Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Замещение атомов в углеводородах ароматических

    Свойства хлорбензола. Температура кипения 132°. В то время как галоидопроизводные углеводородов жирного ряда являются очень реакционноспособными соединениями (их галоидные атомы обладают большой подвижностью и могут вступать в различные реакции обмена), ароматические галоидопроизводные, галоид которых стоит в бензольном ядре, обладают другим характером связь галоида с ядром здесь очень прочна и замещение галоида идет с большим трудом. Так, например, хлорбензол реагирует с аммиаком в автоклаве лишь при нагревании до 180—200° в присутствии солей меди или медного порошка концентрированные водные растворы щелочей отщепляют хлор от хлорбензола лишь при температуре около 1 300°. Прочность связи галоида с ядром уменьшается заметно при вступлении в ядро так называемых отрицательных групп например, N0,, СООН и др. При этом особенно сильно активируют атом хлора и делают его подвижным группы, стоящие к нему в [c.300]


    Ароматические углеводороды дают сложные спектры в инфракрасной области. Характеристические частоты ИК-спектров поглощения представлены в работе [59, с. 40—41]. Особо важными для определения ароматических углеводородов в сложных смесях считают диапазон 1600—1610 см [61]. Согласно [60, с. 43—44], для определения ароматических углеводородов специфичны следующие диапазоны частот, соответствующих деформационным колебаниям Сар—Н, учитывающие тип замещения пять соседних атомов водорода отвечают диапазонам 750 и 700 см , четыре — 750 см , три — 780 см , два — 830 см->, один атом водорода — 880 см . Валентным колебаниям кратных связей Сар—Сар соответствуют частоты 1600, 1580, 1500 и 1450 см . Используя ИК-спектры, можно анализировать смеси изомеров как в ряду гомологов бензола, так и нафталина. [c.134]

    По химическим свойствам бензол и другие ароматические углеводороды отличаются от предельных и непредельных углеводородов. Наиболее характерны для них реакции замещения атомов водорода бензольного ядра. Они протекают легче, чем у предельных углеводородов. Таким путем получают множество органических соединений. Так, при взаимодействии бензола с бромом (в присутствии катализатора РеВгз) атом водорода замещается атомом брома  [c.300]

    В реакциях алканов и цикланов важнейший промежуточный продукт реакции содержит на один водородный атом меньше, чем исходный углеводород, в то время как в реакциях алкенов и замещенных ароматических углеводородов на один водородный атом больше [28]. Ниже показаны примеры превращений, происходящих на активном центре поверхности кислотного катализатора крекинга, для типичного алкенового (А, Б, В, Г, Д) и типичного алканового (А, Б, В, Г, Д ) углеводородов. [c.170]

    Алкилирование по атому углерода (С-алкилирование) состоит в замещении на алкильную группу атома водорода, находящегося при углеродном атоме. К этому замещению способны парафиновые углеводороды, но наиболее характерно алкилирование для ароматических соединений (реакция Фриделя — Крафтса)  [c.237]

    В соответствии со значениями ненасыщенные углеводороды легко реагируют с радикалами, например легко восстанавливаются атомарным водородом для ароматических углеводородов эти реакции идут труднее наиболее активным к радикальному замещению положением нафталина является а-углеродный атом. [c.329]


    Ниже приведены названия одновалентных радикалов моноциклических ароматических углеводородов со свободной валентностью у атома, входящего в кольцо. Подобные радикалы, не указанные в этом перечне, называют как замещенный фенил. Атом углерода со свободной валентностью обозначают номером 1. [c.377]

    Одновалентные радикалы, производимые от моноциклических замещенных ароматических углеводородов и имеющие свободные валентности у атомов цикла, имеют названия, перечисленные ниже. Радикалы, не указанные в приведенном перечне, получают наименования как замещенные фенильные радикалы. Атом углерода, несущий свободную валентность, обозначают номером 1  [c.423]

    Изучение спектров поглощения в инфракрасной области высокомолекулярных ароматических углеводородов и смол, выделенных из нефти, без воздействия на них высоких температур показало, что спектры поглощения смол в значительной части повторяют спектры ароматических углеводородов. В обоих случаях отчетливо выявляются максимумы поглощения 7,4—8,1 9,6 11,5 и 13,5 и — соответствующие бициклическим ароматическим системам 12,3—13,6 — отвечающие три- и более замещенным в бензольном кольце 8,6 — отвечающий третичному атому С, и, наконец, 14,1 — 14,5 л — максимум, характерный для бензольного кольца и алифатических цепей с числом атомов углерода не менее шести. [c.467]

    Очень большая склонность к реакциям замещения атомов водорода другими заместителями при ярко выраженной ненасы-щенности углеродных атомов. Если мы рассмотрим формулу родоначальника этого ряда — углеводорода бензола СаНб, то увидим, что в бензоле на каждый атом углерода приходится один атом водорода и до их полного насыщения не хватает 6 атомов водорода, т. е. еще по одному на каждый атом углерода. Циклическая система с п атомами углерода является насыщенной при 2п атомах водорода (см. стр. 57). Тогда в общем виде формула ароматического углеводорода будет С Нг г-б- Если сравнить ее с [c.60]

    Ароматические углеводороды легко вступают в реакции замещения. Если в молекуле бензола заменить один водородный атом группой СНз, получается другой углеводород ароматического ряда толуол, формула его СвНвСНз. [c.13]

    Замещение водорода в ароматическом кольце на атом хлора или брома протекает сравнительно легко с выделением соответственно 22,9 и 6,2 ккал на 1 моль [1, с. 174]. Учитывая, что изменение энтропии реагирующей системы невелико, равновесие реакции должно быть смещено в сторону образования галогенарома-тических углеводородов в широком интервале температур. [c.262]

    АЗОСОЧЕТАНИЕ (сочетание) — вз шмодействие ароматич. диазосоединений с в-вами, содержащими способный к замещению атом водорода, связанный с атомом углерода. К этим соединениям, наз. азосоставляющими, принадлежат ароматические аминосоединения, фенолы, некоторые вещества, содержащие активную метиленовую группу (производные ацето-уксусной к-ты, пиразолона и т. п.), и углеводороды с сопряженными двойными связями. Наибо.пьшее практич. значение имеет А. с ароматич, аминами и фено,лами. Реакция состоит в том, что остаток диазосоединения замещает атом водорода в ароматич. ядро в пара- или орто-положении к амино- или оксигруппе, причем непосредственно взаимодействуют катион ди-азония и молекула основания амина или анион фенолята (активные формы диазосоединения и азосоставляющей). Вероятно, сначала обратимо образуется соответств. продукт присоединения, превращающийся затем в продукт замещения, нанр.  [c.33]

    В том случае, когда в ароматическом ядре кроме атомов фтора содержатся сильные электронодонорные или электроноакцепторные заместители, именно они определяют ориентацию при реакциях нуклеофильного замещения и скорость процесса. Совершенно естественно, что при взаимодействии полифторированных ароматических соединений с нуклеофильными реагентами влияние заместителя противоположно таковому при реакциях электрофильного замещения в производных ароматических углеводородов электронодонорные заместители (ОН, NH2 и др.) замедляют реакцию и являются лета-орйентантами, электроноакцепторные заместители (N02, СРд и др.) ускоряют процесс и ориентируют ата- [c.12]

    Чтобы достигнуть энергетического состояния, необходимого для разрыва углерод-углеродной связи, нужно создать в каждом из двух указанных случаев ряд определенных условий. Обсунсдение деталей предложенного механизма будет приведено ниже, однако, можно предварительно констатировать, что важной промежуточной фазой реакции при каталитическом крекинге является образование структуры, в которо водорода на один атом меньше, чем в исходной молекуле парафинов и нафтенов, и на один атом водорода больше, чем в исходной молекуле олефинов и замещенных ароматических углеводородов. Эта структура соответствует обычному определению карбониевого иона, отвечающего эмпирической формуле С Н +1 для алифатических углеводородов, СпН 1 для моноциклических нафтенов и СпН2п 5 для моноциклических ароматических углеводородов. [c.114]


    В связи с вопросом о возможности образования ароматических углеводородов из пятичленных замещенных нафтенов интересно исследование Фрайеса, который подвергал дегидрогенизации смесь из метилциклогексана, содержавшего меченый атом С14 диметилциклопентана и нормального гептана. Дегидрогенизация велась па алюмомолибденовом катализаторе, который не действовал на гептан в сторону дегидроциклизации. Выяснилось, что только половина полученного толуола образовалась из метилциклогексана, откуда следует, что другая половина могла образоваться только из диметилциклопентана за счет расширения кольца с образованием метилциклогексана. [c.87]

    Щелочной гидролиз хлорпроизводных. Галогенпроизводные ароматических углеводородов в отличие от большинства галогенсодержащих органических соединений малоактивны в реакциях нуклеофильного замещения. Эта инертность объясняется тем, что электроотрицательный атом галогена оттягивает к себе электроны (—/-эффект) и наводит положительный заряд на связанный с ним атом углерода кольца и далее соответственно на орто- и й/ й-углеродные атомы. Однако, эти частичные положительные аряды, обусловливающие реакционную способность г -логенаро-матического соединения, в значительной мере компенсируются в результате взаимодействия свободных электронных пар галогена с л-системой связей ароматического кольца (-f-AI-эффект). Поэтому замещение галогена на нуклеофильный агент требует жестких условий. Хлорбензол, например, гидролизуется только при продолжительном воздействии раствора щелочи при 300—350 С и давлении 280—300 кгс/см . Реакция в этих условиях, по-видимому, протекает с предварительным дегидрохлорированием хлорбензола до чрезвычайно реакционноспособного дегидробензола, который легко присоединяет воду. [c.264]

    Ароматические углеводороды хотя и являются ненасыщенными, с точки зрения содержания числа атомов водорода на один атом углерода, тем не менее эта ненасыщенность реако отличается от не-насыщенности, например, олефинов. Ароматические углеводороды поэтому более склонны к реакциям замещения, чем присоединения. Подробности по этому вопросу относятся к органической химии и здесь не рассматриваются. [c.109]

    Сульфоновые кислоты (сульфокислоты) КЗОзН можно рассматривать как производные углеводородов, в которых атом водорода замещен на сульфогруппу — 80зН. Наиболее известны сульфокислоты ароматического ряда их простейшим представителем является бензолсульфокислота СбНбЗОзН. Подобно серной, сульфоновые кислоты обладают высокой кислотностью (вытесняют хлороводород из растворов хлорида натрия). [c.210]

    Взаимодействие свободных галогенов (хлора, брома, иода) с ароматическими углеводородами в зависимости от условий реакции может привести к образованию различных соединений. При нагревании в неполярных средах или при освещении смеси галогена и ароматического углеводорода происходит замещение на галоген водорода боковой цепи. Эти реакции имеют свободнорадикальный механизм и будут подробно рассмотрены в главе четвертой . При взаимодействии ароматических углеводородов с галогеном в присутствии кислот Льюиса (А1С1з, 2пС12, РеВгз) при невысокой температуре происходит реакция электрофильного замещения атома водорода в ядре на галоген. Действующим агентом этой реакции является положительно заряженный атом галогена (или положительно поляризованный конец диполя Х ). Роль катализатора в этой реакции и состоит в поляризации (ионизации) молекулы галогена [c.108]

    Правила ШРАС разрешают использовать тривиальные названия для некоторых моноциклических замещенных ароматических углеводородов (табл. 1). Для указания положения заместителей в бензольном кольце используют две системы. В одной из них в качестве локантов применяются цифры, в другой — буквы. В первой системе атому, несущему заместитель, присваивают локант 1 и ведут нумерацию так, чтобы получить наименьшую последовательность локантов. Если возможен выбор между одинаковым набором локантов, то нумерацию начинают с заместителя, стоящего первым по алфавиту, например  [c.39]

    В лаборатории алкилирование по Фриделю — Крафтсу имеет ограниченное значение. Так, при алкилировании бензола получается смесь MOHO-, ди- и полизамещенных углеводородов. Это объясняется тем, что скорость реакции алкилирования самого бензола меньше, чем скорость реакции алкилирования образующегося на первой стадии алкилбензола. Под влиянием хлористого алюминия может происходить не только замещение алкильным радикалом водорода ароматического ядра, но и дегидрирование, гидрирование, изомеризация и полимеризация продуктов. Течение реакции алкилирования бензола частично мол<но регулировать путем подбора соответствующих количеств реагентов. Если хотят получить моноалкилзамещенный продукт бензола, то берут большой избыток последнего, а для получения полиалкилзамещенных производных бензола применяют избыток алкилирующего агента. Однако нельзя полностью избел<ать образования продуктов разной степени замещения, что снил<ает выход и представляет определенные трудности при выделении основного продукта. [c.171]

    В соединениях такого типа симметрия я-электронного облакг нарушена, и, естественно, электрофильная частица будет атаковать атом углерода с наибольшей электронной плотностью. В зависимости от природы заместителя при электрофильном замещении монозамещенных ароматических углеводородов могут образовываться три типа дизамещенных продуктов  [c.228]

    Алкил-(или алке-нил-)замещенные ароматические углеводороды (или их галоид-производные), МНз 2-Метилпентан Ароматические нитрилы Галоге Изомеризац Равновесная смесь 2-метилпентана, 3-метилпентана, 2,3-диметилбутана, н-гексана и неогексана Окисный сурьмяно-ванадиевый (ЗЬ V = = 1 3 — 5 1, ат.), целесообразно добавлять к катализатору воединения ш,елочных металлов 250—500° С, 0,5—1 сек [320] ниды сурьмы ия структурная ЗЪРё — НР в жидкой фазе, от — 20 до 20° С 322] [c.421]

    Избыток водорода и повышение давления препятствуют образованию углерода. Деструктивная гидрогенизация ненасьш енных органических соединений, а также ароматических веществ, например нафталина, флуорена и фенантрена, проводимая при температуре 425 —450° и начальном давлении водорода 70—80 ат, состоит из двух фаз 1) водород присоединяется к одному из ароматических ядер и 2) получающийся не полностью гидрогенизованный углеводород разлагается на замещенный одноядерный ароматический углеводород, по схеме  [c.608]

    В случае алкилбензолов фотохлорирование приводит в основном к реакции замещения в боковой цепи и эта реакция широко используется для получения соответствующих соединений. По своей активности атомы водорода, связанные с ближайшим к кольцу атомом углерода боковой цени, можно сравнить с третичным атомом водорода в алифатическом соединении они первыми подвергаются замещению. Несмотря на то, что таким путем получены многие ароматические соединения, содержащие атом хлора в а-положении, трудно все же оценить выход фотохимической реакции, так как в условиях опыта одновременно происходит также и термическое хлорирование. Например, при обычной методике хлорирования толуола [344, 345], которая состоит в пропускании хлора в облучаемый раствор кипя1цего углеводорода, получается хлористый бензил с выходом 85%, однако в этих же условиях наблю-. дается заметное хлорирование и в отсутствие излучения. [c.290]

    Это рассмотрение можно легко распространить на неальтер-нантные и замещенные ароматические углеводороды. Например, в молекуле толуола, как ясно показывают методы PNDO и N00 [33], наибольший отрицательный заряд несет атом углерода в положении 2, а наибольшую электронную плотность на высшей занятой молекулярной орбитали имеет атом углерода в положении 4. Отсюда следует, что при отсутствии доминирующих стерических эффектов преимущественным центром для электрофильной [c.90]

    Авторы считают, что образование ароматических углеводородов из таких алифатических углеводородов, которые не могут без предварительной изомеризации углеродного скелета дать ароматику (например, из замещенных пентанов или из таких замещенных гексанов, которые имеют четвертичный атом углерода), протекает через стадию замыкания 5-членного цикла с последующей изомеризацией все еще адсорбированной молекулы в гомолог циклогексана. В качестве подтверждения этой точки зрения ими приводятся данные, согласно которым на одном и том же образце катализатора (окись хрома на окиси алюминия) при 550° был получен катализат, содержащий 30 / толуола в случае 2.3-диметилпентана, 20% в случае этилциклопентана и 27%в случае транс-1.2.-диметилциклопентапа. Согласно этим данным, скорость ароматизации циклопентановых углеводородов даже несколько меньше, чем замещенных пентанов. па основании чего сделан вывод, что в суммарном превращении замещенных пентанов самох медленной стадиех является не замыкание, а расщепление 5-членного цикла. Авторы считают, что условия, последующие за образованием 5-членного цикла из замещенных пентанов, вследствие близкого п удобного расположения па катализаторе водорода, только что отщепившегося в результате реакцпи циклизации, благоприятствуют последующему расщеплению этого кольца. Согласно Херингтону и [c.244]


Смотреть страницы где упоминается термин Замещение атомов в углеводородах ароматических: [c.208]    [c.306]    [c.33]    [c.108]    [c.412]    [c.25]    [c.181]    [c.168]    [c.232]    [c.209]    [c.35]    [c.43]    [c.254]    [c.293]    [c.209]    [c.355]    [c.243]    [c.831]    [c.135]   
Избранные труды (1955) -- [ c.233 ]




ПОИСК





Смотрите так же термины и статьи:

Замещение атома на атом



© 2025 chem21.info Реклама на сайте