Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Вулканизаты механические

    На снижение активационного барьера окисления существенное влияние оказывают серные связи, образующие сетку вулканизатов и способные к легкой перегруппировке при тепловом и механическом воздействии. Вследствие подвижности структур вулканизатов механические напряжения, концентрирующиеся при деформациях в отдельных узлах сетки, легко перераспределяются. Малопрочные полисульфидные связи вулканизатов, легко и необратимо разрушаясь при тепловом воздействии, под влиянием механических напряжений разрушаются обратимо (перегруппировываются). Отсюда вытекает необходимость различных рецептурных приемов (выбор различных вулканизующих групп) для по- [c.217]


    Данные, приведенные на рис. 10 и 11, свидетельствуют о том, что по мере увеличения степени разветвленности и снижения молекулярной массы исходных каучуков соответствующие резины характеризуются большими механическими потерями и большим теплообразованием при циклическом деформировании с постоянной амплитудой. Наблюдаемые изменения являются следствием увеличения различных дефектов в сеточной структуре вулканизатов, вызванных разветвленностью и понижением молекулярной массы полимерных цепей. [c.89]

    Выше мы кратко рассмотрели зависимость от молекулярной структуры эластомеров технологических свойств сажевых смесей и основных физико-механических свойств вулканизатов. Можно указать на ряд других свойств резин, имеющих важное значение при конструировании различных резино-технических изделий, такие как усталостная выносливость, ползучесть, остаточные деформации и др., улучшение которых связано с получением однородных материалов — однородных сеточных структур, что в свою очередь, опирается на внедрение каучуков с определенным молекулярным составом. Весьма существенным является также использование растворимых вулканизующих групп и интенсификация процессов смешения. [c.92]

    По физико-механическим показателям наполненные вулканизаты на основе СКД-2 и СКД-3, приготовленные в соответствии со стандартной рецептурой, близки к резинам на основе СКД  [c.194]

    Приведенные выше данные свидетельствуют о непосредственной связи технических свойств полибутадиенов с их молекулярными параметрами микроструктурой, молекулярной массой, молекулярно-массовым распределением и разветвленностью полимерных цепей. Однако качество СК до настоящего времени оценивается большим числом показателей, характеризующих технологические и физико-механические свойства резиновых смесей и их вулканизатов. Оценка качества каучуков, и в частности бутадиеновых, по их молекулярным параметрам представляется более точной и объективной, но количественное определение молекулярной массы, ММР и разветвленности требует применения сложной (и дорогостоящей) физической аппаратуры, трудоемких методов и поэтому не нашло применения в промышленной практике. В последние годы был проведен цикл исследований, показавших, что достаточно [c.195]

    Модификация диеновых эластомеров не только улучшает технологические и физико-механические свойства смесей и вулканизатов в условиях существующей технологии, но и открывает ряд возможностей в интенсивно разрабатываемых новых процессах получения литьевых композиций и гранулирования каучуков. В первом случае целесообразно исследовать смесь, содержащую высокомолекулярный полиизопрен с функциональными группами и низкомолекулярные жидкие полимеры, при нагревании которой в присутствии сшивающих агентов из маловязкой наполненной системы образуется вулканизат с заданными свойствами, определяемыми в значительной степени присутствием высокомолекулярного полиизопрена. В другом случае может быть использовано частичное структурирование модифицированных полимеров для облегчения их грануляции или совмещение стадий модификации в массе и грануляции [62]. [c.240]


    Вулканизаты из бутадиен-стирольных каучуков значительно меньше сохраняют значения сопротивления разрыву, относительного удлинения и сопротивления раздиру при повышенных температурах (100°С) и характеризуются менее высокой эластичностью, более высокими механическими потерями и повышенным теплообразованием по сравнению с вулканизатами из натурального каучука, а также уступают им по сопротивлению многократным деформациям изгиба, растяжения, сжатия и разрастанию трещин и текучести. [c.266]

    Высокими физико-механическими свойствами обладают вулканизаты сополимеров, содержащих 60—70% (мол.) этилена. При дальнейшем увеличении содержания пропилена в сополимерах сопротивление разрыву и эластичность их вулканизатов уменьшается. [c.312]

    В связи с отсутствием в полимерной цепи полиизобутилена двойных связей он не способен вулканизоваться обычной серной вулканизацией. Однако в определенных условиях, под действием перекисной системы вулканизации он может структурироваться с образованием вулканизатов, обладающих высокими физико-механическими свойствами. [c.339]

    Физико-механические свойства вулканизатов, их стойкость к старению и воздействию агрессивных сред в значительной степени определяются типом полимера. Например, сопротивление разрыву ненаполненных вулканизатов повышается при увеличении вязкости по Муни и уменьшении непредельности бутилкаучука. Способность бутилкаучука к кристаллизации при растяжении обусловливает получение вулканизатов с высокой прочностью без применения [c.350]

    Вулканизацию смесей проводили при 143 °С в течение 50 или 60 мин. Физико-механические свойства вулканизатов на основе БНК, содержащего 45 ч. (масс.) канальной сажи, представлены ниже  [c.363]

    Текучесть солевых вулканизатов проявляется особенно при повышенных температурах [1, 2]. Текучесть вулканизатов легко устраняется при введении в состав резиновых смесей небольших количеств тиурама, серы, перекисей и других вулканизующих агентов, обеспечивающих образование в структуре вулканизата ковалентных связей. Сочетание стабильных ковалентных связей с ионными способствует значительному улучшению общего комплекса свойств вулканизатов, по сравнению с вулканизатами, содержащими только ионные или ковалентные связи [1, 7]. К необычным свойствам солевых вулканизатов относится также способность их растворяться в определенных условиях [9, 10]. При использовании растворителя, состоящего из бензола с небольшими добавками этанола (10 1), вулканизаты на основе СКС-30-1 с любыми катионами растворяются при обычной температуре. После испарения растворителя пространственная вулканизационная структура восстанавливается, о чем свидетельствуют высокие физико-механические свойства пленок, полученных из раствора. [c.402]

    Оптимальные свойства резин различного целевого назначения зависят как от абсолютного количества, так и от соотношения прочных и лабильных межмолекулярных связей [1]. Лабильные связи, образующиеся в процессе серной вулканизации, вследствие высокой реакционной способности снижают термическую и термоокислительную стойкость вулканизатов, являясь одной из важнейших причин их старения [2]. Введение в каучуки карбоксильных групп позволяет создавать сетку из лабильных и одновременно инертных по отношению к углеводородным цепям солевых групп, однако вследствие склонности к скорчингу, быстрого падения физико-механических показателей с ростом температуры и некоторых других недостатков, эти каучуки пока не нашли широкого промышленного применения. [c.405]

    Из данных, представленных в табл. 8 видно, что наиболее высокие механические свойства имеют вулканизаты на основе жидких каучуков, содержащие концевые гидроксильные группы. [c.444]

    По комплексу свойств силоксановые вулканизаты существенно отличаются от всех других резин, а по отдельным из них значительно превосходят вулканизаты на основе большинства органических каучуков. Для них характерны 1) более высокая термическая стабильность на воздухе и в вакууме 2) лучшая морозостойкость 3) повышенная стойкость к озону и к атмосферным воздействиям 4) лучшие физико-механические свойства при высоких температурах 5) значительно более высокая и селективная газо- и паропроницаемость 6) более высокая стойкость к коронному разряду 7) прекрасные диэлектрические характеристики, [c.490]

    Озоностойкость силоксановых вулканизатов характеризуется отсутствием изменений их механических свойств после 100-часовой экспозиции при 30—70 °С и концентрации озона 0,1% (об.) как в статических, так и в динамических условиях. Органическая резина, даже содержащая антиозонанты, растрескивается в течение 1 ч уже при концентрации озона 0,0001% (об.) [72, с. 143]. [c.494]

    Природа поперечных связей в эластомерах оказывает значительное влияние на их физико-механические свойства. Так, алло-фановые и биуретовые структуры придают полиуретанам сочетание высокой твердости и эластичности [56]. Уретановые связи характеризуются улучшенной термической стабильностью по сравнению с двумя предыдущими структурами. При вулканизации уретановых каучуков серой образуется лабильная сетка, способная к перестройке при воздействии напряжений. Серные вулканизаты, как правило, имеют высокие значения сопротивления раздиру [57]. Относительно прочные С—С-связи снижают у эластомеров остаточные деформации. [c.542]


    Физико-механические свойства наполненных вулканизатов [c.566]

    Для вулканизатов каучуков, содержащих концевые меркаптогруппы и имеющих одинаковую степень разветвленности, наблюдается влияние молекулярной массы на физико-механические свойства [7, 9]. [c.566]

    В табл. 4 приведены физико-механические свойства вулканизатов основных марок жидких тиоколов, выпускаемых в СССР, и некоторых марок, выпускаемых в США. [c.566]

    Несмотря на некоторое различие в условиях и рецептурах отверждения вулканизаты полисульфидных полимеров с одинаковой степенью разветвленности имеют близкие физико-механические свойства. [c.566]

    Физико-механические свойства вулканизатов на основе гомо- [c.582]

    Латексы полимеров с небольшим количеством карбоксильных групп находят широкое применение в различных областях латексы с высоким содержанием карбоксильных групп могут с успехом применяться в качестве добавок для модификации свойств (для загущения, стабилизации, агломерации) обычных каучуковых латексов. Функциональные группы карбоксилатных латексов легко вступают в реакции с поливалентными металлами, образуя своеобразные вулканизаты, обеспечивающие высокие физико-механические показатели. [c.607]

    Смеси вулканизовали в две стадии - в прессе 30 мин. при 150°С и в воздущном термостате 24 часа при 200 С. Физико-механические показатели вулканизатов определяли в соответствии с ГОСТ 270-75. [c.178]

    Название данного раздела соответствует очень эффективной модели простой поверхности ослабления , предложенной Смитом [41]. Эта модель опирается на рассмотрение вязкоупругого поведения сплошных полимерных тел, т. е. на представление, которое должно сводиться согласно принципу температурно-временной суперпозиции внешних параметров нагружения-напряжения, скорости деформации и температуры к соответствующим молекулярным состояниям. Если критерий разрушения действительно имеет единые пределы молекулярной работоспособности, то построенные кривые приведенного напряжения Б зависимости от деформации при разрушении в различных экспериментальных условиях должны ложиться на одну обобщающую кривую (рис. 3.6). Эта концепция справедлива применительно к большому числу натуральных и синтетических каучуков и вулканизатов при однотипных механических йены- [c.73]

    Пласто-эластические свойства резиновых смесей и физико-механические показатели вулканизатов бутадиенстирольного маслонаполненного каучука с сажей ХАФ [c.184]

    Пласто-эластические свойства резиновых смесей и физико-механические показатели вулканизатов каучуков, наполненных сажами и маслом ПН-6 [c.188]

    Структурные изменения вулканизатов при нагревании до 100° в азоте происходят только за счет распада и перегруппировки серных связей, причем характер этих изменений не зависит от наличия в вулканизатах механических напряжений. При нагревании вулканизатов в кислороде, когда процессы деструкции и структурирования развиваются за счет присоединения кислорода, приложение механических напряжений изменяет соотношение скоростей этих одновременно нротекаюш,их процессов. Как видно из рис. 153, , модуль напряженного вулканизата растет с меньшей скоростью, чем ненапряженного, однако разрушение первого вулканизата наступает значительно раньше, чем второго. Ниже приводится объяснение этого явления. [c.215]

    Аналогичные закономерности сохраняются и для наполненных резин. Влияние молекулярного строения каучуков на свойства вулканизованной сажекаучуковой системы выражается в существовании корреляции между различными физико-механическими по казателями и числом эластически эффективных узлов сетки, соот ветствующих ненаполненных вулканизатов [48]. [c.89]

    Влияние молекулярной массы на физико-механические показатели наполненных вулканизатов на основе каучука СКДЛ [48]  [c.93]

    Вулканизаты на основе бутадиеновых каучукоб всех типов характеризуются удовлетворительными физико-механическими показателями только в присутствии активных наполнителей. В ка  [c.186]

    Для использования в шинной иромышленности рекомендуется полимер с AI (3 3,5) 10 и MwlMn = 2,5—3,0 с удовлетворительными физико-механическими и технологическими свойствами. Такой тип каучука в настоящее время освоен промышленностью. Резины, полученные на его основе, характеризуются высоким сопротивлением разрыву и эластичностью как при 20, так и при 100 °С. Кроме того, для них характерна высокая износостойкость и морозостойкость. По этим показателям вулканизаты на основе СКД значительно превосходят вулканизаты из НК. Вместе с тем для изготовления, например, целого ряда резинотехнических изделий, кабелей тонкого сечения, резиновой обуви СКД с таким ММР неприемлем. Для удовлетворения потребителей таких изделий освоен выпуск каучука с MJMn = 4,0 5,0. [c.191]

    В последнее время промышленностью СК начато производство маслонаполненного каучука СКД, содержащего от 20 до 30 ч. (масс.) ароматического масла. Введение ароматического масла в каучук приводит к улучшению обрабатываемости резиновых смесей при сохранении высоких механических свойств вулканизатов на его основе [70, 71]. Использование маслонаполненного таучука СКДМ позволяет получить протекторные резины с меньшей остаточной деформацией, чем у аналогичных резин из СКД [72]. Применение СКДМ-25, каучука с 25 ч. (масс.) масла, в промышленности РТИ позволило упростить процесс изготовления обкладочных резин для транспортерных лент [73] и заметно сократить затраты на их производство. Для наполнения маслом можно использовать также высокомолекулярный полимер (вязкость по Муни при 100°С 70—80) с узким ММР (М /Л = 2,0). [c.191]

    Микроструктура полиизопрена оказывает решающее влияние на физико-механические свойства резин на его основе. Прочность ненаполненных вулканизатов минимальна при суммарном содержании 1,2- и 3,4-звеньев 20—60% (рис. 3) [13]. Скачок на кривой (см. рис. 3) обусловлен прежде всего возможностью плотной упаковки регулярно построенных макромолекул и кристаллизации их в условиях деформации. Следует отметить, что полимеры с высоким содержанием 1,2- или 3,4-звеньев характеризуются очень малыми значениями эластичности (рис. 4). При содержя--нии 1,2- и 3,4-звеньев близком к 100% как каучук, так и вулканизаты на его основе сильно закристаллизованы. [c.203]

    Физико-механические свойства вулканизатов в большой мере зависят от соотношения звеньев этилена и пропилена в сополимере. Вулканизаты сополимеров, содержащих 73% и больше звеньев этилена, полученных при полимеризации на каталитической системе УСЦ-Ь (ЫЗО-С4Н9) 2А1С1, имеют высокое остаточное удлинение, что можно объяснить наличием в молекулярной цепи сравнительно длинных последовательностей звеньев этилена, ухудшающих релаксационные свойства сополимеров. Блоки с длинными последовательностями звеньев этилена, способные кристаллизоваться, действуют как узлы поперечных физических связей и таким образом, по-видимому, оказывают влияние на подвижность молекул в. соседней аморфной фазе [46]. Наличие микрокристаллической фазы в сополимерах увеличивает сопротивление разрыву невулканизованных резиновых смесей. [c.312]

    Учитывая плохие механические свойства ненаполненных вулканизатов, исследовались резины, усиленные 50 ч. (масс.) сажи HAF или ISAF. По физико-механическим показателям резины из ЦПА заметно уступают вулканизатам других непредельных каучуков, например ПБ или ТПА. Ниже приведены свойства резин из ЦПА в зависимости от температуры [4 [c.326]

    Необычный комплекс физико-механических свойств солевых вулканизатов обусловлен гетерогенной природой вулканизацион- [c.400]

    Физико-механические показатели солевых вулканизатов зависят от ряда факторов, из которых доминирующими являются концентрация карбоксильных групп и природа катиона солевой сшивкн. С увеличением содержания метакриловой кислоты в сополимере возрастают напряжение при удлинении 300% и сопротив ление разрыву вулканизатов. Особенно сильное увеличение прочности происходит в бутадиен-стирольном карбоксилсодержащем полимере при повышении содержания метакриловой кислоты до 2—3% (рис. 2) [1], С увеличением радиуса катиона наблюдается линейное возрастание напряжения при удлинении 300% и сопротивления разрыву резин из СКС-30-1. Максимальными сопротивлением. разрыву и эластичностью в широком температурном интервале характеризуются резины с Ва + [7]. [c.401]

    Исследовано влияние различных углеродных саж на физикомеханические свойства вулканизатов НМПБ. Введение любых тонкодисперсных углеродистых саж в состав смеси приводит к усиливающему эффекту — повышению физико-механических свойств вулканизатов. Оптимальным типом усиливающих саж для этого полимера является сажа HAF и ISAF. [c.453]

    Термическая стабильность на в о з д у х е у силоксановых вулканизатов значительно выше, чем у органических резин. Старение первых (рис. 1) [72] идет при 200—300 °С со скоростью, характерной для вторых при 100—150 °С. После 4—6 недель старения при 125°С органические резины уступают силоксановым по сопротивлению разрыву при этой температуре. В течение первых 2 недель старения при 210 °С механические свойства силоксановых резин изменяются в допустимых пределах, а затем остаются постоянными в течение 8 недель [20, с. 48—54]. Повышенной термической стабильностью при свободном старении отличаются вулканизаты гетеросилоксанов [3, с. 156] и особенно карборансилоксанов [16]. У последних сопротивление разрыву равно 1,8 МПа и относительное удлинение 87% после 24 ч старения при 427 °С. При старении в напряженном состоянии преимущества силоксановых резин перед органическими проявляются уже при 100°С в меньших величинах остаточной деформации сжатия (рис. 2) [72]. По данным [62], силоксановые резины служат при [c.492]

    Механические свойства силоксановых вулканизатов при 20 °С ниже, чем у органических резин. Однако их твердость и эластичность почти постоянны в широком интервале температур, а сопротивление разрыву при повышении температуры изменяется сравнительно мало и при 200—250 °С оказывается выше, чем у других резин, кроме фторуглеродпых. Механические свойства хорошо сохраняются при тепловом старении [20, с. 48—54 72, с. 133—136]. [c.494]

    Стойкость к набуханию в жидкостях зависит от типа полисилоксана и от содержания наполнителя. Обычные силоксановые вулканизаты, как правило, сильно набухают в неполярных жидкостях и слабо в полярных, а бензомаслостойкие (фтор- и нитрилсилоксановые)—наоборот [3, с. 154—156 33 72, с. 176]. Меньше набухают твердые (более наполненные) вулканизаты. Набухание увеличивается с повышением температуры и сопровождается ухудшением механических показателей, не всегда обратимым, так как некоторые жидкости разрушают сетку вулканизата. Примерами жидкостей, в которых обычные вулканизаты набухают на 100—275%, а бензомаслостойкие на 5—30%, являются ССЦ, хлороформ, толуол, ксилол, циклогексан, фреон-114, керосин, силиконовые масла. В ацетоне, наоборот, первые набухают на 15—25%, вторые на 150—200%. Фторсилоксановые резины разрушаются фреоном-22 и этаноламином. Оба типа вулканизатов стойки к водным растворам солей, кислот и оснований, слабо (на 5—25%) набухают в спиртах, ацетонитриле, ледяной уксусной кислоте, средне (на 40—50%) в дихлорэтане и дибутилфталате, сильно (больше 150%) в бутилацетате. [c.495]

    Силоксановые блоксополимеры с жесткими блоками (поли-карбонатными, полисульфоновыми, полиарилатными, нолисилари-ленсилоксановыми и др.) отличаются от других силоксановых эластомеров высокими механическими свойствами в ненаполненном невулканизованном состоянии (сопротивление разрыву 5—20 МПа, относительное удлинение 150—1000%), которые сохраняются до температуры размягчения жесткого блока [24, 25].- По морозостойкости они не отличаются от обычных силоксановых вулканизатов, если длина гибкого блока достаточно велика, а по термической стабильности на воздухе уступают напол ненным вулканизатам, но превосходят ненаполненные. Их перерабатывают либо формованием при температурах выше температуры размягчения жесткого блока, либо из растворов как пленко- и волокнообразующие материалы. [c.496]

    Из исследованных каучуков лучшими эластическими свойствами в широком интервале температур обладает полимер, полученный из политетрагидрофурана молекулярной массы 1000. Для этого состава изучалось влияние полидисперсности полимердиола на свойства каучука и его вулканизатов. E тe твeннos что более высокий уровень эластичности имеют полимеры, содержащие значительное количество высокомолекулярных фракций. В области положительных температур- эластичность по отскоку является функцией полидисперсности полиэфира (рис. 2). Падение эластичности полимеров с увеличением коэффициента полидисперсности объясняется увеличивающейся нерегулярностью в распределении уретановых групп по цепп. Для полимеров, полученных на основе механической смеси каучуков, на температурной зависимости эластичности по отскоку появляются характерные для блокполимеров две области переходов. Нерегулярность физических узлов и химических поперечных связей при значениях [c.540]

    Наиболее широкое применение получили жидкие полимеры или жидкие тиоколы на основе ди(р-хлорэтил)формаля, выпуск которых составляет 80% от общего производства полисульфидных полимеров. В последние годы с целью расширения ассортимента жидких полисульфидных полимеров как в СССР, так и в СИГА проводятся исследования ио модификации жидких тиоколов и созданию новых материалов. Получен тиоуретановый эластомер, характеризующийся лучшим комплексом физико-механических свойств и более высокой адгезионной прочностью по сравнению с вулканизатами обычных жидких тиоколов [2, 3]. В США разработан способ получения полисульфидного полимера с повышенным содержанием серы в цепи с концевыми гидроксильными группами, а также полимер с концевыми меркаптанными группами на основе полипроииленоксида [4]. [c.552]

    Тиокол А применяется для покрытия бетонных резервуароЁ для хранения нефтяного топлива, в качестве защитных покрытий для подводных деталей морских судов — рулей и впнтов. Однако плохие физико-механические свойства вулканизатов, большая деформация при сжатии и неприятный запах ограничивают применение этого тиокола. В настоящее время тиокол А применяется как пластификатор в кислотостойких цементах [7]. [c.570]

    Комплекс ценных свойств вулканизатов из СКПО указывает иа перспективность его применения в резинотехнических изделиях, прорезиненных тканях, озоностойких покрытиях и других изделиях. Высокая прочность, эластичность, малые механические потери при многократных деформациях делает СКПО перспективным для применения также и в щинных изделиях. [c.579]


Смотреть страницы где упоминается термин Вулканизаты механические: [c.223]    [c.407]    [c.541]   
Химия эластомеров (1981) -- [ c.222 ]




ПОИСК





Смотрите так же термины и статьи:

Вулканизаты



© 2024 chem21.info Реклама на сайте