Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Изотопный обмен, катализаторы

    Реакция изотопного обмена между водородом и парами воды протекает медленно и существенно ускоряется в присутствии катализаторов (никель, нанесенный на окислы алюминия или хрома). Этот процесс каталитического изотопного обмена (КИО) проводят в контактных аппаратах в присутствии большого количества водяного пара. Для снижения расхода пара процесс КИО обычно дополняют фазовым изотопным обменом (ФИО), при котором изотопный обмен происходит между жидкой водой и ее парами. Это позволяет в процессе КИО обогащать дейтерием пары [c.128]


    Важное практич. значение имеют р-ции изотопного обмена Д. Константа равновесия р-ции Н2-1-02<= 2Н0 составляет 1,345 (50 К), 2,903 (200 К), 3,44 (373,15 К), 3,80 (700 К). Осуществляют ее в присут. катализатора (Р1, N1, РХЭ). Для р-ции НОО, ,-Н 02,г) г 020( ,,-Н НО, , (где ж-жидкость, г-газ) константа равновесия 96 (223,15 К), 2,92 (323,15 К), 2,40 (373,15 К). Для р-ции Н20,.,н-Н0 а ноо,,) + Н2,г, константа равновесия 4,69 (223,15 К), 3,37 (323,15 К), 2,69 (373,15 К). Изотопный обмен между водой и [c.16]

    Реакция изотопного обмена некоторых ароматических углеводородов была проведена также в присутствии алюмосиликатного катализатора, меченного радиоактивным изотопом водорода — тритием. Для этого катализатор насыщали водой, содержащей тритий (окисью трития). Опыты по изотопному обмену на катализаторе, содержащем воду, меченную тритием, проводили в тех же условиях, что и на дейтерированном катализаторе давление — атмосферное объемная скорость 0,10—0,15 час температура 150-200 . [c.251]

    Изотопный обмен углекислого газа на катализаторе МпО различного состава [c.190]

    В работе [171] м а сс-спектр о м ет р и ч ес к и м методом изучен изотопный обмен пропилена с D2O на олово-сурьмяных катализаторах разного состава и показано, что образуются две промежуточные формы —аллил и карбоний-ион соотношение этих форм зависит от природы поверхности катализатора и степени ее восстано вления. [c.62]

    ИЗОТОПНО-ОБМЕННЫЙ МЕТОД ИССЛЕДОВАНИЯ СТЕПЕНИ ГИДРАТАЦИИ ПОВЕРХНОСТЕЙ КАТАЛИЗАТОРОВ Л. Т. Жу р а в л ев [c.52]

    Авторы статьи приводят таблицу, в которой сравнивается количество воды, определяемой изотопно-обменным способом и обычным методом, по потере веса при прокаливании для различных катализаторов. [c.53]

    Кислородный изотопный обмен моя ет быть использован также для характеристики связи кислорода на поверхности металлических катализаторов. Первые исследования кислородного обмена на металлах были предприняты Л. Я. ]Марголис и сотр. [15]. [c.50]

    Предварительные данные по изотопному обмену кислорода газовой фазы с кислородом решетки показали, что в интервале температур 350—550 С доля обменявшегося кислорода возрастает при переходе от окиси молибдена к окиси висмута. В обмене участвует не только кислород поверхности, но и кислород из объема решетки. Обмен на всех катализаторах изучался после их тренировки в вакууме при 450 С. [c.151]

    В работе [10] была использована реакция o-Hj п-Н-2 при —196° С для выяснения характера адсорбции насыщенных углеводородов на металлах на модельной системе никель — циклогексан. Получены данные о влиянии адсорбции циклогексана (а также продуктов его дегидрирования) при 30—100° С на скорость реакции ор/мо-пара-конверсии водорода (1) и изотопный обмен водорода с дейтерием (2) на никелевом катализаторе при —196° С. Реакция (1) ускоряется при адсорбции циклогексадиена и бензола. В аналогичных условиях реакция (2) не протекает. Эти данные трактуются как результат образования при адсорбции циклогексана промежуточных состояний, обладающих радикалоподобными свойствами, что и вызывает протекание реакции (1) по физическому механизму. Концентрация таких соединений с радикалоподобными свойствами увеличивается с ростом адсорбции. Отсюда следует, что диссоциативная адсорбция насыщенных соединений на металлических катализаторах является предварительной стадией в процессе дегидрирования при высоких температурах. [c.48]


    Изотопный обмен между соединениями имеет большое значение при изучении механизма реакций. Для реакций обмена изотопов водорода оказались эффективными такие катализаторы, как Ni, Fe, Pt и различные окислы, включая ZnO, SiO —Al Qa и fgOj. Некоторые из этих соединений служат также катализаторами для изотопного обмена кислорода и азота. [c.314]

    Преимущество скелетных (Медиых катализаторов для гидроге-нолиза глюкозы, по-видимому, заключается в том, что, во-первых, на этих катализаторах акарость гидрирования карбонильной группы моноз меньше, чем на никелевых. Известно, что пара-ортопревращение и изотопный обмен водорода протекает при более высоких энергиях активации на железных Е (га-о-Нз) 34 кДж/моль] и медных [ (п-о-Нг) 52 кДж/моль] скелетных катализаторах, чем [c.47]

    Кислород активно адсорбируется всеми металлами, за исключением золота. Металлы переходной группы обладают более выраженными адсорбционными свойствами, чем непереходные. Достаточно сильная адсорбция инертных молекул, таких как N2 и СО2, проявляется у металлов, расположенных левее VIII группы, начиная с железа и подобных ему элементов. Из данных по изотопному обмену известно, что хемосорбция молекул всегда сопровождается некоторым ослаблением или разрывом молекулярной связи, благодаря чему металлы имеют все исходные основания действовать как катализаторы многих реакций. [c.23]

    На окислах с равновесным содержанием кислорода простейшая каталитическая реакция, какой является изотопный обмен в молекулярном кислороде, протекает с участием кислорода окисла. Скорости гомомолекулярного и гетерообмена для окислов с равновесным содержанием кислорода совпадают. Для окислов Т102, УгОз, СггОз, 2пО, РегОз, СиО, N 0, МпОг, С03О4 каталитическая активность в реакции гомомолекулярного обмена изменяется в весьма широком интервале (на 8 порядков), а энергии активации различаются более чем на 120 кДж/моль. Таким образом, каталитическая активность в отношении гомомолекулярного изотопного обмена кислорода может служить характеристикой энергии связи и реакционной способности кислорода. Это подтверждается на примере реакций окисления водорода, метана н разложения N0. Активность исследованных окислов во всех этих реакциях менялась симбатно активности катализаторов в реакции гомомолекулярного обмена. [c.89]

    В растворе ацетальдегида в тяжелой воде (ОаО) медленно образуются СНгОСНО, СНОзСНО и СОзСНО. Этот процесс значительно ускоряется под действием как кислоты, так и щелочи. Каким образом эти катализаторы ускоряют изотопный обмен  [c.141]

    Методика изучения реакции дейтеро-водородпого обмена на алюмосиликатном катализаторе была описана ранее [5]. Она включала следующие операции а) дейтерирование алюмосиликатного катализатора б) проведение опыта но изотопному обмену [c.247]

    Изотопный обмен в присутствии металлических катализаторов применяют редко, поскольку селективность таких процессов невысока. Дейтерированный тетралин очень высокой изотопной чистоты получают при контакте тетралина с D2O в присутствии Pt02. [c.79]

    Трепнел допускал возможность хемосорбции на серебре молекулярных ионов О2, считая, что концентрация последних и скорость их образования зависят от температуры и степени заполнения поверхности серебра Принимается, что уже при 290 °С кислород может на поверхности серебра заметно диссоциировать на атомы, т. е. в этих условиях одновременно могут существовать молекулярный и атомарный кис/юрод. Это предположение основано на большой подвижности кислорода на серебре, которая обнаруживается методом изотопного обмена Большая подвижность кислорода указывает ка малую прочность его связи с кристаллической решеткой серебра. В кристаллических структурах обычных окисных катализаторов подвижность кислорода мала,, а изотопный обмен кислорода начинается при температурах на 100—200 °С выше температуры начала каталитической реакции , тогда как на серебре изотопный обмен заметен как раз в диапазоне температур, в котором происходит окисление этилена. [c.273]

    Рнс.2.13. Изотопный обмен кислорода в фрагменте миозина. 1. Изотопный обмен О, который, благодаря образованию комплекса М .АДФ с фрагментом миозина , выступает в качестве катализатора [2.4]. Рабочая частота для наблюдения спектра Р равна 146 МГц (это соответствует рабочей частоте для Н 360 МГ . (а) Изменение концентраций отдель1шх изото-померов неорганического Фосфата P . Н3Р О4 (V), НзР °Оз О (+), Н3Р О2 О2 (х), НзР 0 °0з (А и НзР °04 ( ). (Ь) Спектр ЯМР Р изотопомера Р,- спустя 23,5 ч после начала реакции (вверху приведен экспериментальный спектр, внизу - теоретический спектр, моделирующий экспериментальный). [c.87]


    Анилин-2,3, 4, 5,6-Нб получали [7] изотопным обменом, протекающим при нагревании смеси анилина, В0ДЫ-Н2 и едкого-Н натрия в присутствии никель-алюминиевого катализатора Ренея. При помощи обмена были получены также следующие производные ацетанилид-2, 3, 4, 5, б -Нб. 2,4,6-триброманилин-3,5-Н2 и 4 -бромацетанилид-2, 3, 5, б Результаты изотопных анализов свидетельствуют о том, что относительное содержание дейтерия в орто-, мета- и пара-положениях в анилине, полученном Б результате обмена, составляет соответственно 75, 11,5 и 13,4%. [c.106]

    Катализатор — палладий, нанесенный на асбест — активи-руют водородом-Нз in situ при атмосферном давлении и 240° в течение 4 час. После этого понижают до 225° температуру сосуда, в котором проводят изотопный обмен, и пропускают над катализатором смесь пиридина и водяных паров из перегонной колбы, содержащей 5 г пиридина и 6 г воды-HL Выходящие пары конденсируют и возвращают в колбу для повторного пропускания над катализатором (примечание 1). После достижения равновесия смесь извлекают из установки и удаляют большую часть воды безводным поташом. Активируют новую порцию катализатора (как описано выше) и осуществляют новый цикл обмена. В результате проведения восьми обменных циклов в продукте остается не более 1 ат. % водорода (примечание 2). После сушки над окисью бария и двукратной перегонки на микроколонке для фракционирования получают 3.5 мл (—55%) конечного продукта. [c.199]

    Изотопный обмен кислорода является одним из методов, позволяющих установить подвижность атомов или молекул кислорода на поверхности и в решетке твердого тела. За последние годы кислородный изотопный обмен изучался рядом исследователей. Работы Винтера [139], Вайнштейн и Туровского [140], Борескова и Касаткиной [141 ] показали, что кислород решетки окислов металлов малоподвижен. Обычно заметный кислородный изотопный обмен на окисных катализаторах протекает при температурах на 100—200° выше температуры каталитического процесса (табл. 12). Исключением являются работы Карпачевой и Розена [142], которые обнаружили на МпО2, СиО и УаОб кислородный изотопный обмен при [c.41]

    Отщепление радиоактивной углекислоты при нагревании этих соединений в отсутствие кислорода в газовой фазе показывает, что пленка содержит не только атомы углерода, но и атомы кислорода. Еще до окончания образования пленки каталитическая активность серебра изменяется, после чего она достигает стационарного значения. Следует отметить, что наблюдавшееся торможение окисленртя этилена образующейся окисью этилена связано с блокирующим действием пленки. На стационарной поверхности катализатора тормозящее действие окиси этилена отсутствует. Химическая природа пленки неясна. Пленка очень медленно окисляется при температурах синтеза и с трудом снимается полностью окислением при 260°. Изотопный анализ показывает, что при введении в смесь меченых кислородных соединении пленка образуется практически целиком из этих соединений и не вступает в изотопный обмен с газовыми молекулами. [c.72]

    В литературе опубликован ряд исследований по изотопному кислородному обмену на окислах металлов — полупроводниках, и почти не имеется данных по кислородному обмену на металлических окислительных катализаторах — платине и серебре. Влияние добавок на скорость кислородного изотопного обмена не исследовалось имеются лишь данные Борескова с сотрудниками по ускорению обмена на пятиокиси ванадия с примесью сульфата калия [290]. Суш,ественную роль в протекании процесса каталитического окисления различных веш еств играет подвижность кислорода, адсорбированного на поверхности контактов, мерой которой является изотопный кислородный обмен. Марголис и Киселев [291] исследовали изотопный обмен кислорода на типичных окислительных контактах металлическом серебре (катализатор окисления этилена в окись этилена) с добавкой галоидов Ag l, AgJ и на окиси меди (катализатор окисления пропилена в акролеин) с добавкой окислов лития, хрома, висмута и сернокислой меди. [c.193]

    Состав продуктов реакции окисления зависит от характера химических связей адсорбированных кислорода и углеводорода с поверхностью контакта и от химических свойств катализатора. Эти свойства твердого тела зависит от элементов и соединений, входящих в его состав, а также от характера посторонних микродобавок. Нанрпмер, прочность связи адсорбированного кислорода с серебром и платиной (типичными катализаторами) различна. На платине изотопный обмен адсорбированного О2 с газообразным начинается только при 300°, реакция же окисления углеводородов протекает с большой скоростью при температуре ниже 100°. На серебре при температуре реакции окисления этилена кислород поверхности легко подвижен. [c.230]

    Изменение активности при промотировании. Во многих случаях механизм промотирования заключается в синтезе новых АКЦ на поверхности. Так, например, по данным Борескова и Горбунова [133] введение в никелевый катализатор 2% хрома ускоряет изотопный обмен в азоте без снижения энергии активации (19 500 кал X Хмоль- ) в 4,5 раза, 5% —в 10 раз. Поскольку активность центров не увеличивается ( = onst), причина может быть лишь в увеличении числа АКЦ. Но увеличение числа АКЦ в 10 раз показывает, что не только вся поверхность непромотированного никеля не была активной, но что АКЦ составляли никак не больше 10% ее. [c.93]

    На рис. 1 представлена схема изотопной обменной системы этих авторов. Главной частью обменной системы являлась газовая циркуляционная система, состоящая из парортутного диффузионного насоса (Р), двойного, ртутного затвора (С), измерительной камеры с платиновой нитью (К) и реакторной трубки (V), с помещенным в ней катализатором. Направление потока через систему указывается стрелками. Суть метода заключается в следующем. Пусть катализатор содержит воду на своей поверхности лишь с одним изотопом водорода (например, легкая вода НгО). В термостатированном сосуде (R) находятся иодяные пары чистой окиси дейтерия D2O. Из сосуда (R) в газоциркуляционную систему вводится определенное количество паров тяжелой воды. После впуска давление в циркуляционной системе составляет около 20—25 мм рт. ст., причем с таким давлением диффузионный ртутный насос, примененный авторами статьи, способен проводить циркуляцию со скоростью около 500 сж .в минуту. После достаточного количества циркуляционных циклов обменная реакция проводится полностью, т. е. наступает статистическое равновесие. Для измерения изотопного состава паров воды часть паров отсекается ртутным затвором (С) в измерительной камере (К) с платиновой нитью. Остальная часть паров продолжает циркулировать по укороченному пути1 После измерения изотопного состава затвор (С) открывается и восстанав-яивается прежняя циркуляция паров. [c.52]

    Остается заключить, что хотя лимитирующие этапы этих реакций различны, каталитическая активность зависит от одного и того же свойства окислов, меняющегося в ряду рассмотренных катализаторов. Естественно иредиоложить, что таким свойством является энергия связи кислорода на поверхности окисла. При изотопном обмене эта величина определяет энергию активации адсорбции и десорбции кислорода, а при окислении водорода — энергию активации взаимодействия водорода с кислородом на поверхности катализатора. Аналогично и для других реакций окисления энергия активации взаимодействия окисляемого вещества с кислородом поверхности катализатора может зависеть от энергии связи кислорода. [c.53]

    Со(Ыру)2(СМ)2, Со(Ь1руХСН)з И Со(СЫ)б , причем последний преобладает при соотношениях СМ Со > 6. Растворы поглощают водород в количестве 10% от теоретического при СЫ Со = 2 и 90% при СМ Со > 6. Наиболее активным катализатором гидрирования, по-видимому, является НСо(ЫруХСМ)з. Исследование кинетики гидрирования, а также данные по изотопному обмену свидетельствуют о том, что процесс протекает по уравнениям (27) — (29) и включает промежуточное образо-, вание органических производных кобальта. Такой механизм сходен с механизмом гидрирования бутадиена, катализируемого НСо(СМ)1 , и отличается от механизма восстановления стирола в присутствии этого же соединения. [c.20]

    Если рассматривать обратимое образование ионов карбония как окислительновосстановительный процесс, то каталитическая активность окислов элементов группы хрома и металлов VIII группы представляется более естественной, чем активность кислотных реагентов. Известно, например, что окислы хрома способны выступать в роли не только гомолитических, но и гетеролитических окислителей, т. е. акцепторов гидридных ионов [79]. Кроме того, как отмечалось выше, отрыв гидридных ионов не является единственным способом превращения алканов в карбокатионы к тому же результату может привести отрыв атома водорода группы С—И и потеря одного электрона в следующей стадии. Подобные процессы легко реализуются на переходных металлах, тогда как отрыв гидридного иона требует высокой кислотной силы ионных катализаторов. Действительно, данные об изотопном обмене водорода насыщенных углеводородов с газообразным дейтерием на поверхности металлов (например, на платине или никеле [13]) свидетельствуют о легкости диссоциативной адсорбции алканов с образованием на поверхности катализатора адсорбированных атомов водорода и алкильных радикалов. [c.22]

    На Ш-пленке обмен протекает при низких температурах, катализатор не отравляется в процессе реакции, основные начальные продукты содержат один атом дейтерия. Авторы предполагают, что на поверхности Ш могут образовываться алкильные радикалы (моноадсорбированные углеводороды), достаточно устойчивые при низких температурах. Алкильные радикалы обнаруживают слабо выраженную тенденцию подвергаться обратной диссоциации с образованием а,а-, а,р- и сс, у-ди-адсорбированных форм. В области температур ниже —20° С изотопный обмен н-бутана протекает без осложнений его другими реакциями. При температурах О— 100° С образуются прочно адсорбированные формы и последующий обмен происходит значительно медленнее, чем на чистой поверхности. При температуре 130° С происходит гидрогенолиз [78] с образованием метана, этана, пропана. Молибден и титан при обмене на них этана с дейтерием [74] ведут себя аналогично. Способность вольфрама вызывать обратимое образование алкильных радикалов относится даже к таким сравнительно неустойчивым соединениям, как циклопропан и метил-циклопропан. В присутствии других металлов происходит раскрытие цикла, но не реакция обмена [79]. Следовательно, обратимое образование циклопропиленовых радикалов возможно только на Ш. [c.58]

    Для РЬ характерна высокая степень взаимопревращений алкильных радикалов с а,а- и а,Р-диадсорбированными формами. Так, например, в начальной стадии обмена метана на родии [80] образование С04 происходит даже в большей степени, чем на никеле. Родий способствует также образованию СаВа при изотопном обмене этана. На родии наблюдается иногда самоотравление [81] в результате образования прочно адсорбированных форм при диссоциации углеводорода. Родий является одним из наиболее активных катализаторов гидрогенолиза углеводородов [78]. [c.58]

    Платиновые металлы обладают высокой способностью активировать водород, в соответствии с этим на них легко протекают процессы рекомбинации атомов водорода, о-га-превращения, гомомолекулярный изотопный обмен водорода. Гидрирование олефиновых углеводородов легко происходит на всех платиновых металлах, на окислах РЮа и КиОа- По Бику [95], лучшим катализатором этих процессов является КЬ. [c.67]

    Интересны работы по дейтерированию этилена над напыленными пленками металлов. Так, Кембол [232] изучал дейтерирование и обмен этилена на пленках W, N1, КЬ, Ре при — 100°С. Целью этой работы было выяснить, есть ли связь между изотопным обменом и дейтерированием этилена. Низкая температура была выбрана для того, чтобы скорости реакции были достаточно низкими и благодаря этому можно было бы определить начальные продукты распределения. Кроме того, при столь низких температурах ранее не были измерены и сравнены активности ряда металлов (в работах Бика были использованы намного более высокие температуры). Найдено, что на всех исследованных катализаторах изотопный обмен и дейтериро-сание этилена идут с достаточно высокими и сравнимыми скоростями. Однако распределение продуктов обмена, полученное на существенно отличается от распределения продуктов на других металлах и находится в соответствии с поведением вольфрама в каталитическом изотопном обмене этапа с Од. [c.87]


Смотреть страницы где упоминается термин Изотопный обмен, катализаторы: [c.44]    [c.667]    [c.330]    [c.300]    [c.439]    [c.854]    [c.53]    [c.66]    [c.70]    [c.76]    [c.91]   
Химическая кинетика и расчеты промышленных реакторов Издание 2 (1967) -- [ c.299 ]

Химическая кинетика и расчеты промышленных реакторов Издание 2 (1967) -- [ c.299 ]

Химическая кинетика и расчеты промышленных реакторов (1964) -- [ c.314 ]

Химическая кинетика м расчеты промышленных реакторов Издание 2 (1967) -- [ c.299 ]




ПОИСК





Смотрите так же термины и статьи:

Изотопный обмен

Обмен изотопный Изотопного обмена



© 2025 chem21.info Реклама на сайте