Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Разделение бериллия и меди

    В настоящее время экстракцию широко используют для концентрирования одного или нескольких компонентов, разделения близких по свойствам веществ и очистки вещества. Ее применяют в процессах переработки нефти для разделения ароматических и алифатических углеводородов, в химической технологии, в том числе для разделения изомеров, обезвоживания уксусной кислоты, при получении различных лекарственных препаратов, например антибиотиков, и др. Особенно успешно используется экстракция в гидрометаллургии в технологии урана, бериллия, меди, для разделения близких по свойствам металлов — редкоземельных элементов (циркония и гафния, тантала и ниобия), никеля и кобальта и т. д. Экстракционные методы применяют для опреснения воды, переработки промышленных сбросов с целью их обезвреживания, а также использования их полезных компонентов. Наконец, экстракция широко используется в аналитической химии и как метод физико-химического исследования. В настоящее время на основе химических и физико-химических представлений можно подобрать экстрагент для извлечения практически любого органического или неорганического соединения. [c.6]


    Работа 11. Анализ бериллиевой бронзы (разделение бериллия и меди] [c.147]

    Купферон реагирует со многими катионами, образуя труднорастворимые комплексы. Растворимость купферона-тов металлов зависит от кислотности растворов регулируя кислотность, можно провести разделение катионов. Например, в сильнокислом растворе (5—10 %-ной соляной или серной) купфероном осаждаются железо, галлий, гафний, ниобий, палладий, полоний, олово, тантал и титан частично осаждаются висмут, молибден, сурьма, вольфрам. В слабокислом растворе осаждаются висмут, медь, ртуть, молибден, олово, торий, вольфрам. В нейтральной среде осаждаются (в присутствии ацетатного буфера) серебро, алюминий, бериллий, кобальт, хром, марганец, никель, свинец, РЗЭ, таллий и цинк. Купферон дает возможность отделить железо, титан, ванадий и цирконий от алюминия, кобальта, меди, арсенита и фосфата. Его часто используют для отделения мешающих катионов, например железа при определении алюминия, а также железа и ванадия при определении фосфора в феррованадии. [c.165]

    Разделение бериллия и меди. Анализ бериллиевой бронзы на содержание бериллия [c.118]

    Предложен метод разделения меди, цинка и бериллия в виде ацетилацетонатов методом противоточного распределения [582. Для этой цели использована аппаратура с 48 ячейками. При pH 0,82 коэффициент распределения для Ве равен 0,7852, для Си — 6,2342, для Zn — бесконечно велик. Достигнуто отделение бериллия от меди на 99,9%, от цинка — на 100%. [c.130]

    Определить степень разделения бериллия и меди ма колонке (бериллий катионитом не задерживается). [c.224]

    При определении в бронзах алюминия, железа, никеля и цинка медь обычно удаляют электролизом или тиосульфатом. В бронзах, содержащих одновременно бериллий, алюминий и желе-3 о, требуется много предварительных операций для их разделения. В сплавах медь — железо, содержащих до 50% железа, медь количественно выделить невозможно. В указанных случаях анализ может быть выполнен при помощи хроматографического ионообменного разделения. [c.147]

    Распределительная хроматография на бумаге обладает большей разрешающей способностью, чем другие виды хроматографии. Особая ценность метода заключается в том, что он с успехом применим для разделения очень близких по химическим свойствам элементов, определение которых при совместном присутствии обычными химическими методами затруднено. На рис. 50 приведены хроматограммы, полученные для щелочных металлов, благородных металлов и меди, а также алюминия, бериллия, цинка и циркония. [c.178]

    Фосфорорганические комплексы широко применяются для удаления из организма человека металлов (медь, бериллий) при отравлениях благодаря образованию устойчивых водорастворимых комплексов и разделению близких по своим свойствам элементов. [c.303]


    Муравьиная кислота — реактив для выделения платины и палладия, для отделения бериллия от алюминия и железа, для разделения вольфрама и молибдена уксусная кислота применяется для определения молекулярной массы веществ, для приготовления буферных растворов, как среда и ацетилирующее средство пропионовая кислота— для определения ароматических аминов антраниловая кислота — для обнаружения и гравиметрического определения кадмия, кобальта, меди, ртути, марганца, никеля, свинца и цинка бензойная кислота служит эталоном в колориметрии 2,4-диокси-бензойная кислота применяется для колориметрического определения железа, титана и других элементов лимонная кислота — в качестве сильного маскирующего комплексообразователя, для приготовления буферных смесей, определения белка в моче, как растворитель фосфатов при анализе удобрений молочная кислота — при полярографическом определении металлов, при электролитическом осаждении меди в присутствии железа, цинка и марганца нафтионовая кислота — для колориметрического определения нитрат иона, в качестве флуоресцирующего индикатора олеиновая кислота — для определения малых количеств кальция и магния, в титриметрическом анализе для определения жесткости воды пировиноградная кислота — для идентификации первичных и вторичных аминов, в микробиологии стеариновая кислота — для нефелометрического определения кальция, магния и лития сульфо-салициловая кислота — для колориметрического определения железа, в качестве комплексообразователя, для осаждения и нефелометрического определения белков трихлоруксусная кислота — как реактив на пигменты желчи и фиксатор в микроскопических исследованиях. [c.44]

    Способ разделения добавлением аммиака в присутствии солей аммония. Осаждение проводят в аммиачно-аммонийной среде. Если присутствует алюминий, то pH раствора доводят до 7,5. В этих условиях осаждаются количественно титан (IV), цирконий (IV), торий (IV), ниобий (V), тантал (V), галлий, индий, уран (VI), железо (III), хром (III), алюминий и бериллий (группа аммиака) остаются в растворе вследствие образования комплексных амми-нов цинк, кобальт, медь, никель и марганец (группа цинка), а также кальций, магний, барий и стронций, которые при этом значении pH не образуют малорастворимых гидроокисей (кальций не осаждается даже в присутствии большого количества сульфат-ионов). Марганец (II) затем медленно окисляется кислородом воздуха и выпадает в осадок в виде водной двуокиси. Обычно представляется желательным осадить марганец полностью вместе с группой аммиака. Это достигается добавлением небольшого количества персульфата аммония (если нет бария, стронция и свинца) или перекиси водорода или брома. При этом хром (III) пре-врашается в хром (VI), а кобальт (II), окисляясь до кобальта [c.102]

    В аммиачной среде осаждаются только титан (IV), бериллий, уран (VI), ниобий и тантал. Таким способом эти элементы отделяют от ртути (II), свинца, висмута, меди, кадмия, железа (III), алюминия, хрома, никеля, кобальта, марганца, цинка, вольфрама (VI), тория, церия (III), кальция, стронция, бария, магния и малых количеств ванадия (V). Фосфат-ионы мешают этому разделению  [c.104]

    Обычно на практике классифицируют металлы, исходя из общих сырьевых, технологических и потребительских признаков. Принято разделение металлов на черные и цветные. К черным металлам относятся железо и его сплавы, а также металлы, применяемые главным образом в сплавах с железом—хром, марганец. К ц в е т н ы м—относятся все остальные металлы, которые, в свою очередь, подразделяются на тяжелы е—медь, никель, свинец, олово, цинк л е г к ие—алюминий, магний, калий, натрий малы е—сурьма, ртуть, висмут, кадмий редкие—вольфрам, молибден, ванадий, кобальт, ниобий, тантал, титан, бериллий, литий и др. рассеянны е—германий, рений, индий, галлий и др. благородные—платина, палладий, иридий, осмий, рутений, золото и серебро. [c.113]

    Разделение электролизом с ртутным катодом. Это метод отделения алюминия от очень многих элементов. Обычно отбирают такую порцию раствора, чтобы в ней было от 10 до 100 мкг алюминия. Электролиз проводят в среде 8 и. серной кислоты при силе тока 3—5 а. Применяют прибор, описанный на стр. 240. Так отделяют 1 г меди или железа в течение 1 ч, 1 г олова, сурьмы, свинца или цинка в течение 2—3 ч. В растворе остаются алюминий, бериллий, ванадий, редкоземельные элементы, щелочные и щелочноземельные элементы и т. п., а также в небольшом количестве марганец. [c.698]

    Сущность предлагаемого метода разделения ионов бериллия и меди заключается в том, что аммиачный раствор, содержащий ионы меди, бериллия и карбонат аммония, пропускают через колонку с катионообменником в ЫН4-форме. При этом медь, входящая в состав комплексного иона [Си(МНз)4 +, сорбируется катионитом, а бериллий в составе [Ве(СОз)г] остается в растворе. [c.147]


    Таким путем многие сорта обычной фильтровальной бумаги можно сделать пригодными для разделения различных смесей неорганических веществ. Елисеевой доказана возможность применения хроматографии на бумаге в качественном химическом анализе. Распределительную хроматографию целесообразно при этом сочетать с дробным методом анализа Н. А. Тананаева, употребляя специфические органические реактивы для открытия отдельных ионов. На одной хроматограмме можно обнаружить несколько катионов одним и тем же реактивом, например дающим характерные флуоресцентные реакции. Распределительная хроматография на бумаге для катионов показала большую разрешающую способность этого метода анализа. Можно разделять смеси, содержащие ионы щелочных металлов, благородных металлов от меди, разделять смеси ионов бериллия, алюминия, цинка и циркония и другие смеси. [c.115]

    II) облучения металлического бериллия дейтеронами высокой энергии. Часть образующегося трития удаляют от мишени откачкой, а остальную выделяют соскабливанием поверхности мишени и растворением стружек в кислоте. Полученный радиоактивный водород можно затем превратить в тритиевую воду окислением над нагретой окисью меди и конденсацией пара в ловушке, охлаждаемой жидким воздухом. В качестве носителя может служить влага или добавляемый водород. Дальнейшее концентрирование трития, если оно нужно, легко достигается термодиффузией НТ или электролитическим обогащением НТО, так как оба процесса имеют для трития исключительно высокий коэффициент разделения. [c.138]

    Хайкин М. Р. и Фархуллина 3. Ф. Применение карбидного метода для экспрессного определения влаги в борной кислоте. Зав. лаб., 1947, 13, № 1, с. 118. 6037 Харламов И. П. и Романов Д. В. Хроматографическое разделение смесей бериллий— алюминий и бериллий — медь. Зав. лаб,, [c.230]

    Харламов И. П. и Романов Д. В. Хроматографическое разделение смесей берпл-,п1й-алюминий и бериллий-медь.— Зав. Лаб., [c.105]

    Ход анализа к подготовленному раствору, содержащему бериллий и медь, прибавляют ам миак и избыток 10%- ного раствора углекислого аммония (pH = 8,5 - -9). Раствор пропускают через колонку с. катионитом СБС в аммонийной фор->ie. Затем колонку промывают 20 мл раствора углекислого аммония. Фильтрат и п ромы1аные воды соединяют и после удаления иона С0 определяют в нем бериллий. Медь из колонки вымывают 2-н. раствором соляной кислоты. Авторы использовали этот катионит для разделения бериллия, молибдена и фосфора. Раствор, содержащий указанные элементы, пропускают через катионит СБС в аммонийной форме (pH = 3 4). Затем колонку промывают 25 мл 5%-ного раствора аммиака и 25 мл воды. При этом молибден и фосфор переходят в фильтрат. Бериллий вымывают из колонки 2-и. раствором соляной кислоты и определяют его одним из известных методов. [c.166]

    И. П. Харламов, Д. В. Романов. Хроматографический метод разделения смесей бериллий—алю.миний, бериллий—медь. Заводская лаборатория, 1952, т. XVIII. № 10, стр. 1184. [c.219]

    Разделение 1-нитрозо-2-нафтолом. Кобальт можно осадить или экстрагировать 1-нитрозо-2-нафтолом из растворов, содержащих ртуть, никель, хром, марганец, свинец, цинк, алюминий, кадмий, магний, кальций, бериллий, сурьму и мышьяк для удержания в растворе сурьмы необходимо прибавить винную кислоту [1467]. Кобальт отделяется вполне удовлетворительно от катионов ртути (II), олова (II), свинца, кадмия, мышьяка, сурьмы, алюминия, марганца, кальция, магния, висмута и никеля [755]. Однако в присутствии больших количеств никеля и олова, особенно если в растворе находится также висмут, осадки содержат большие или меньшие количества этих элементов. Пред-ттолагается, что мешающее влияние олова обусловлено образованием соединения, содержащего одновременно олово и кобальт. Полностью или частично осаждаются вместе с кобальтом медь (pH 4—13), железо (pH 0,95—2,0), ванадий (pH 2,05— 3,21), палладий (pH 11,82) и уран (pH 4,05—9,4). (Указанные границы pH осаждения взяты из работы [1402].) [c.74]

    Разделение ацетилацетоном. Ацетилацетон реагирует практически со всеми металлами, образуя устойчивые внутрико.мп-лексные соединения, не растворимые в воде, но растворимые полярных органических растворителях [1101]. Предложен метод отделения небольших количеств кобальта от железа экстракцией ацетилацетоната кобальта четыреххлористым углеродо.м из аммиачных растворов, содержащих этилендиаминтетрауксусную кислоту [20]. Вместе с кобальтом в неводный слой переходят также ацетилацетонаты меди, никеля, свинца, кадмия, цинка и марганца. Отделение бериллия от кобальта и многих других элементов основано на том, что из водного раствора с pH 9, содержащего ко.мплексон III и ацетилацетон, хлороформом извлекается только ацетилацетонат бериллия [19]. Экстрагирование ацетилацетоната трехвалентного кобальта описано в работе [225]. Разработана методика определения кобальта, основанная на предварительной экстракции ацетилацетонатов железа и кобальта [512]. Предложен способ выделения следовых количеств кобальта и других элементов из золы биологических материалов экстрагирование.м ацетилацетоно.м [680]. [c.78]

    Экстракция с помощью дитизона применена для фотометрического определения меди в титане и титановых сплавах [257] меди и кобальта после их хроматографического разделения на силикагеле [258] меди, свинца и цинка в природных водах ивы-тяжках из почв [259] цинка и меди в биологических материалах [260] цинка в металлическом кадмии [261] и баббитах [262]. Экстракционное выделение дитизоната цинка использовано для последующего фотометрического определения цинка с помощью ципкона. МетЬд применен для определения цинка в чугуне [263]. Экстракционно-фотометрические методики определения кадмия с помощью дитизона предложены для определения кадмия в алюминии [264], нитрате уранила [2651 и металлическом бериллии [266]. Дитизонат таллия экстрагируют хлороформом. Содержание таллия определяют фотометрированием экстракта [267]. Аналогичным способом определяют таллий в биологических материалах [268]. Индий в виде дитизоната полностью экстрагируется хлороформом при pH 5 [269]. Экстракция комплекса индия с дитизоном применена для фотометрического определения индия в металлическом уране, тории, а также в их солях [270]. Свинец определяют в алюминиевой бронзе [271], теллуровой кислоте [272] и горных породах [273, 274] свинец и висмут — в меди и латуни [275], ртуть —в селене [276] серебро — в почвах, (методом шкалы) [277] ртуть — в рассолах и щелоках (колориметрическим титрованием) [278]. [c.248]

    Так, бериллий нельзя отделить от меди при экстракции ацетилацетоном в отсутствие маскирующих агентов, так как фактор разделения Р равен лишь 14 (см. табл. 4). В присутствии 0,0ш раствора ЭДТК при pH 6 значение фактора разделения в соответствии с уравнением (85) будет равно [c.69]

    Разделение комплексов трифторацетилацетонатов бериллия, алюминия II меди(II) показано на рис. 2.3. Начальная температура колонки 100° повышалась до 130° со скоростью 3° в минуту. Образец содержал 0,15 мпг бериллия, 2,2 мкг алюминия и 11,7 мкг меди. Из хроматограммы следует, что с помощью обычного катарометра 2  [c.35]

    Напротив, при разделении гексафторацетилацетонатов бериллия (ионный радиус 0,35 А, тетраэдрический комплекс) и алюминия (ионный радиус 0,51 А, октаэдрический комплекс) на фторо-лубе HG-1200 (продукт полимеризации трифторхлорэтилена) хелат алюминия удерживался меньше, чем хелат бериллия [16], что противоречит данным работ [13, 14]. При хроматографировании Р-дикетонатов меди(П) (плоский квадрат) и железа(П1) (октаэдр) на полиметилсилоксане SE-30 время удерживания обоих комплексов почти одинаково, а на неполярной углеводородной смазке (аниезоне L) или парафине удерживание хелата меди значительно больше. При хроматографировании комплексов УО(ФОД)г (квадратная пирамида) и У(ФОД)з (октаэдр) на колонке с полиметилсилоксаном SE-30 хелат ванадила выходит раньше хелата ванадия(П1), однако на колонке с полиметилфенил-силокеаном 0V-17 пики этих хелатов меняются местами [17]. Все эти факты можно объяснить только специфическим взаимодействием молекул хелатов металлов с жидкой фазой, однако природа этого взаимодействия во многих случаях недостаточно ясна. [c.52]

    Через шесть лет Е. Ленссен сгруппировал в триады уже не часть химических элементов, а все известные к тому времени химические элементы, которых тогда насчитывалось около 60. Ознакомившись с таблицей Е. Ленссена, Менделеев заметил, что в этой системе замечаются естественные группы, часто совпадающие с его, менделеевскими, общими понятиями (напр., группы калия, натрия и лития бария, стронция и кальция магния, цинка и кадмия серебра, свинца и ртути серы, селена и теллура фосфора, мышьяка и сурьмы осмия, платины и иридия палладия, рутения и родия вольфрама, ванадия и молибдена тантала, олова и титана и др.). Но тут же Менделеев замечает, что 1) кремний, бор и фтор, 2) кислород, азот и углерод, 3) хром, никкель и медь, 4) бериллий, цирконий и уран едва ли могут быть поставлены в одни группы, как это делает Ленссен. Система Ленссена, по мнению Менделеева, не решила проблемы, так как страдала шаткостью и не имела прочного начала. Ленссен старается,— пишет он,— опереться в триадном разделении элементов на их отношения по величине паев (в каждой триаде пай среднего элемента равен полусумме паев крайних элементов, как у Кремерса и др.), также [c.271]

    Для количественного определения бериллия, кроме хиниза-рина, предложено еще семь реактивов (табл. IV-4). При использовании 2-(о-оксифенил)-бензотиазола наивысшая чувствительность определения достигается при pH 6 но при больших содержаниях бериллия —до 10 мкг/мл — целесообразнее проводить реакцию при pH 5 (при этом значении pH несколько снижается влияние посторонних ионов) [243]. В ходе определения посредством 8-оксихинальдина можно устранить мешающее влияние галлия и индия, экстрагируя хлороформом их комплексы с этим реактивом при pH 3,9 и 5,5 соответственно [256, 284] этот реактив применен для спектрофотометрического определения бериллия в воздушных пылях, причем помехи со стороны алюминия, железа и меди устраняют введением перед экстракцией комплексона П1 [75]. При извлечении оксихиноли-ната бериллия метилизобутилкетоном повышение температуры с 22 до 26° необратимо снижает яркость флуоресценции [235, 262]. З-окси-2-нафтойная кислота в присутствии комплексона П1 позволяет без предварительных разделений определять бериллий Б бронзах [159]. Салициловый альдегид [65] и 5-аминоса-лициловая кислота [66] проверены лишь на солях. [c.145]

    Ассоциация молекул воды и различных органических растворителей в процессе экстракции ацетилацетоната Fe+ была изучена методом газовой хроматографии. Ацетилацетонаты А1, Fe, Сг и Си были элюированы из колонки с фторопластом-4 [143], а Утсуномия [118] исследовал поведение хелатов алюминия, галлия и индия с различными р-дикетонами (в том числе с АА и его алкильными производными) на колонке с силанизированным хромосорбом и 5% высоковакуумной силиконовой смазки. Правда, в последней работе АА не были рекомендованы для разделения и анализа А1, Ga и In. Применив в качестве подвижной фазы дихлордифторметан, Караяннис и Корвин [161] успешно элюировали АА двенадцати различных элементов при 115°С и давлении, которое превышало 500 Па. Алкильиые производные ацетилацетона оказались вполне пригодными для разделения комплексов с бериллием, алюминием, хромом и медью. Хелаты этих элементов с 3-метил-, 3-этил-, 3-н-пропил- и [c.161]

    В промышленности металлический кальций используют как восстановитель в процессе металлотермического получения металлов (N3, К, ВЬ, Сз, Ре, Сг, Т1, 2г, ТЬ, и и т. д.), а также для производства различных сплавов с бериллием, магнием, а.чюминием, медью, свинцом, висмутом и другими металлами. Кальций вводят в сплавы железа, чтобы удалить уголь и серу, с помощью кальция отделяют висмут от свинца, извлекают из нефтепродуктов серу, фиксируют азот при разделении и очистке инертных газов, абсолютируют органические растворители. Металлический кальций применяют также для получения гидрида кальция СаНг (который восстанавливает трудно восстанавливающиеся окислы) и карбида ка.пьция СаСз (применяющегося для получения ацетилена). [c.201]

    В целях усовершенствования методов анализа сплавов цветных металлов и бронз И. П. Харламов и Д. В. Романов [32] разработали способ отделения бериллия от алюминия или от меди на катионите СБС в NH4-форме. В первом случае колонку, после введения в нее анализируемой смеси, промывали 5 %-ным раствором карбоната аммония бериллий переходил в фильтрат, а алюминий затем вымывали из колонки соляной кислотой. При разделении смеси бериллия и меди карбонат аммония вводили в анализируемый раствор из этого раствора медь поглощалась катионитом в форме аммиаката, а бериллий переходил в фильтрат. Д. И. Рябчиков и В. Е. Бухтиаров [33] разработали ионообменные методы отделения меди от алюминия и железа и железа от марганца. После введения анализируемой смеси в колонку катионита СБС железо избирательно вымывали раствором пирофосфата патрия в аммиачной среде, алюминий — виннокислым аммонием в присутствии избытка аммиака алюмииий и железо совместно — сульфосалициловым аммонием такнда в присутствии избытка аммиака. Во всех случаях медь оставалась иа колонке в форме комплексного аммиаката. При разделении смеси железа и марганца железо вымывалось раствором оксалата аммония с pH 5. Д. И. Рябчиков и В. Ф. Осипова [26] для отделения хрома от железа, марганца и никеля предложили пропускать через колонку анализируемый [c.132]

    Осаждение аммиаком—одна из самых обычных операций, применяемых в анализе. Опа проводится либо для определения осажденного соединения весовым путем, либо для совместного отделения двух или нескольких металлов от других металлов. Если эта операция выполняется для количественного весового определения, то ей должно предшествовать выделение кремнекислоты и отделение элементов грунны сероводорода некоторые из этих элементов также более или менее полно осаждаются аммиаком. Вследствие того, что предварительно удалить всю кремнекислоту обычным методом невозможно, оставшееся небольшое количество ее увлекается осадком гидроокисей, и эту кремнекислоту следует выделить и определить, как указано в разделе Кремний (стр. 874). Число металлов, осаждаемых аммиаком, очень велико. Сюда входят алюминий, железо (П1), хром, таллий, галлий, индий, редкоземельные металлы, уран, титан, цирконий, бериллий, ниобии и тантал (стр. 104). К ним надо прибавить пятивалентные фосфор, мышьяк и ванадий, которые осаждаются в виде фосфатов, арсенатов и ванадатов одного или нескольких из перечисленных металлов. При большом содержании этих трех элеме] Тов осаждение их не будет полным фосфор и мышьяк в большем или меньшем количестве осаждаются в виде фосфатов и арсенатов щелочноземельных металлов и магния, если последние присутствуют . Поэтому в таких случаях осанедение аммиаком недопустимо. Неудовлетворительные результаты получаются также, когда раствор содержит большое количество цинка, особенно в присутствии хрома плохо удается разделение и в присутствии кобальта или меди. Бор мешает осаждению, и поэтому должен быть предварительно удален методом, описанным на стр. 763. [c.95]

    Диэтилдитиокарбаминовая кислота — ценный реагент для разделения некоторых металлов. Возможности ее использования описаны в гл. IV. Одно из ее применений заключается в использовании диэтилдитиокарбами-новой кислоты для отделения железа, никеля, кобальта, меди и цинка (металлов, образующих сульфиды в кислых и щелочных растворах) от алюминия, бериллия, магния и других подобных элементов. Экстрагируемые диэтилдитиокарбамаТы имеют относительно высокую растворимость в хлороформе и других pa fвopитeляx, и благодаря этому удается отделить достаточно большие количества нежелательных металлов. Диэтилдитиокарбаминовая кислота нестабильна в кислых растворах, и ее применение по существу ограничивается нейтральными и щелочными растворами. Другие дитиокар-баминовые кислоты можно использовать в кислых растворах. Диэтиламмо- [c.60]


Смотреть страницы где упоминается термин Разделение бериллия и меди: [c.531]    [c.283]    [c.103]    [c.494]    [c.709]    [c.35]    [c.89]    [c.52]    [c.531]    [c.208]    [c.11]    [c.316]   
Хроматография неорганических веществ (1986) -- [ c.147 ]




ПОИСК







© 2024 chem21.info Реклама на сайте