нормальные алканы в обычных условиях, начиная с гексадекана и выше, представляют собой твердые вещества. По мере понижения температуры из нефти выделяются кристаллы алкана. Благодаря действию адсорбционных сил часть жидкой фазы ориентируется вокруг надмолекулярных структур и образует сольватные оболочки различной толщины. Сцепление кристаллов приводит к возникновению пространственной гелеобразной структуры, в ячейках которой иммобилизована часть дисперсионной среды, при этом система в целом приобретает структурную прочность. Установлено стабилизирующее действие смолисто-асфальтеновых веществ на устойчивость дисперсий алканов [88]. Влияние термообработки на снижение температуры застывания нефтяных алканов объясняется уменьшением толщины сольватной оболочки их надмолекулярных структур [131]. [c.33]

    Характерно, что в изученных условиях единственным фенольным соединением является п-циклогексилгваякол. Циклогекси-ловых эфиров гваякола получается два — жидкий и кристаллический в относительных количествах 30—32 и 68-70% соответственно. Кроме того, из неперегоняющегося остатка продуктов реакции, полученных при нагревании смеси в течение 12 час., выделен более сложный продукт в виде красивых серого цвета игольчатых кристаллов. Состав и строение его не установлены. [c.177]

    Различные виды надмолекулярной организации зависят от строения молекул, их состава, условий полимеризации, переработки, внешних условий обработки, т. е. почти от всех параметров, учитываемых при изготовлении полимеров. Размеры и формы некоторых видов надмолекулярной организации, образующихся на начальной стадии полимеризации гомополимера, показаны на примере волокнистых и глобулярных структур Уристера [21] для полиолефииов. Эти структуры получены в процессе полимеризации из газовой и жидкой фаз при низкой и высокой эффективности титановых, ванадиевых, хромовых и алюминиевых катализаторов. На рис. 2.6—2.8 воспроизводятся электронные микрофотографии образующихся таким образом полимерных структур [21]. При низкой эффективности катализатора в полипропилене формируются глобулы диаметром 0,5 мкм (рис. 2.6), а при высокой — волокна длиной в несколько микрометров (рис. 2.7). Диаметр волокна согласуется с размером боковой стороны основного каталитического кристалла и изменяется в пределах 0,37—2 мкм при изменении ширины кристалла Т1С1з в пределах 5—50 нм. Образцы полиэтилена, изготовленные с помощью катализатора ИСЦ— [c.31]

    Исходя из требований к строению и размерам молекул,с точки зрения обладания ими способностью к образованию жидких кристаллов [110... 112] и знаний о химическом составе нефти, продуктов её переработки, в том числе остаточных продуктов термических и термокаталитических превращений индивидуальных углеводородов и гетероатомных органических соединений, их искусственных и промышиенных смесей, следует предположить, что в состав мезофазы в КМ нефтяного происхождения могут входить следующие типы углеводородов и гетероатомных органических соединений  [c.35]

    ЖИДКИЕ КРИСТАЛЛЫ — термодинамически устойчивое состояние веще-стпа, промежуточное по своим свойствам между жидким состоянием и кристаллическим. На диаграмме состояния Ж- к. всегда имеют четкую замкнутую область устойчивого существования. Известно около 3000 органических веществ, способных к образованию Ж- к. Молекулы этих веществ имеют удлиненную форму, а наличие боковых ответвлений сокращает область существования Ж. к. Для Ж. к. известны две структурные формы существования 1) нематическая форма, при которой молекулы вытянуты параллельно друг другу, и 2) смектическая форма, в которой молекулы образуют слои, располагаясь перпендикулярно к плоскости этих слоев. Некоторые коллоидные системы, например водные растворы мыл, дают образования типа Ж. к., называемые лиотропными. По мере увеличения количества растворителя система становится сначала смектической, затем нематической и, наконец, переходит в изотропную жидкость. В смектических мыльных растворах молекулы мыла образуют двойные слои, обращенные полярными группами к воде, выполняющей роль прослойки между этими двойными слоями. Наличие такой структуры объясняет моющее действие мыльных растворов. Исследование Ж- к. имеет важное значение для теории строения вещества и представляет большой интерес для техники, био-логин медицины. [c.97]

    ЭЛЕКТРОН (е) — устойчивая элементарная частица с отрицательным электрическим зарядом, принятым за единицу количества электричества, и массой, равной 9 г. Э. был открыт в 1897 г. Дж. Томсоном. Э. играют основную роль в строении вещества, они являются одной из составных частей атомов. Э,, движущиеся вокруг атомного ядра, определяют химические, электрические, оптические и другие свойства атомов и л олекул. Характер движения Э. обусловливает свойства жидких и твердых тел, их плотность, электропроводность метяллов и полупроводников, свойства диэлектриков, оптические и другие свойства кристаллов и т. д. Важную роль играют ва- [c.290]

    Обсудим строение жидких кристаллов, построенных из лалочкообразных молекул (рис. 4.7). У нематических жидких кристаллов оси молекул ориентированы с небольшими отклонениями вдоль некоторого направления (рис. 4.7,а). У холестерических жидких кристаллов оси молекул ориентиро- [c.165]

    Снижение летучести в адсорбированном состоянии и разнообразие химической природы монослоев, нанесенных на неорганический адсорбент-носитель. Модифицироваиие саж и макропористых кремнеземов молекулами плоского строения, смесями молекул с макромолекулами и пленками полимеров. Экранирование активных центров поверхности. Модифицирование жидкими кристаллами. Отложение пироуглерода. Адсорбционные свойства карбокремнеземов. [c.74]

    При действии измельченной серы на тщательно защищенный даже от следов воды жидкий 50з осаждаются зеленовато-синие кристаллы двутрехокиси серы (ЗгОз). Окисел этот весьма неустойчив и сам по себе, а водой тотчас разлагается с выделением серы. Его самопроизвольный распад при обычных температурах идет в основном по схеме гЗгОз = ЗЗОз + 8. Строение его отве-  [c.337]

    В книге изложены теоретические и экспериментальные основы рентгенографии, электронографии и нейтронографии жидкостей и аморфных тел отражены общие представления о природе химических связей и межмолекулярных снл приведены основные результаты исследований строения молекул, структуры жидких металлов и сплавов, индивидуальных молекулярных жидкостей, жидких кристаллов водных растворов электролитов н аморфных тел. Изложены вопросы методики и результаты рентгенографических и электромографических исследований некоторых аморфных простейших по составу веществ и высокомолекулярных соединений. Помимо литературных источников книга содержит результаты исследований автора. [c.2]

    Цель книги — показать, как по картине рассеяния рентгеновского излучения, электронов и нейтронов определяется молекулярная структура веществ от простейших по составу до сложных биологических объектов обобщить результаты исследований строения молекул, структуры различных типов индивидуальных жидкостей, металлических расплавов, растворов электролитов и неэлектролитов, жидких кристаллов н аморфных веществ изложить теорию рассеяния рентгеновского излучения иод обычными и малыми углами, дифракции электронов и нейтронов, методику и технику эксперимепта, общие представления о природе химических связей и сил межмолекулярного взаимодействия. В основу книги положены лекционные курсы, читаемые для студентов Киевского ордена Ленина государственного университета имени Т. Г. Шевченко, специализирующихся по молекулярной физике, а также написанное автором учебное пособие Структурный анализ жидкостей (1971). [c.3]

    Искренне благодарю канд. хим. наук В. С. Мастрюкова за участие в написании главы Строение молекул канд. физ.-мат. наук Л. А. Гусакову за ценные дискуссии и материалы по жидким кристаллам доц. Я- И. Стецива за неоценимую помощь в изложении электронографической методики и структуры аморфных веществ, Е. П. Скрышевскую за помощь в оформлении иллюстраций. Особую благодарность выражаю рецензенту. Заслуженному деятелю науки и техники, профессору Г. С. Жданову, советы и критические замечания которого способствовали улучшению содержания книги. [c.3]

    Начало рентгенографии жидкостей было положено в 1916 г. П. Дебаем и П. Шер-рером. Они исследовали жидкий бензол с целью определения расстояний между атомами в молекуле. Предполагалось, что в жидкости молекулы, подобно мелким кристалликам порошка, расположены относительно друг друга совершенно хаотически. Поэтому дифракционная картина от жидкого бензола должна обусловливаться рассеянием рентгеновских лучей каждой молекулой в отдельности. По относительному расположению максимумов интенсивности на его рентгенограмме можно судить о строении молекул подобно тому, как по дифракционной картине кристаллического порошка судят о строении кристалла. Опыт показал, что дифракционные максимумы от жидкого бензола появляются в результате наложения внутри- и межмолекулярного рассеяний. Это указывало на то, что взаимное расположение молекул в жидкости не является хаотическим. Дальнейшие исследования рассеяния рентгеновского излучения в спиртах, парафинах, жирных кислотах, проведенные Г. Стюартом и Р. Морроу, В. Кеезомом, Дж. Смедтом, П. Эренфестом и др., привели к заключению, что в жидкости каждая молекула создает вокруг себя определенный порядок в расположении соседних. [c.4]

    Работа В. И. Данилова, А. М. Зубко и А. Ф. Скрышевского по рентгенографическому исследованию жидкого ортодихлорбензола о-СвН4С12, опубликованная в 1949 г., была первой в СССР, в которой определено строение молекулы по кривой распределения электронной плотности. Важность определения строения молекул жидкостей очевидна. Можно назвать ряд веществ, исследование структуры которых должно выполняться не на газе или кристалле, а именно на жидкости. Примером могут служить расплавы солей и карбоновые кислоты. Соли, как известно, в твердом состоянии существуют в виде ионных кристаллов, а в парообразном — в виде молекул карбоновые кислоты в парообразном состоянии образуют циклические димеры, а в твердой — зигзагообразные цепочки. Структура этих веществ в жидком состоянии заранее не очевидна. [c.206]


Смотреть страницы где упоминается термин Кристаллы жидкие строение: [c.573]    [c.114]    [c.76]    [c.169]    [c.220]    [c.51]    [c.86]    [c.43]    [c.242]    [c.407]    [c.148]    [c.278]    [c.399]   
Физическая и коллоидная химия (1974) -- [ c.32 ]




ПОИСК





Смотрите так же термины и статьи:

Кристалл строение

Кристаллы жидкие



© 2025 chem21.info Реклама на сайте