Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Реакция водорода и дейтерия

    Для решения теоретических и практических задач весьма важно определить лимитирующую стадию реакции. Использование с этой целью ароматических углеводородов, содержащих вместо атомов водорода дейтерий или тритий, позволяет в несколько раз снизить скорость 2 второй стадии реакции, т. е. отрыва Н+. Подобный кинетический изотопный эффект объясняется большей энергией связи С—D и С—Т по - сравнению со [c.44]


    Однако кинетический метод с использованием ароматических соединений, меченных дейтерием и тритием, позволил однозначно установить, что большинство реакций электрофильного замещения в ароматическом ядре протекает по двухстадийному механизму. Если бы реакции протекали по первому механизму в одну стадию или если бы вторая стадия второго механизма лимитировала весь процесс, то при замене в реагирующем ароматическом соединении водорода на дейтерий или тритий наблюдался бы изотопный эффект, т. е. произошло бы значительное уменьшение скорости реакции. (Известно, что вследствие различия масс водорода, дейтерия и трития разрыв связи С—Н происходит в 5—8 раз быстрее, чем связи С—О, и в 20—30 раз быстрее, чем связи С—Т). [c.315]

    С изотопным эффектом дейтерия приходится считаться в том случае, если скоростьопределяющей стадией реакции является разрыв связи водорода (дейтерия) с другим элементом (М.—0- [c.198]

    Замена водорода в молекуле реагента атомом дейтерия часто приводит к изменению скорости реакции. Такие изменения известны как изотопные эффекты дейтерия [32], которые выражаются отношением /гн/ о. В основном состоянии колебательная энергия связи (называемая энергией нулевых колебаний) зависит от массы атомов и при увеличении приведенной массы понижается [33]. Поэтому связи О—С, О—О, Ь—N и др. в основном состоянии имеют более низкую энергию, чем соответствующие связи Н—С, Н—О, Н—N и др. Следовательно, полная диссоциация связи в дейтерированном соединении требует больше энергии, чем в соответствующем изотопно незамещенном соединении (рис. 6.4). Если связи Н—С, Н—О или И—N вообще не разрываются в ходе реакции или разрываются не в лимитирующей стадии, замещение водорода дейтерием практически не оказывает никакого влияния на скорость (об исключениях будет сказано ниже), но если эти связи разрываются в лимитирующей стадии, то скорость при замещении дейтерием понижается. [c.294]

    СВЯЗЬ участвует. Благодаря гиперконъюгации разность колебательной энергии между связями С—Н и С—О в переходном состоянии меньше, чем в основном состоянии, поэтому при замещении водорода дейтерием реакция замедляется. [c.297]

    Другого типа вторичные изотопные эффекты возникают в результате замещения водорода дейтерием у атома углерода, соединенного с уходящей группой. Эти вторичные изотопные эффекты а-дейтерия имеют величину от 0,87 до 1,26 [50]. Они также коррелируют с карбокатионным характером переходного состояния. В реакциях нуклеофильного замещения, где карбокатионный интермедиат не образуется (реакции типа 5к2), изотопный эффект а-дейтерия близок к единице [51]. В тех реакциях, в которых действительно промежуточно образуются карбокатионы (реакции типа 8к1), наблюдается более высокий эффект, зависящий от природы уходящей группы [52]. Природу изотопного эффекта а-дейтерия принято объяснять тем, что замещение водорода дейтерием оказывает более или менее сильное влияние на деформационные колебания связи С—Н в переходном, а не в основном состоянии [53], и в зависимости от природы переходного состояния скорость реакции может или [c.297]


    Ядерные реакции с дейтерием. Когда был открыт тяжелый водород Н, названный дейтерием, американские физики Льюис, Ливингстон и Лоуренс применили для бомбардировки атомов его ядро — дейтрон, построив особой формы ускоритель, который назвали циклотроном. [c.65]

    Магнитный изотопный эффект (МИЭ) в радикальных реакциях возникает из-за влияния магнитного момента ядер на динамику синглет-триплетных переходов в радикальных парах. В предыдущих лекциях уже не раз говорилось, что в РП одним из механизмов S-T переходов является сверхтонкое взаимодействие неспаренных электронов радикалов с магнитными ядрами. И если СТВ вносит заметный вклад в спиновую динамику РП, то изотопным замещением можно на нее влиять, так как разные изотопы характеризуются разным СТВ. Например, при замещении водорода дейтерием масштаб сверхтонкого взаимодействия уменьшается примерно в четыре раза. Изотоп углерода С не имеет ядерного магнитного момента, так что СТВ с этим ядром отсутствует. А вот изотоп С имеет ядерный магнитный момент. Поэтому при изотопном замещении -С — С в радикале появляется сверхтонкое взаимодействие неспаренного электрона с ядром углерода. [c.47]

    Механизм превращений углеводородов на катализаторах кислого типа обычно изучается с помощью меченых атомов. В качестве последних используются протоны водорода — дейтерий (В = Н ) и тритий (Т = Н ). Последний обладает радиоактивностью, что облегчает нахождение его в продуктах реакции. [c.202]

    Какие же существуют доказательства Е2-механизма Реакции элиминирования, протекающие по второму порядку а) не сопровождаются перегруппировками, б) проявляют значительный изотопный эффект, в) не подвергаются обмену водород — дейтерий, г) включают транс-элиминирование. [c.464]

    В некоторых случаях, когда из-за пространственных препятствий (см. ниже) реакция с трудом может происходить по Е2-механизму или карбанион особенно устойчив, обмен водород — дейтерий наблюдается эти исключения лишь подтверждают данные выше обоснования. 1 [c.465]

    Интерпретация. Этот изотопный эффект (разд. 11.13) указывает не только на то, что находящийся в орто-положении водород участвует в реакции, но и на то, что он принимает участие в лимитирующей стадии. На стадии (1) реакции отщепления дейтерий отщепляется медленнее, и вследствие этого вся реакция замедляется. [c.803]

    На различных соединениях изучали влияние замещения водорода дейтерием на скорость реакции отрыва водорода. Так как теория изотопного эффекта является сложной, подробно с ней можно ознакомиться в обзоре статей [24—26]. Кратко принцип теории изотопного эффекта можно изложить так замещение водорода на дейтерий приводит к изменению скорости реакции, так как для дейтерированного соединения, чтобы достигнуть переходного состояния, требуется более высокая энергия [c.153]

    Жидкость, заполняющая камеру, должна отвечать двум основным требованиям она должна быть хорошей мишенью для проходящих частиц, обеспечивать возникновение определенных реакций жидкость также должна быть хорошим детектором — фиксировать протекание реакций. В качестве рабочих жидкостей применяют пропан, ксенон, водород, дейтерий, гелий. Наиболее распространены водородные пузырьковые камеры. Жидкий водород идеален как мишень, что обусловлено элементарностью ядра водорода (один протон). [c.244]

    Разделение 020 и Н2О возможно в результате обменной реакции между дейтерием и водородом при взаимодействии воды с несмешивающимся с ней меркаптаном. Хотя этот способ не является экстракцией в обычном смысле, для его осуществления применимы основные методы жидкостной экстракции. В качестве еще одного примера разделения изотопов экстракцией можно указать на возможность разделения °В и В фракционной экстракцией борной кислоты водой и изоамиловым спиртом. [c.652]

    Уолл и Браун [33, б] в последнее время изучали влияние замещения водорода дейтерием в полистироле на энергетический выход реакций сшивания и газовыделения под действием -из-лучения. Их результаты приведены в табл. 12. [c.137]

    Удельные каталитические активности различных металлов в области высоких температур значительно различались. У элементов четвертого периода удельная каталитическая активность в реакции изотопного обмена возрастала с увеличением порядкового номера, достигала максимума у никеля и затем резко снижалась при переходе к меди. Аналогичная зависимость наблюдалась и в других реакциях, протекающих с активацией водорода в реакции окисления водорода в богатых водородом смесях [49], в реакции гидрирования этилена [50], в реакции обмена дейтерия с аммиаком и этаном [51]. Близкие значения удельной каталитической активности Pt и Ni, а также резкое падение ее при переходе от Ni к Си и от Pt к Au Боресков объясняет зависимостью каталитической активности от числа неспаренных электронов в d-зоне металла. Энергия связи хемосорбированного водорода с металлом зависит от числа неспаренных -электронов. На Fe [52] и Ni [53] в силу незаполненности d-зоны адсорбция водорода протекает с боль-щой скоростью. [c.56]


    Экспериментальные и вычисленные значения константы скорости реакций водорода и дейтерия при 1000° К (в см молей сек ) [c.221]

    В табл. 14 в столбце I приведены значения вычисленных таким образом констант скорости некоторых реакций водорода и дейтерия [771] в столбце III — опытные значения величины k [413], при получении которых были учтены неточности эксперимента, содержавшиеся в старых измерениях [662, 597] (столбец IV). Как видно из табл. 14, вычисленные и опыт- [c.221]

    Ускорение и разветвление цепи, по-видимому, имеют место в целом ряде реакций водорода, дейтерия, трития с различными смесями галогенов и интергалоидных соединений, таких, как монофторид хлора и др. Поскольку относительное распределение кинетической энергии между продуктами экзоэргических реакций зависит от отношения масс исходных и получающихся частиц, то наличие в смеси изотопов водорода и интергалоидных соединений может усилить влияние термической неравновесности. К сожалению, недостаток данных о колебательно-вращательно-поступательном распределении продуктов реакций, а также кинетических данных не позволяет пока провести количественное рассмотрение всех этих случаев. Тем не менее оценки показывают, что в ряде систем поступательная неравновесность частиц проявляется еще более эффективно, чем при взаимодействии Н2 с Р2. [c.107]

    В частном случае, когда радикал является атомом водорода, применяются другие методы, дающие возможность непосредственного определения корщентрации атомов водорода. Так, атомы водорода могут быть обнаружены по восстановлению ими твердых окисей и красителей, по теплоте их перегруппировки над платиновой поверхностью, методами орто-пара конверсии, объемных реакций с дейтерием и другими. [c.10]

    С другой стороны, изучение реакций атомарного дейтери г с газообразными алканами дало более точные данные для вычисления энергий активации элементарных радикальных реакций замещения [59, 60]. В этих работах обмен водорода на дейтерий с образованием дейтеро-замещенных алканов был применен как метод изучения механизма элементарных реакций, при которых возникают дейтеро-соединения, позволяющие следить за отдельной реакцией в сложном процессе. [c.31]

    К реакциям электрофильного замещения относятся, например, рег.кции замещения водорода дейтерием. Они чаще встречаются в ароматическом ряду и у других ненасыщенных соединений. В последнее время описаны некоторые примеры подобных реакций. Уже ра 1ьше наблюдались перемещения атомов галои.да, связанных с ароматическим кольцом, иногда в пределах той л<е молекулы, а иногда из одной молекулы в другую. Таким перемещениям способствуют катализаторы, наиример серная кислота, хлористый алюминий, фтористый бор и т. д. Так, под влиянием соединений фтористого [c.481]

    Широко используются также изотопы водорода — дейтерий и тритий. Тяжелая вода ОгО используется в атомной энергетике как замедлитель нештронов в атомных реакторах. Дейтерий и тритий используются в ка-честпе термоядерного горючего в водородных бомбах, поскольку при реакции [c.288]

    Изотопный эффект — замедление скорости реакцаи при замене участвующего в реакции водорода на (более тяжелый) дейтерий. Это замедление может быть очень существенным,- - до. Ш- р,аз. [c.117]

    Простейшей реакцией электрофильного ароматического замещения является замена водорода дейтерием, реакция дейтерирова-ния в кислой среде. Она идет через образование у ке описанных аренонневых ионов, которые на заключительном этапе депротони-руются, образуя конечный продукт реакции  [c.37]

    В данном курсе строение ядер атомов п ядерные реакции не рассматриваются. Одмако необходимо отметить, что число зарядов ядра обусловлено числом протонов в ядре. Протон — это ядро легкого изотопа водорода, положительный заряд которого численно совпадает с зарядом электрона, а масса его 1,00728 у. е.. т. е. в 1837 раз больше массы электрона. В ядрах других атомов, в том числе в ядрах изотопов водорода (дейтерия и трития), есть еще нейтроны — частицы с нулевым зарядом и массой 1,00867 у. е. Изотопы — это атомы одного и того же химического элемента, имеющие одно и то же число протонов в ядре, но различное число нейтронов, вследствие чего массы изотопов различны, а заряды их ядер одинаковы. Отсюда под химическим элементом понимают совокупность атомов с одинаковым зарядом ядра и с одинаковым числом электронов, окружающих ядро. Почти все элементы являются плеядами изотопов. Получено много изотопов легких элементов, обладающих радиоактивными свойствами. Такие изотопы ( С, Со, и др.), меченые атомы , играют больщую роль в исследованиях диффузии в металлах и полупроводниках, в выявлении дефектов строения их, в изучении химических реакций и процессов, происходящих в живом организме, и т. д. [c.68]

    Закономерности обмена некоторых элементов. Обмен водорода. Так как самым распространенным соеди-рением дейтерия является тяжеловодородная вода, большая часть обменных реакций водорода изучалась в систе> мах, одним из компонентов которых была 0,0. Общие за кономерности обмена в таких системах были сформулированы А. И. Бродским. Согласно теории А. И. Бродского, обмен водородом между водой и различными водородсодержащими соединениями происходит достаточно легко лишь в тех связях Э—Н, где атом элемента Э содержит свободную электронную пару. Схема обмена при этом выглядит следующим образом дейтерон 0" , точнее ОаО" (всегда имеющийся в воде вследствие процесса автоионизацни), присоединяется к молекуле, содержащей связь Э—Н, по схеме 0+ + Э—Н [О Э—Н1+ ОЭ + Н+. Как следует из схемы, присоединение сопровождается одновременным уходом Н" . Обратимость приведенного процесса и является причиной обмена. [c.135]

    Масс-спектральный анализ р-фенетилбромида. выделенного из реакционной смеси, показал, что он не содержит дейтерия. Аналогичные эксперименты с другими соединениями дали такие же результаты в типичных реакциях элиминирования второго порядка не происходит обмена водород — дейтерий. [c.465]

    Задача 27.10. Покажите подробно, как механизм енолизации объясняет следующие факты а) константы скорости для кислотно-катализируемого обмена водород — дейтерий и бромирования ацетона идентичны б) константы скорости кислотно-катализируемой рацемизации и иодирования фенил-втор-бутилфенилкетона идентичны. Задача 27.11. а) Что является основанием, участвующим в реакции, при катализируемой кислотой дегидратации спиртов (разд. 5.18) Что является кислотой, участвующей в реакции, при катализируемой основанием реакции рацемизации и водородного обмена втор-бутилфенилкетона (разд. 27.3)  [c.820]

    Такие реакции кислот и оснований с кетонами очень важны для понимания не только кето-енольной таутомерии, но также (разд. 27.3—27.5) многих других реакций кетонов галогенирования, обмена водород — дейтерий и рацемизации. [c.897]

    Впервые химический лазер, основанный на реакции между водородом и хлором, был разработан американскими исследователями, Однако им не удалось достичь успеха, поскольку затраты энергии на инициирование реакции, т. е. создание атомного хлора, во много раз превышали энергию лазерного возбуждения. Таким образом, данная реакция цепная, и в ней есть акт, дающий неравновесно возбужденные продукты, но она протекает с недостаточной скоростью. Поэтому для создания высокоэффективного химического лазера следует выполнить одновременно несколько условий, а именно реакция, лежащая в основе такого лазера, должна быть быстрой, идти по цепному механизму и должна приводить к образованию неравновесных возбужденных молекул, колебательная энергия которых значительно превышает энергию поступательного и вращательного движений. Идея использования быстрых цепных реакций была выдвинута впервые советскими учеными. В настоящее время широкое применение нашли цепные реакции водорода или дейтерия с фтором, в результате которых образуются возбужденные молекулы НР или ОР с неравновесным распределением энергии по колебательным степеням свободы. Излучение генерируется благодаря колебательным переходам в этих молекулах. Длина волны X излучения для НР составляет 2,7—3,2 мкм, а для ОР — 3,7—4,4 мкм. При добавлении оксида углерода (IV) к смеси дейтерия и фтора молекулы СОз забирают энергию у молекул ОР и переизлучают ее а области 10 мкм. Сравнительно недавно в США был создан хими ческий лазер, излучение в котором составляет 1,3 мкм. В его основу положена реакция молекулярного хлора с пероксидом водорода. Дело в том, что в растворе пероксид водорода диссоциирует на ионы Н+ и НО2 , которые активно реагируют с молекулами хлора. При этом взаимодействии возникает возбужденная молекула кислорода. Это так называемый синглетный кислород, в молекуле которого возбуждены не колебания, а долго живущие электронные состояния. Газообразный хлор пробулькппает через жидкую смесь пероксида водорода и гидроксида натрия, который [c.101]

    Суммируя вышесказанное, можно сделать один вывод, что наиболее активные центры хемосорбцни связывают адсорбируемые фрагменты столь сильно, что они становятся неактивными для поверхностной реакции. Это особенно ясно видно из рассмотренных простых реакций водорода, например орто- ара-конверсии или дейтеро-водородного обмена (см. разд. 1 гл. VIII). В этих процессах реагирующими являются атомы в хвосте адсорбции и реакция протекает на небольшой доле центров, на которых произошла хемосорбция. Подобные же энергетические факторы, хотя и в менее явной степени, должны определять центры для других поверхностных реакций. Измерение этих факторов, например энергий активации поверхностных реакций и определение числа фактически активных центров, скорее остается целью, а не достижением любой из теорий катализа. [c.268]

    Этилен (I), СО (11). НзО Реакции с Олефины пентен-1, гексен-1, гексен-2 гептен-1, гептен-3, октен-2, децен-1, Di Циклогексен, Dj Пентадиен-1,3, Dj Октандион-3,6 (П1), диэтилкетон (IV), пропионовая кислота (V) участием молек Продукты обмена Внутрикомплексное соединение Ru с ацетил-ацетоном в эвакуированном автоклаве, 1000 бар (поддерживается постоянным), 190° С, 1 11 = = 1 1. Выход III — 49 ч., IV — 15 ч., V — 3 ч. [116] улярного водорода (дейтерия) Ru I[H][P( eHj)3]3. Обмен протекает легко [117] [c.271]

    Хогевин первоначально отвергал триангулярное переходное состояние при отщеплении гидрид-иона, полагая, что такие переходные состояния должны быть сильно напряженными [22а]. Ему также не удалось найти доказательств обмена молекулярного водорода (дейтерия) в используемых им суперкислых системах (обычно ЗЬРз в избытке НР), что он рассматривал в качестве дополнительного доказательства против триангулярного переходного состояния. В то же время он показал, что карбениевые ионы в условиях, когда они являются стабильными, реагируют с молекулярным водородом [22а, б], но предположил, что данные реакции включают линейное переходное состояние  [c.273]

    Фаркаш и Вигнер [602] использовали другой, полуэмпирический спо- соб вычисления константы скорости. Они предложили некоторые из параметров, характеризующих активированный комплекс, например, Е л, и опред(У1ять из кинетических данных и далее при помощи этих значений вычислять скорости других реакций водорода и дейтерия. Так как б выражении для к (15.1) температура входит не только в фактор ,, [c.222]


Смотреть страницы где упоминается термин Реакция водорода и дейтерия: [c.67]    [c.181]    [c.65]    [c.32]    [c.343]    [c.73]    [c.101]    [c.275]    [c.614]    [c.179]    [c.96]    [c.346]    [c.222]   
Химическая кинетика и катализ 1974 (1974) -- [ c.138 , c.140 ]

Химическая кинетика и катализ 1985 (1985) -- [ c.119 , c.121 ]




ПОИСК





Смотрите так же термины и статьи:

Дейтерий



© 2025 chem21.info Реклама на сайте