Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Углеводороды, алкилирование полимеризация

    Октановые числа смешения газовых бензинов, бензинов прямой перегонки из парафинистого и смешанного сырья некоторых технически чистых углеводородов изостроения обычно близки к их октановым числам в чистом виде. Бензиновые фракции каталитических процессов и продукты алкилирования, полимеризации и изомеризации имеют октановые числа смешения несколько выше, чем в чистом виде. Октановые числа смешения бензола, толуола и ксилолов ниже, чем их октановые числа в чистом виде. Алки-лированные бензолы с разветвленной боковой цепью имеют октановые числа смешения более высокие, чем в чистом виде. Октановое число смешения высокооктанового компонента обычно тем выше, чем ниже октановое число базового топлива. [c.164]


    Отдельные элементарные процессы практически удалось осуществить [8—11] без катализаторов (термическое алкилирование, термополимеризацию, термическое дегидрирование, термическое деалкилирование, различные формы термического распада) и с ними (алкилирование на холоду парафиновых и ароматических углеводородов олефиновыми, полимеризацию, в том числе димеризацию и сополимеризацию, гидрирование, низкотемпературный крекинг, изомеризацию и т. п.). Но чисто термические процессы требуют высоких температур (термический синтез ароматических углеводородов) либо высоких давлений (термическая полимеризация, алкилирование и гидрирование) и в указанных условиях сопровождаются значительными потерями исходного сырья за счет глубоко идущих реакций распада (вплоть до распада на элементы) и глубокого уплотнения (до образования коксообразных веществ). [c.42]

    Синтетические цеолиты (молекулярные сита) в последние годы все более широко применяются в самых различных отраслях народного хозяйства. Наиболее крупгым потребителем синтетических цеолитов являются нефтехимические производства и нефтепереработка. Выделение парафиновых углеводородов нормального строения из бензикоЕых и керосиновых фракций, осушка и очистка циркуляционных газов в каталитических процессах, обессеривание газообразных и жидких углеводородов, тонкая осушка и очистка мономеров, растворителей, масел и топлив, выделение этилена и пропилена из газов нефтепереработки, извлечение ароматических углеводородов, извлечение олефиновых и диеновых углеводородов, очистка и концентрирование водорода, депарафинизация масел, тонкая осушка резиновых смесей и введение в них ускорителей процесса вулканизации, приготовление высокоактивных катализаторов изомеризации, алкилирования, полимеризации, крекинга и риформинга — таков примерный перечень осуществленных и перспективных процессов с применением цеолитов в нефтехимии и нефтепереработке. [c.32]

    В этой главе будут рассмотрены, в основном, реакции взаимных превращений углеводородов, не сопровождающиеся выделением или поглощением водорода без изменения числа молей (изомеризация, диспропорционирование), с уменьшением числа молей (алкилирование, полимеризация), с увеличением числа молей (крекинг и пиролиз). [c.171]

    Теория Алкилирование изопарафинов и ароматических углеводородов олефинами. Полимеризация олефинов. [c.319]


    Занятие 5 - 6 часов Теория Алкилирование изопарафинов и ароматических углеводородов олефинами. Полимеризация олефинов. [c.344]

    Чисто термические процессы, как правило, характеризуются высокими энергиями активации, обусловленными большой прочностью связей С—С, С—Н и Н—Н, которые надлежит разорвать и перегруппировать (60—100 ккал/моль). Скорости этих реакций ничтожно малы при низких температурах, при которых возможно протекание экзотермических реакций (гидрогенизации, алкилирования, полимеризации). Вот почему возможность проводить те или иные определенные процессы превращения углеводородов тесно связана с созданием высокоактивных и селективных катализаторов, избирательно благоприятствующих одному (или нескольким) из большого числа возможных реакционных путей. [c.12]

    Многочисленные каталитические реакции указывают на существование особого типа гетерогенного кислотно-основного катализа, в процессе которого осуществляется. кислотно-основное взаимодействие между катализаторами и веществами, подвергающимися каталитическим превращениям. Подробная сводка этих превращений содержится в обзорной статье И. И. Иоффе и С. 3. Рогинского [1]. Кислые твердые катали-ваторы более или менее подробно изучены на примерах реакций алкилирования, полимеризации, изомеризации и других превращений углеводородов различных классов в присутствии минеральных кислот, нанесенных на твердые носители, алюмосиликатов, окислов алюминия и других веществ, обладающих кислотным характером.,  [c.341]

    Карбкатион, образующийся при взаимодействии углеводорода с кислотными центрами катализатора, претерпевает быстрые дальнейшие превращения, подвергаясь Р-отщеплению с разрывом связи С—(Z, изомеризации, Н-переносу, элиминированию протона, циклизации, алкилированию, полимеризации. [c.107]

    МПа используется на установках алкилирования, полимеризации и экстракции ароматических углеводородов. [c.109]

    В условиях крекинга термодинамически возможно незначительное протекание реакций синтеза, причем некоторые заметно влияют на результаты процесса. Это — алкилирование ароматических и парафиновых углеводородов олефинами, полимеризация олефинов, конденсация и коксообразование [1—3]. [c.66]

    Синтез полимеров состоит из двух этапов получения мономеров и превращения их в полимеры. Основным источником мономеров является нефтехимический синтез, задача которого состоит в получении различных химических продуктов из нефти и газов (природных и попутных) синтетических моющих средств, растворителей, присадок, топлив, смазочны.х масел, аммиака, водорода и многих других. В промышленности нефтехимического синтеза используют в больших масштабах предельные, непредельные, ароматические и, в меньшей степени, нафтеновые углеводороды. При переработке нефтехимического сырья применяются процессы дегидрирования, изомеризации и циклизации, алкилирования, полимеризации и конденсации, а также галогенирования, нитрования, сульфирования, окисления и т. д. [c.384]

    Полимеризация. Если условия реакции не благоприятны для быстрого взаимодействия олефина с изопарафиновым углеводородом, то олефин может претерпевать полимеризацию вместо алкилирования. Полимеризация протекает через присоединение карбоний-иона, образовавшегося из олефина, ко второй молекуле олефина, что ведет к более высокомолекулярному катиону, который может терять протон, превращаясь в истинный полимер — уравнение (5), или насыщается, отнимая гидридный идя от олефина или изопарафина превращаясь в сопряженный полимер — уравнение (6). Если ион гидрида отнимается от изопарафинового углеводорода, то алкилирование по меньшей мере частично протекает по механизму первичного алкилирования. Если же ион гидрида отнимается от молекулы олефина, то образуются высоконенасыщенные соединения, фактически обнаруженные в комплексах катализатора с углеводородами. Ион гидрида отнимается от аллильного углерода молекулы олефина весьма легко вследствие резонансной стабилизации образующегося карбоний-иона аллильного типа [5]  [c.188]

    Однако повышение температуры выше 15 °С интенсифицирует побочные реакции деструктивного алкилирования, полимеризации и сульфирования углеводородов в большей степени, чем целевую реакцию. При этом увеличивается содержание малоразветвленных алканов, снижается избирательность реакций С-алкилирования, возрастает расход кислоты и ухудшается качество алкилата (рис. 8.11). [c.486]

    На первый взгляд кажется, что эти заключения находятся в противоречии с известным и теоретически ожидаемым влиянием давления на реакции алкилирования, полимеризации и гидрогенизации, рассмотренные в 1 и 3 главах. Однако следует помнить, что положительный эффект давления на все эти реакции наблюдается только при особых условиях, которые не существуют при обычном крекинге. Например, гидрогенизация ароматических з глеводородов наблюдается при очень высоком давлении водорода и в присутствии специального катализатора. Алкилирование парафинов олефинами проводится а присутствии большого избытка парафинов при очень высоких давлениях. Только полимеризация олефинов и некоторые реакции конденсации олефинов и ароматических углеводородов встречаются в условиях крекинга при высоком давлении, поэтому в результате наблюдается уменьшение выходов бензина, как было указано выше. [c.121]


    Хотя многие вещества влияют на скорость разложения углеводородов, только использование твердых кислотных окислов приводит к желаемому процессу и продуктам. Иные кислотные катализаторы при более низких температурах способствуют протеканию родственных реакций полимеризации олефиновых углеводородов, алкилирования ароматических или парафиновых углеводородов, изомеризации парафиновых углеводородов. Гринсфельдер [32] и Шмерлинг [95] дали общую основу этих превращений и каталитического крекинга. Ниже рассматривается несколько веществ, оказывающих различное каталитическое воздействие. [c.456]

    С более высокими изонарафинами, очевидно, первым имеет место алкилирование, нри котором образуются меньший парафин и олефин последний действует как алкилирующий агент. Так, например, бензол, алкилированный с 2, 2, 4-триметилпен-таном над хлоридом алюминия нрп 25—50° С, дает почти количественный выход / ет-бутилбензола и изобутана. Бензол и другие ароматические углеводороды, алкилированные с изоамиле-ном (катализаторы Al ig, BF3), дают основательные количества и/)еда-бутил-производных, вероятно, через ряд процессов, включающих полимеризацию олефина, изомеризацию и разрыв связи с образованием осколков С4 [599]. [c.134]

    Однако, прежде чем перейти к рассмотрению изомерных превращений индивидуальных углеводородов, коротко остановимся на остальных реакциях, протекающих на алюмосиликатах. Как уже указывалось, алюмосиликаты катализируют реакции крекинга, алкилирования, полимеризации, перераспределения водорода и изомеризации. [c.18]

    Из каталитических процессов наибольшее развитие получает каталитический крекинг [12]. В зависимости от режима я катализатора процесса может осуществляться расщепление углеводородов, их дегидрогенизация, изомеризация, гидрогенизация, полимеризация. Сырь ем для каталитического крекинга обычно служат керосино-соляровые фракции или вакуумные дистилляты. Получаются изобутан, низкомолекулярные олефины, используемые для алкилирования, полимеризации, производства синтетических каучуков и для других целей [13]. [c.11]

    Многие реакции с участием углеводородов, например полимеризация, изомеризация, алкилирование и крекинг, протекают на поверхности окисных катализаторов. Обычно принимают, что эти процессы протекают по механизму, предполагающему образование иона карбония. Так, например, считают, что полимеризация изобутена протекает следующим образом  [c.177]

    В этой главе будут описаны каталитические реакции углеводородов, в которых не участвуют никакие посторонние реагенты и которые протекают либо без изменения числа атомов С в молекуле (изомеризация), либо с уменьшением этого числа (крекинг, дезалкилирование) или с его увеличением (алкилирование, полимеризация). Разрыв и образование связей С—С в результате присоединения водорода (гидрогенолиз) или отщепления водорода (дегидроциклизация), тесно связанные с гидрогенизацией и дегидрогенизацией, были рассмотрены в гл. III. По тем же причинам изомеризация олефинов без изменения углеродного скелета (миграция двойной связи и цис, транс-изомеризация) тоже уже упоминалась выше. [c.153]

    Твердые кислоты находят применение в качестве катализаторов многих важных реакций, таких, как крекинг углеводородов, изомеризация, полимеризация и гидратация олефинов, алкилирование ароматических соединений, дегидратация спиртов и т,д. Обширные исследования каталитических свойств твердых кислот, проведенные за последние двадцать лет, внесли существенный вклад в развитие как теоретических представлений, так и промышленной практики, особенно в области нефтехимии. Сравнительно недавно была открыта еще одна группа твердых кислот, которые оказались эффективными катализаторами целого ряда химических реакций. [c.7]

    Крупнотоннажные химические процессы обычно осуществляют в потоке, т. е. в струе газа, проходящей через реактор с заданной температурой. Последний может быть пустым или со слоем зерненого катализатора. Примерами реакций, осуществляемых в потоке в широких технических масштабах, являются крекинг нефтепродуктов, гидрокрекинг, каталитическое алкилирование, полимеризация, гидро- и дегидрогенизация углеводородов, дегидрогенизация спиртов, гидратация олефинов, галогенирование, нитрование окислами азота, синтез аммиака, контактный способ получения серной кислоты, каталитический риформинг и т. п. [c.54]

    Из процессов превращения газообразных углеводородов— продуктов крекинга нефтяного сырья — в моторные топлива щирокое распространение в промышленности нашли процессы алкилирования, полимеризации и изомеризации. [c.273]

    Реакторы (англ. rea tors от ре... и лат. a tor — действующий, приводящий в движение) — аппараты для проведения химических реакций. В нефтехимической промышленности применяют реакторы термических процессов — крекинга, коксования, пиролиза, а также реакторы каталитических процессов — крекинга, риформинга, гидрогенизации (гадроочистки, гидрокрекинга, гидродеалкилирования), переработки легких углеводородов (алкилирования, полимеризации). [c.138]

    В термических, а также каталитических процессах нефтепе — реработки одновременно и совместно протекают как эндотермические реакции крекинга (распад, дегидрирование, деалкилирова— ние, деполимеризация, дегидроциклизация), так и экзотермические реакции синтеза (гидрирование, алкилирование, полимеризация, конденсация) и частично реакции изомеризации с малым тепловым эффектом. Об этом свидетельствует то обстоятельство, что в про — дуктах термолиза (и катализа) нефтяного сырья всегда содержатся углеводороды от низкомолекулярных до самых высокомолекуляр — ных от водорода и сухих газов до смолы пиролиза, крекинг — остатка и кокса или дисперсного углерода (сажи). В зависимости от температуры, давления процесса, химического состава и молекулярной массы сырья возможен термолиз с преобладанием или реакций крекинга, как, например, при газофазном пиролизе низкомолеку — лярных углеводородов, или реакций синтеза как в жидкофазном процессе коксования тяжелых нефтяных остатков. Часто термические и каталитические процессы в нефте— и газопереработке проводят с подавлением нежелательных реакций, осложняющих нормальное и длительное функционирование технологического процесса. Так, гидрогенизационные процессы проводят в среде избытка водорода с целью подавления реакций коксообразования. [c.9]

    Наряду с основной реакцией алкилирования изобутана олефинами могут протекать в большей или меньшей степени в зависимости от условий процесса нежелательные побочные реакции перераспределения водорода, деструктивного алкилирования, полимеризации, образования эфиров и комплексов катализатора с углеводородами и др. В реакции перераспределения водорода образуется углеводород с таким же числом атомов углерода, как у исходного олефина, т. е. происходит самоалкилирование изобута-на, например  [c.301]

    Цель подавляющего большинства существующих каталитических процессов сводйтся к получению тем или иным методом (изомеризацией, алкилированием, полимеризацией) разветвленных алифатических углеводородов. [c.228]

    Эти нефтепродукты получают при помощи фракционирования сырой нефти, термического крекинга и риформинга, легкого крекинга (висбре-кии1 а), каталитического крекинга и риформинга, фракционирования жидких продуктов крекинга, стабилизации бензина и концентрирования газоп, алкилирования газообразных парафиновых углеводородов олефинами, полимеризации газообразных олефинов. [c.218]

    В настоящее время катализ с участием кислот и основавта широко используется в многотоннажвом промышленном органическом синтезе и нефтехимии. Это, в первую очередь, относится л процессам алкилирования изопарафиновых и ароматических углеводородов олефинами, полимеризации (олигомеризации) непредельных соединений, галогенирования, сульфатирования, сульфирования и нитрования, конденсации по карбонильной группе, этерификации, гидратации и дегидратации. [c.384]

    На первых ступенях переработки углеводородного сырья, т. е. главным образом в процессах основного органического синтеза, используется сравнительно ограниченное число химических реакций, основными из которых являются термическое разложение, гидрирование и дегидрирование, гидратация, окисление, галоидирование и гидрогалоидирование, нитрование и др. Для получения конечных веществ из продуктов первичной переработки сырья требуется их дополнительная обработка, в процессе которой кроме перечисленных выше реакций используются реакции этерификации, конденсации и т. д. Широко применяются также методы взаимного превращения углеводородов как в пределах одного гомологического ряда, так и с переходом их из одного гомологического ряда в другой. Для таких превращений используются реакции изомеризации, алкилирования, полимеризации. Комбинируя применяемые методы и реакции и используе.мое в них сырье, осуществляют промышленные синтезы самых разнообразных продуктов. [c.122]

    Кроме того, основные экспериментальные данные о реакциях иона карбония были получены для гомогенных реакций, протекающих при сравнительно невысоких температурах. Надо сказать, что закономерности этих реакций, а также устойчивость различных ионов карбония неплохо объясняют результаты процессов алкилирования, полимеризации и изомеризации в присутствии серной, фосфорной, фтористовбдо-родной кислот, а также в присутствии хлористого алюминия В хорошем соответствии с имеющимися опытными данными находятся и вычисленные Стевенсоном [74, 75] теплоты изомеризации различных ионов карбония, а также энергии ионизационных потенциалов (обозначаемые как сродство олефинов к протону ) некоторых ненасыщенных углеводородов. Однако при более высоких температурах все эти величины, несомненно, будут иметь другие значения и устойчивость различных ионов карбония не будет определяться только тепловым эффектом их образования. [c.33]

    На первых ступенях переработки углеводородного сырья используется сравнительно ограниченное число химических реакций, основными из которых являются тепловое расщепление, гидрирование, гидратация, дегидрирование, окисление, галоидирование, гидрогалоидирование, нитрование и др. Для получения из продуктов первичной обработки сырья конечных продуктов требуется их дополнительная обработка, причем в этом случае, кроме перечисленных, используются также реакции этерификации, конденсации и др. Широко приме няются также методы взаимного превращения углеводородов как в пределах одного гомологического ряда, так и с переходом из одного-ряда в другой. При этих превращениях используются также реакции изомеризации, алкилирования, полимеризации. Комбинируя перечисленные методы и используемое сырье, удается осуществить синтез самых разнообразных продуктов. [c.121]

    Потребность в углеводородах определенного состава и строения растет из года в год. Для двигателей внутреннего сгорания нужны углеводороды с разветвленной цепью, обладающие антндетонацион-ными свойствами (например, изооктан-л др.). Для промышленного органического синтеза требуются ненасыщенные углеводороды различного строения. Возрастает потребность в толуоле, стироле и многих других углеводородах, которые не могут быть выделены в достаточном количестве из природного сырья. Необходимость получения разнообразных углеводородов в больших количествах послужила причиной возникновения отрасли промышленности органического синтеза, перерабатывающей более доступное углеводородное сырье в углеводороды требуемого состава и строения методами расщепления, дегидрирования, изомеризации, алкилирования, полимеризации и пр. Эти методы могут применяться как в отдельности, так и в сочетании другие другом. [c.139]


Смотреть страницы где упоминается термин Углеводороды, алкилирование полимеризация: [c.142]    [c.43]    [c.327]    [c.155]    [c.96]    [c.94]    [c.228]    [c.7]    [c.228]    [c.557]   
Химические основы работы двигателя Сборник 1 (1948) -- [ c.108 ]




ПОИСК





Смотрите так же термины и статьи:

Алкилирование и полимеризация

Полимеризация углеводородов



© 2025 chem21.info Реклама на сайте