Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Разрушающее напряжение зависимость

    Для аномально вязких систем характер изменения вязкости при разных напряжениях различается (рис. 6.2). При малых напряжениях зависимости т)=/(Р) отвечают закону Ньютона, характерному для нормальных низкомолекулярных жидкостей. В отличие от последних коэффициент т1о (называемый наибольшей ньютоновской вязкостью) для полимеров и дисперсных систем в этой области напряжений весьма высок (10 —10 Па-с). С увеличением напряжения сдвига происходит разрушение малопрочной пространственной структуры (сетки) системы и скорость течения аномально возрастает, пока при относительно больших напряжениях структура не будет разрушена полностью и в процессе течения не будет успевать восстанавливаться. Поэтому при больших напряжениях система характеризуется также ньютоновским законом течения, но коэффициент т)т (называемый наименьшей ньютоновской вязкостью) намного меньше, чем т о. [c.151]


    При воздействии механической нагрузки на полимер он деформируется, и при этом индивидуальные макромолекулы оказываются в напряженном состоянии. Величина накопленной внутренней энергии зависит главным образом от степени деформации и строения (топологии) конкретной молекулы. Переплетенные цепи могут скользить, растягиваться или разрушаться в зависимости от скорости релаксации. В расплавах распутывание и деструкция цепей — конкурирующие процессы, зависящие от состава (плотности сетки зацеплений) и вязкости полимера, которая в свою очередь является функцией температуры, молекулярной массы, ММР и химической структуры (эффективной площади поперечного сечения полимерной цепи и наличия боковых групп). Разрыв цепей происходит обычно с наибольшей легкостью при сравнительно низких температурах, когда макромолекулы находятся в напряженном состоянии. Влияние основных параметров на степень механохимических превращений рассмотрено в гл. 3. В целом механизм этого явления определяется скорее не химическим строением полимера, а положением точек разрыва свя- > зей в макроцепи. [c.17]

    Растрескивание металла под воздействием знакопеременной нагрузки или периодической динамической нагрузки называют усталостным разрушением. Чем больше приложенное в каждом цикле напряжение, тем быстрее разрушается металл. График зависимости напряжения 5 от числа циклов до разрушения N представлен на рис. 7.14. При значениях Ы, лежащих справа от верхней сплошной линии, соответствующие им напряжения приводят к растрескиванию, но если напряжение равно так называемому пределу усталости (или пределу выносливости) или ниже его, металл не разрушается даже при бесконечно большом числе циклов. Для сталей реальный предел усталости составляет около половины прочности на растяжение (но это правило не обязательно распространяется на другие металлы). Усталостная прочность любого металла — это значение напряжения, ниже которого металл не разрушается при заданном числе циклов. Частота приложения на- [c.155]

    Эта зависимость показана на рис. VII. 46. Из нее следует, что к элементу сухого трения (идеально пластическому телу) не можег быть приложено напряжение, превышающее Рт Величина Рт отражает прочность структуры тела. Структура идеального пластического тела прп Р = Рг разрушается, после чего сопротивление напряжению полностью отсутствует. [c.359]


    На рис.5.51,6 построена кривая зависимости сварных соединений с односторонним швом с разными параметрами А при ть5 1,2...2,0. Любопытно, что, несмотря на высокий уровень концентрации напряжений, сварные соединения независимо от величины смещения кромок при высоких уровнях напряжений разрушались по основному металлу (затушеванные точки на рис.5.51,6). Это легко объясняется с двух позиций. С одной стороны, измерения твердости в поперечных сечениях сварных соединений показали, что в них отмечается заметная механическая неоднородность (рис.5.51,а), заключающаяся в том, что металл [c.385]

    Второй случай, соответствующий твердым, или, вернее, твердообразным телам, характеризуется резким (скачкообразным) изменением развития деформации сдвига в зависимости от величины действующего напряжения сдвига, постоянного в каждом опыте. При достаточно малых напряжениях, ниже некоторой величины, определяющей прочность пространственной структуры, наблюдается медленное течение, которое можно назвать ползучестью с постоянной и предельно большой вязкостью. При таком даже очень медленном течении коагуляционная структура хотя и разрушается, но успевает вновь восстановиться, так что равновесная степень разрушения структуры в таком [c.175]

    При напряжениях сдвига больше изменение скорости сдвига в зависимости от т также происходит по линейному закону. Здесь нефть движется с ньютоновской вязкостью т. е. структура в нефти полностью разрушена. В пределах напряжений сдвига от до вязкость нефти переменна, и по предложению П. А. Ребиндера ее называют эффективной вязкостью. Эффективная вязкость характеризует равновесное состояние процессов разрушения и восстановления структуры в нефти, протекающее одновременно в установившемся потоке. Аналогичная форма реологических линий подробно рассматривалась для других структурированных систем П- А. Ребиндером, И. В. Михайловым, Г. В. Виноградовым, В. П. Павловым и другими исследователями. Рассмотрение многочисленных реологических линий у разных нефтей, полученных экспериментальным путем, показало, что на этих кривых имеется достаточно широкий участок, практически линейный и имеющий наиболее крутой наклон к оси т. Поэтому для практических расчетов следует ввести еще одну величину — предельное динамическое напряжение сдвига — 0, которое определяется как точка пересечения линейного участка графика с осью т, как показано на рис. 1а. [c.12]

    Допускаемое напряжение при пайке может быть определено в зависимости от величины разрушаю- [c.367]

    ХРУПКОСТИ ТЕМПЕРАТУРА полимеров, т-ра, ниже к-рой полимер становится хрупким, т. е. разрушается при очень малых деформациях. X. т. зависит от режима испытаний и возрастает при увеличении длительности мех. воздействия. Х.т. можно определять графически по температурным зависимостям величин разрушающей деформации, разрушающего напряжения и длительности нафужения до разрушения. На практике в качестве X. т. обычно используют значение, найденное по первой зависимости. [c.324]

    Долговечность полиамидов уменьшается при поглощении влаги. При растяжении увлажненного полиамида в образце образуется шейка и чаще всего он перестает разрушаться. Разрушение вследствие динамической усталости легче происходит в полиамидах с определенным содержанием влаги, чем в высушенных. В особенности это заметно при высоких частотах нагружения, поскольку повышение интенсивности тепловыделений при деформации увлажненных полиамидов приводит к их более раннему усталостному разрушению. Это положение иллюстрирует рис. 3.42 [16], на котором приведены зависимости усталостного разрушения при изгибе (характеризуемого уровнем напряжений, при котором испытуемый образец выдерживается 10" циклов без разрушения) для сухого ПА 66 и ПА 66, находящегося на воздухе с 50% относительной влажностью. [c.146]

    Влияние величины деформации на морозостойкость изучается при деформациях сжатия и растяжения (ГОСТ 408-78. Резина. Методы определения морозостойкости при растяжении). В области малых деформаций растяжения с возрастанием деформации коэффициент морозостойкости возрастает наиболее отчетливо это проявляется для резин, наполненных техническим углеродом, структура которого разрушается при небольших деформациях. Экстремальный характер зависимости для ненаполненных резин связан с ориентацией и кристаллизацией цепей при растяжении, а также с разрушением и перестройкой их структуры под действием больших напряжений. Вследствие существенного влияния величины деформации на коэффициент морозостойкости следует проводить испытания при деформациях, близких к реальным для изделий значениям. Кроме того, необходимо учитывать, что все используемые методы определения морозостойкости не пригодны для оценки эксплуатационных свойств РТИ, которые определяются помимо морозостойкости резины еще и конструкцией и формой детали, режимами и условиями ее эксплуатации. [c.548]

    Заканчивая обсуждение проблемы описания закономерностей разрушения ориентированных полимеров, которое свелось по существу к обсуждению формулы Журкова, сделаем одно замечание. Хотя наиболее полную картину прочностных свойств полимера дает зависимость долговечности от температуры и напряжения, в практике обычно пользуются значением Опр прочности полимера при определенной температуре. За Опр принимают значение напряжения, при котором полимер разрушается при определенном режиме нагружения, обычно при растяжении с постоянной скоростью деформации. Это значение можно вычислить, зная коэффициенты в формуле Журкова. Если мы будем считать, что процесс разрушения занимает время Т1 порядка 1 с (типичное время в экспериментах по испытаниям на прочность), то Опр можно вычислить, переписав формулу (XVI. 1) в следующем виде  [c.374]


    Ускоряя рост трещин, поверхностно-активные вешества могут резко изменить временную зависимость прочности твердых тел по сравнению с условиями, когда разрушение происходит в инактивной среде. В условиях сильного понижения свободной поверхностной энергии плавная временная зависимость прочности исчезает вместо нее обнаруживается порог прочности в области малых напряжений при небольшом превышении порога прочности образцы разрушаются мгновенно, тогда как ниже этого порога долговечность оказывается практически бесконечной (рис. 21). В этом отношении действие поверхностно-активных сред аналогично понижению температуры и связано с тем, что [c.40]

    Влияние набухания на долговечность жесткоцепных ориентированных и неориентированных полимеров исследовано С. Н. Журковым с сотр. [49, с. 68 456, с. 183]. Было показано, что набухание таких полимеров сопровождается уменьшением долговечности и делает более резкой временную зависимость прочности. При этом может наблюдаться резкий наклон прямой 1 Тр = / (Ор), так что 1п Тр при уменьшении значения Ор сильно возрастает. Небольшое увеличение Ор сопровождается резким падением значения lg Тр. Создается впечатление, что имеется какое-то критическое значение Ор, ниже которого образец не разрушается. На самом деле существует просто очень резкая зависимость долговечности от разрушающего напряжения. [c.164]

    Тело Кельвина разрушается, когда деформация достигает определенного предела. В таком теле данному значению деформации в зависимости от времени могут соответствовать разные значения напряжения, поэтому пределу деформации не соответствует какой-либо определенный предел напряжения. Если обозначить разрывное значение деформации вр, то согласно уравнению ( .42) [c.262]

    При дальнейшем увеличении напряжения (участок АВ) зависимость у = (Р) теряет линейный характер, при этом вязкость (ньюто-гювская) уменьшается. Переменные значения вязкости являются следствием разрушения структуры. В точке В кривой течення структура системы практически полностью разрушена. Напряжение, отвечающее этой точке, называется предельным напряжением на сдвиг Р,к. При [c.186]

    На участке П (АВ) зависимость у от Р теряет линейный характер, при этом вязкость уменьшается. Это уменьшение связано с разрушением структуры. В точке В структура практически полностью разрушена. Напряжение, отвечающее этой точке, называется предельным напряжением сдвига Р . При напряжениях Р > Рт, когда структура системы разрушена, система течет подобно ньютоновой жидкости, имеющей вязкость Т1пй = tg аг. [c.157]

    При более высокой скорости образец не разрушится. Упрощенная зависимость, полученная на основании формулы (6), применима только при условии, что минимальное напряжение в процессе разгрузки, достигаемое в момент разрушения образца, превышает на достаточную величину нижнее предельное значение напряжения Од. В противном случае при интегрировании необходимо использовать более полную формулу (7). Полученные результаты показывают, что чем выше исходное напряжение, тем выше может быть скорость изменения напряжения при разгрузке (Va)nped> при которой еще возможно разрушение образца. Перепад напряжений при разгрузке образца — Oj, характеризующий понижение напряжения при разрушении, увеличивается с уменьшением скорости разгрузки Vg. Аналогичным образом можно исследовать также и более общий случай уменьшения 100 [c.100]

    При малых нагрузках (обычно при напряжениях сдвига до 50—500 Па) смазки деформируются, подчиняясь закону Гука. Повышение напряжения сдвига (т) приводит к пропорциональному увеличению обратимой линейной деформации (7) испытуемого образца смазки. Дальнейшее увеличение напряжения сдвига (увеличение деформации) приводит к отклонению от линейной зависимости т = /(-у). Одновременно деформация становится не вполне обратимой. При еше большем увеличении напряжения сдвига наиболее слабые связи между частицами загустителя начинают разрушаться. Однако нри этом происходит обратный процесс — установление и упрочнение новых связей между частицами загустителя, приходящими в соприкосновение друг с другом (напрпмер, под действием теплового движения). При малых нагрузках процессы разрушения и восстановления связей компенсируют друг друга. По мере возрастания напряжений сдвига скорость разрушения контактов в структурном каркасе увеличивается и при определенной нагрузке начинает заметно преобладать над скоростью восстановления связей. Важно также то, что при разрушении заметного числа связей нагрузка на оставшиеся связи даже при неизменном напряжении сдвига возрастает. В результате процесс снижения прочности структурного каркаса смазки приобретает са-моускоряющийся, лавинный характер — это соответствует достижению и переходу через предел прочности. Смазка начинает течь подобно вязкой, точнее аномально вязкой жидкости. [c.271]

    Для снижения напряжений, возникающих в мембранах, С. М. Алтуховым [11 видоизменен перепускной клапан. В новой конструкции он нагружается давлением нагнетаемого ступенью газа, имеет пружину и рассчитан таким образом, что вне зависимости от давления нагнетания поддерживает заданную разность между давлениями масла и газа. В результате этого и изготовления мембран из нержавеющей стали Х15Н9Ю, упрочненной методом холодной нагартовки, долговечность мембран возросла во много раз — за 1660 ч работы (4 10 циклов) ни одна из П1ести мембран, проходивших параллельные испытания, не была разрушена. [c.662]

    Принцип действия прибора Реотест основан на измерении сопротивления, которое оказывает испытуемый продукт вращающемуся внутреннему цилиндру. Эго сопротивление зависит только от внутреннего трения жидкости и прямо пропорционально абсолютной вязкости. По мере того как скорость сдвига увеличивается, вязкость уменьшается. Когда вся структура полностью разрушена, вязкость становится постоянной. Ее называют динамической. Методика позюляет определять как вязкость полностью разрушенной структуры мазута ц, так и начальное напряжение Тц, являющееся мерой прочности структуры мазута, значение которого необходимо знать при расчете трубопроводов. На рис. 1.15 представлена типичная зависимость динамической вязкости мазута Т1 и напряжения сдвига х от скорости сдвига г Продолжение прямолинейного участка реологической кривой до пересечения с осью позволяет получить начальное усилие сдвига Пользуясь такими вискозиметрами, можно рассчитать перепад давлений и объемную скорость потока для ламинарного и турбулентного режимов. [c.105]

    Определена зависимость характеристик хрупкого разрушения от величины испытельного давления. В этих зависимостях отмечается максимум, обусловленный двойственностью эффектов пластической деформации. Наименьшую ударную вязкость имеют трубы, прошедшие предварительное разгружение при напряжениях, близких к критическим напряжениям (при которых образец с надрезом разрушается или не разрушается). С понижением температуры характеристики хрупкого разрушения снижаются. При наличии в стенке трубопровода критических де- [c.371]

    Согласно теории Буше—Халпина [69], разрушение эластомеров определяется ограниченной вязкоупругой растяжимостью каучукоподобных нитей. Авторы данной концепции предполагают, что большая часть волокон на вершине растущей трещины натянута до своего критического удлинения Кс,- Образец разрушается при большей деформации Хь, когда <7 волокон разорвутся за время Величины кь и Кс связаны через ползучесть материала и коэффициент концентрации напряжений. Предложенная теория позволяет рассчитать удлинение при разрыве кь, если известна ползучесть. При этом не учитывается зависимость концентрации напряжения от длины растущей трещины или уменьшения долговечности одного волокна в процессе ползучести образца. Предполагается, что все волокна придется вытянуть от практически нулевого удлинения до Кс-В первую очередь это удлинение будет влиять на численные значения д, которые можно рассчитать путем построения экспериментальных поверхностей ослабления материала. Группа из д волокон при статистическом развитии событий, когда разрушение одного из них может повлечь за собой полное разрушение последующего, определяется средней долговечностью < ь>, равной и распределением Пуассона для (ь.  [c.91]

    Примером систем, довольно хорошо подчиняющихся уравнению Бингама, могут служить пасты из глины и консистентные смазки. Однако для большинства структурированных коллоидных систем зависимость йи с1х от Р выражается не прямой, а кривой (рис. X, 6). Причи1 а такого явления заключается в том, что при достижении предела текучести структура разрушается не сразу, а постепеннр по мере увеличения градиента скорости движения жидкости. Очевидно, можно различать три критических напряжения сдвига I) 9/ — первый, или минимальный, предел текучести, соответствующий началу течения (началу разрушения структуры) 2) 0Б — предел текучести по Бингаму, отвечающий отрезку на оси абсцисс, отсекаемому продолжением прямолинейного участка кривой 3) 0макс — максимальный предел текучести, соответствующий значению Р, прй котором кривая переходит в прямую линию. [c.329]

    Современная техника характеризуется высокой энергонапряженностью. В этой связи необходимо снижать массы машин, аппаратов, приходящиеся на единицу используемой мощности. Поэтому особый интерес проявляется к материалам с высокой удельной прочностью. Удельная прочность — отношение прочности материала к его плотности. Прочность материала измеряется величиной временного сопротивления на разрыв. Если к закрепленному с одного конца образцу с некоторой площадью поперечного сечения приложить растягивающую его си.лу, то в зависимости от напряжения (измеряемого отношением силы к площади сечения) образец будет растягиваться в той или иной мере. Проходя с увеличением напряжения через ряд стадий своего поведения под нагрузкой, материал образца в конечном итоге разрушается. Наибольшее напряжение, соответствующее максимальной силе, когда материал образца еще не разрушается, называется пределом прочности. [c.632]

    Графики зависимости градиента скорости йи йх и вязкости Т1 от напряжения сдвига Р для структурированных жидкостей имеют вид, показанный на рис. 88. Отрезок ОА соответствует течению жидкости с неразрушенной структурой (ползучести) при постоянной и максимальной вязкости. При напряжении сдвига выше 04 ползучесть переходит в течение жидкости со все уменьшаю-ш,ейся вязкостьк). При напряжении 0а структура полностью разрушается. Участок ВО характеризует течение полностью разрушенной структуры с минимальной вязкостью. [c.213]

    Как упоминалось выше, нефти являются тиксотропно-обратимыми системами. При длительном покое структура в нефти становится более упорядоченной и прочной 3, 7, 8]. Если начать исследование течения нефти после длительного покоя и последовательно увеличивать расход жидкости, то зависимость эффективной вязкости от напряжения сдвига оказывается такой, как изображено на рис. 34 линией 2. В таких случаях эффективная вязкость при малых напряжениях сдвига оказывается примерно в 2 раза выше, чем при безостановочном течении нефти. Структура начинает разрушаться при критическом напряжении сдвига г р, значительно превышающем . Можно заметить, что на линии 2 есть участки, в пределах которых имеет место многозначность эффективной вязкости. Эю явление отмечалось ранее в некоторых дисперсных системах и получило название сверханомалии вязкости [1,2]. [c.86]

    Деление разрущения по типам А и Б следует считать условным, так как в разделе по разрушению сплавов, таких как Ti—8А1— —1 Мо— 1 V, отмечен переход от межкристаллитного растрескивания в области I к транскристаллитному растрескиванию в области II во многих средах. Типичная зависимость скорости роста трещины от коэффициента интенсивности напряжений для этого сплава в трех термически обработанных состояниях при испытании в спектрографически чистом метаноле показана на рис. 38 [91, 92]. В дополнение к сложному поведению этого сплава при растрескивании сплав Тг—11,5Мо—6 2г—4,5 5п разрушался межкристаллитно в области II как в нейтральных водных растворах, так и в растворах метанола с К1- Таким образом, вероятно, более значимо подразделять поведение сплавов при растрескивании на основе зависимостей от коэффициента интенсивности напряжений [c.336]

    Деформационные свойства кристаллических полимеров. Кристаллические полимеры, как было сказано в гл 1, состоят из кристаллических и аморфных участков Кристаллические участки деформируются как упругие твердые тела за счет смещения атомов в решетке, деформации связей и углов. Аморфные прослойки в зависимости от условий (температуры и скорости) могут деформироваться как стеклообразные при Г Гс), высо-коэластические (Гт>7 >7 с) или вязкотекучис (7 >Гт)- Кристаллические полимеры отличаются от аморфных повышенными значениями модуля упругости, пО Шженной податливостью, меньшей восстанавливаемостью. Но сочетание жестких кристаллических и податливых (аморфных) участков делает кристаллические полимеры менее хрупкими, чем стеклообразные. Деформационная кривая кристаллического полимера по внешнему виду напоминает кривую стеклообразного полимера (рнс. 5.28). На ней также можно выделить три участка. На первой стадии расгяжс.чия (линейный участок) развиваются упругие обратимые деформации, увеличивающие свободный объем в полимере. Модуль упругости (наклон прямой) тем больше, чем выше степень кристалличности. На этой стадии разрушается исходная кристаллическая структура На // стадии проис.ходит перестройка исходной кристаллической структуры и образование новой в условиях напряженного состояния Этот процесс называется рекристаллизацией. Образец в каком-то месте (на [c.314]

    Бингамовские жидкости (рис. 6-27, кривая J) начинают течь только после приложения напряжения Tq (Tq-начальное напряжение сдвига, или предел текучести), превышающего предел текучести. При этом структура пластичной жидкости разрушается, и она ведет себя как ньютоновская, т. е. зависимость от dy/dx для них также прямо пропорциональна. При снижении напряжения (х < Xq) структура бингамовских жидкостей восстанавливается. К бинга-мовским жидкостям относятся густые суспензии (различные пасты и шламы, масляные краски и т. п.). [c.145]

    Полиимидоэфиры — аморфные полимеры светло-желтого или белого цвета с температурой плавления от 250 до 500 °С в зависимости от природы исходных веществ, Пленки из них имеют при 200 °С разрушающее напряжение при растяжении 40—60 МПа и не разрушаются после выдержки при 240 °С в течение 700 ч. Полиимидоэфиры применяют для изготовления электроизоляционных изделий, пленок, клеев и покрытий. [c.235]

    Электронно-микроскопические исследования показали, что целлюлозные волокна при ксантогенировании увеличиваются в объеме и в конце концов структура клеточной стенки разрушается [153]. Реплики поверхности ксантогената целлюлозы, полученные методом вымораживания —травления, показывают крупноячеистую сетку с тонкими фибриллярными структурами [86, 144]. Увеличивая кислотность осадительной ванны, наблюдали различные стадии коагуляции ill, 103]. Коагуляция начинается с образования однородного геля, затем возникают сгустки, и наконец они распадаются на фибриллы. В процессе, формования фибриллы ориентируются в направлении приложения напряжения [85, 106]. При отщеплении Sj в зависимости от условий коагуляции и наличия модификаторов образуются волокна или пленки с отверстиями или в виде сетчатых структур [43, 85, 105]. [c.388]

    Для конструкционных сталей, имеющих в основном решетку а-железа, стойкость к сероводородному коррозионному растрескиванию зависит от степени ее упрочнения и типа структуры, получаемой после термической обработки. Ряд исследователей считает, что многие сплавы на основе железа, упрочняемые термической обработкой, могут разрушаться при сульфидном растрескивании под напряжением (например термообработанные высокопрочные или низколегированные стали [12]), однако большинство сплавов можно сделать устойчивыми к этому виду разрушения с помощью термической обработки. В настоящее время существуют отдельные рекомендации по рациональным режимам термической обработки нефте- и газопромыслового оборудования из различных конструкционных сталей, позволяющих повысить стойкость к сульфидному растрескиванию. Известно, что коррозионное воздействие НзЗ-сред проявляется тем сильнее, чем выше характеристики механических свойств стали -твердость, предел текучести и предел прочности. Применение термической обработки позволяет определенным образом изменять прочностные характеристики стали, обеспечивая сталям необходимую стойкость к сульфидному растрескиванию. В зависимости от режимов термической обработки возможно как повышение, так и снижение предела текучести, что определяет особенности наводороживания и, соответственно, возможность охрупчивания стали (например, ряд исследований показал возможность повышения стойкости к сульфидному коррозионному растрескиванию (СКРН) сталей с увеличением значения предела текучести). С целью получения различных структур и повышения эксплуатационных свойств трубные [c.477]


Смотреть страницы где упоминается термин Разрушающее напряжение зависимость: [c.105]    [c.105]    [c.63]    [c.101]    [c.173]    [c.331]    [c.277]    [c.46]    [c.366]    [c.77]    [c.331]    [c.108]    [c.87]    [c.263]    [c.148]    [c.53]    [c.123]   
Основы технологии переработки пластических масс (1983) -- [ c.0 ]




ПОИСК





Смотрите так же термины и статьи:

Разрушающее напряжение зависимость от скорости деформации



© 2025 chem21.info Реклама на сайте