Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Кристаллизация из аморфного состояния

    При литье в горячую пресс-форму происходит медленное остывание полимера и его кристаллизация. Аморфное состояние не сохраняется. Это обусловливает меньшую эластичность деталей и повышает их износостойкость на истирание. Поэтому при литье изделии, предназначенных для работы на истирание, следует создавать условия, обеспечивающие в них преобладание [c.229]

    На практике кристаллизация аморфных веществ наблюдается очень редко, так как структурные изменения затормаживаются из-за большой вязкости твердых тел. Поэтому, если не прибегать к специальным средствам, например к длительному высокотемпературному воздействию, переход в кристаллическое состояние протекает с исчезающе малой скоростью. В подобных случаях можно считать, что вещество в аморфном состоянии практически вполне устойчиво. [c.159]


    Наиболее высокая температура кристаллизации наблюдается у углеводородов с симметричным ст[)оением молекул. Сильно разветвленные алканы, а также содержащие несколько алкильных заместителей (моноциклические циклоалканы, арены и гомологи нафталина) не кристаллизуются, а переходят в аморфное состояние. [c.52]

    При низких температурах каучук постепенно кристаллизуется кристаллическая фаза появляется и ири растяжении каучука (Кац). Кристаллизация вызывается тем, что часть длинных молекул приобретает упорядоченную или решетчатую структуру другая часть молекул остается ири этом в беспорядочном, т. е. аморфном состоянии. Кристаллический каучук представляет собой смесь кристаллических и аморфных формаций. [c.951]

    В аморфном состоянии макромолекулы непрерывно изменяют свою форму. В процессе кристаллизации происходит постепенное выпрямление и ориентация отдельных сегментов, чему, однако, препятствует перепутанность линейных макромолекул и больщая подвижность их. Вследствие этого выпрямление и взаимная ориентация никогда не происходят по всей длине макромолекулы и кристаллические участки всегда перемежаются с аморфными, т. е. неупорядоченными, участками. Размеры кристаллических участков в полимерах невелики (50—500 А). Поэтому одни и те же макромолекулы могут входить в состав нескольких кристаллитов, между которыми находятся хаотично расположенные участки этих же макромолекул, составляющие аморфную фазу полимера (рис. 18). Легче кристаллизуются полимеры [c.49]

    Скорость кристаллизации полиэфиров ароматических кислот сравните,П1)Н0 невелика, что позволяет в случае необходимости длительно сохранять полимер в аморфном состоянии после быстрого охлаждения его расп.лава. [c.425]

    Рис. II. 1,6 поучителен и в том плане, что на нем можно показать, как действуют в описываемых условиях термокинетические факторы (ср. Введение, рис. 4, а). Реализация аморфного состояния при температуре Г ,, когда скорость кристаллизации становится равной нулю, зависит от скорости, с какой был осуществлен перевод системы от Го " к Гоо. В твердом полностью аморфном, т. е. полностью стеклообразном состоянии эта система окажется, если время перехода будет меньше периода индукции кристаллизации при температуре максимальной скорости кристаллизации Гмакс- [c.76]

    Аморфные вещества по сравнению с кристаллическими обладают большим запасом энергии. Об этом свидетельствует хотя бы тот факт, что при кристаллизации твердого вещества происходит заметное выделение теплоты. При застывании же расплавленного аморфного вещества никакого выделения теплоты не наблюдается. Поскольку аморфное состояние вещества является энергетически менее устойчивым, возникает тенденция к переходу вещества из аморфного состояния в кристаллическое. Этот процесс является чрезвычайно длительным во времени. Так, для перехода стекла в кристаллическое состояние необходимо время в сто лет и более. При этом стекло мутнеет. В процессе кристаллизации внутреннее напряжение в стекле может настолько увеличиться, что оно разрушается без видимых внешних причин. Известны случаи, когда старинные массивные стеклянные предметы вдруг разлетались вдребезги без всякого прикосновения к ним. [c.30]


    Еще не так давно принимали, что в аморфном состоянии полимеры представляют собой систему хаотически перепутанных макромолекул. Однако работы последних десятилетий показали, что на самом деле уже в аморфном состоянии в полимерах наблюдается некоторая структурная упорядоченность. Эта упорядоченность, естественно, резко возрастает при кристаллизации. Согласно В. А. Каргину и Г. Л. Слонимскому, в аморфных полимерных веществах точно так же, как и в обычных жидкостях, имеются области ближнего порядка, в которых молекулы ориентированы параллельно друг другу, образуя достаточной длины пучки, илн пачки Существование таких пачек ни в коей мере не противоречит высокой эластичности полимеров, так как макромолекулы могут принимать различные конформации и тогда, когда они образуют пачки. Молекулы могут различно располагаться в пачках, да и сами пачки могут принимать самую разнообразную форму. [c.432]

    В кристаллическом состоянии полимеры, как и низкомолекулярные кристаллические вещества, содержат области дальнего порядка, характеризующиеся трехмерной периодичностью и, следовательно, достаточно совершенной молекулярной упаковкой. Размер этих областей (их часто называют кристаллитами) обычно также меньше контурной длины макромолекулы одна и та же молекулярная цепь может проходить через несколько кристаллических областей. Эти кристаллические области в десятки, часто сотни, а иногда и тысячи раз превышают размеры звена полимерной цепи. Конформационный набор макромолекул внутри кристаллических областей резко ограничен по сравнению с конформационным набором в аморфном состоянии. При кристаллизации всегда реализуются конформации, характеризующиеся периодичностью в направлении оси макромолекулы. [c.168]

    Аморфными веществами являются и полимеры-, они отличаются от обычных аморфных тел тем, что образуются из соответствующих жидкостей (мономеров) не в результате понижения температуры, а в результате химического соединения молекул. Второе отличие заключается в том, что при переходе из аморфного состояния в кристаллическое кристаллизация охватывает лишь некоторые участки, так как достижению высокой степени упорядоченности мешают большие размеры молекул — крупным и взаимно переплетенным молекулам трудно симметрично расположиться в пространстве. [c.287]

    В аморфном состоянии структурные единицы расположены беспорядочно. Аморфные тела в отличие от кристаллических не имеют постоянной температуры плавления. При нагревании они постепенно размягчаются, переходя в жидкость. Аморфное состояние менее устойчиво по сравнению с кристаллическим, поэтому иногда наблюдаются случаи кристаллизации аморфных тел. Обратный переход из кристаллического состояния, в аморфное невозможен. Типичным примером аморфного состояния является обычное стекло. [c.98]

    Пространственные коагуляционные структуры, образованные молекулярным сцеплением беспорядочно расположенных коллоидных частичек, например в гелях, не обнаруживают дальнего порядка, свойственного кристаллическим телам, хотя каждая частичка как элемент такой пространственной структуры может быть кристалликом малых коллоидных размеров от 1 до 0,001 мкм. Примером исчезновения дальнего порядка, свойственного отдельному крупному кристаллу — монокристаллу , является переход к беспорядочному срастанию мелких кристалликов — поликристаллическому агрегату, возникающему в обычных условиях кристаллизации при непрерывном уменьшении размеров кристалликов. При этом осуществляется переход к криптокристаллическому (скрытокристаллическому) состоянию, напоминающему стеклообразное, или аморфное, состояние, как его раньше называли, по отсутствию характерной для отдельных кристаллов правильной внешней формы. Однако все такие пространственные структуры, независимо от степени упорядоченности или, наоборот, хаотичности,- характеризуются свойствами твердого тела, определенной упругостью и прочностью. Более того, интересно отметить, что беспорядочность структуры — отсутствие в ней дальнего порядка расположения структурных элементов — всегда приводит к значительному повышению прочности. [c.171]

    Аморфные вещества менее устойчивы, чем кристаллические. Любое аморфное вещество в принципе должно кристаллизоваться, и этот процесс должен быть экзотермическим. Поэтому теплота образования аморфного вещества всегда менее отрицательна, чем теплота образования кристаллического (из одних и тех же исходных веществ). Так, теплоты образования аморфной и кристаллической модификаций ВаО] из простых веществ равны соответственно -1254 и -1273 кДж/моль. Этот пример подтверждает также сравнительно небольшое различие в структуре кристаллов и аморфных веществ, а одинаковый порядок значений теплоты перехода из аморфного в кристаллическое состояние (в данном примере она равна -19 кДж/моль) с теплотами кристаллизации подтверждает сходство аморфного состояния с жидким. [c.170]

    В сравнении с низкомолекулярными кристаллами, для которых характерно скачкообразное изменение структуры, кристаллические полимеры переходят в другое фазовое состояние в некотором температурном интервале. Скорость кристаллизации полимеров разного химического состава находится в весьма широких пределах. Одни кристаллизуются быстро, другие медлен-по, что зависит от степени упорядоченности пачек в аморфном состоянии и от сложности построения надмолекулярных структур. Если пачка в аморфном состоянии состоит из более или менее параллельно сложенных макромолекулярных цепей, то процесс кристаллизации заключается в повороте цепей (см. рис. 3). На это требуется относительно малое время. Более длителен переход одной надмолекулярной структуры в другую. Если полимер кристаллизуется быстро, то при охлаждении расплава температура кристаллизации соответствует температуре плавления кристаллов. Если охлаждать расплав полимера, кристаллизующегося медленно, то он может закристаллизоваться при температуре нил<е Тпи или вовсе не закристаллизоваться. Таким образом, ускоряя или замедляя процесс охлаждения расплавленного полимера, можно изменить его структуру и свойства. Этим пользуются при переработке полимеров. [c.21]


    На практике кристаллизация аморфных веществ наблюдается очень редко, так как структурные изменения затормаживаются из-за большой вязкости этих веществ. Поэтому, если не прибегать к специальным методам, например к длительному высокотемпературному воздействию, переход в кристаллическое состояние протекает с исчезающе малой скоростью. В подобных [c.170]

    Так как типичными аморфными телами являются силикатные стекла, то часто аморфное состояние называют стеклообразным, понимая под стеклом аморфно (т. е. без кристаллизации) застывший расплав. Огромная вязкость стекол сохраняет их тысячелетиями без видимых признаков кристаллизации. [c.286]

    Аморфные твердые тела в отличие от кристаллических не имеют правильной симметричной структуры. Типичные аморфные вешества — янтарь и опал. К наиболее важным техническим аморфным материалам относятся стекла и полимеры. Стекла и многие полимеры могут существовать также и в кристаллическом состоянии (с кристаллизацией стекла связано явление его расстекловывания- ). Способность к образованию и кристаллического, и аморфного состояний свойственна также некоторым металлам. В то же время многие вещества в аморфном состоянии получить не удается имеются вещества (смолы), известные только в аморфном состоянии. [c.194]

    Кристаллическое состояние линейного полимера характеризуется дальним порядком в расположении цепей и звеньев. В аморфном состоянии ориентации звеньев беспорядочны, цепи изогнуты в расположении цепей имеется только ближний порядок. Промежуточным является состояние с упорядоченным расположением цепей, но беспорядочными ориентациями звеньев (рис. IV. 16), Кристаллические полимеры обладают регулярной плотнейшей упаковкой цепей, аморфные — случайной плотнейшей. При кристаллизации жидкого полимера цепи должны вытянуться и выстроиться параллельно друг другу. Однако увеличение вязкости с понижением температуры затрудняет этот процесс. Система может заморозиться в неупорядоченном состоянии, в особенности, если охлаждение происходит быстро, так что цепи не успевают перестраиваться. Так, натуральный каучук легко кристаллизуется при —25°С. но, будучи быстро охлажден до —50°С или ниже, сохраняется в аморфном состоянии. Кристаллизации способствует механическое растяжение полимера, которое приводит к вытягиванию цепей. [c.196]

    Вещества в аморфном состоянии не имеют резко выраженной температуры плавления, кристаллические же обладают определенной температурой плавления, с которой обычно совпадает и температура кристаллизации. Вещества с кристаллической решеткой из ионов (соли, щелочи) или из атомов (металлы) плавятся при высоких температурах, в отличие от веществ, решетка которых образована молекулами. [c.258]

    Для полимеров наиболее характерно аморфное состояние, однако в определенных условиях они могут переходить (частично или полностью) в кристаллическое. Необходимое условие кристаллизации— регулярность строения полимера. Процесс кристаллизации совершается при некоторых оптимальных значениях Т и гибкости цепи, ибо слабое тепловое движение не может обеспечить необходимой ориентации звеньев, а слишком интенсивное — ее нарушает. Температуру, выше которой полимер практически не кристаллизуется, называют температурой кристаллизации. При [c.307]

    Возникновение дальнего порядка во взаимном расположении макромолекул, т. е. способность к кристаллизации, определяется регулярностью сфоения полимерных цепей. Известно, что в макромолекуле элементарные звенья и заместители могут располагаться в определенной последовательности и быть определенным образом ориентированы в пространстве (изо-тактические, синдиотактические и другие типы полимеров, имеющих регулярную первичную структуру). Если же присоединение носит статистический характер (наряду с присоединением по типу голова к хвосту присоединение голова к голове или хвост к хвосту ), а заместители не имеют преимущественной ориентации в пространстве, то такие полимеры имеют нерегулярное строение и относятся к группе атактических. Полимеры этого типа могут находиться только в аморфном состоянии. [c.142]

    Если в стеклообразной совокупности цепей нет регулярного упорядочения или коллоидной структуры, то говорят об аморфном состоянии. Не так давно природа неупорядоченного или аморфного состояния твердых полимеров вызывала оживленную дискуссию и тш ательно исследовалась. Примерно до 1960 г. преобладало представление о том, что в таких изотропных, некристаллических полимерах, как большинство каучуков, стеклообразных полимеров (ПС ПВХ, ПММА, ПК) или частично кристаллических полимеров (ПХТФЭ, ПТФЭ, ПЭТФ), цепные молекулы имеют случайное распределение и что модель статистического клубка, или спагетти , правильно отражает структуры этих полимеров. В последующие годы в связи с развитием рентгенографии аморфных полимеров все большее признание приобретала концепция ближнего порядка цепных молекул. Эта концепция со всей очевидностью следует из сравнения сегментального объема и плотности аморфной фазы, из электронно-микроскопических наблюдений структурных элементов, калориметрических исследований, закономерности кинетики кристаллизации и изучения ориентации полимерного клубка. После 1970 г. в дополнение к световому и малоугловому [c.26]

    Скорость кристаллизации достигает максимума при —25. При этой температуре процесс кристаллизации заканчивается в течение 10 час., тогда как при +20 он происходит в продолжение года. Растяжение натурального каучука приводит к ориентации полимера, следовательно, способствует повышению скорости и степени кристаллизации. Этим объясняется высокий предел прочности при растяжении резин на основе натурального каучука. Выше 45° натуральный каучук утрачивает кристалличность и переходит в аморфное состояние, одновременно начинают возрастать пластические деформации. При обычной температуре натуральный каучук представляет собой высокоэластичный полимер. Высокую эластичность каучук сохраняет и при низких температурах, вплоть до —70°, что свидетел1>ствует о высокой морозостойкости этого полимера. Температура перехода его в стекловидное состояние составляет минус 70—минус 75  [c.236]

    Еще раз укажем, что аморфный полимер во всех трех областях, в частности, в области каучукоподобной эластичности II, надлежит рассматривать как расплав. Это существенно, ибо ряд в принципе кристаллизующихся полимеров (например, полиэтилен-терефталат) можно быстрым переохлаждением перевести в стеклообразное и вполне аморфное состояние. Правда, при этом в области II (именно из-за релаксационного расстекловывания ) возникает сегментальная подвижность, а она, в свою очередь, может способствовать кристаллизации. Расплав вновь появится в этом случае при Гх, п. Что касается агрегатных состояний, или степени твердоподобия, то, как уже указывалось, их не удается трактовать однозначно, как для простых веществ. Впрочем, различие это в значительной мере кажущееся, если мы ограничиваемся таким механическим свойством, как податливость тогда перемещая стрелку действия, можно нивелировать разницу между этими состояниями напротив, если рассматривать обратимость деформаций, специфика полимеров, особенно состояния каучукоподобной эластичности, станет бесспорной. Эта бесспорность лишь подчеркивается тем обстоятельством, связанным с зыбкостью границ (особенно для Гт), что расплавы выше Гт и даже достаточно разбавленные растворы гибкоцепных полимеров при очень быстрых воздействиях проявляют не только твердоподобие, но и высокоэластичность при вполне умеренных частотах (см. гл. V). [c.80]

    В последнее время эта точка зрения была опровергнута открытием единичных микрокристаллов высокомолекулярных соединений, и сейчас можно утверждать, что любой полимер, способный к кристаллизации, может быть получен в виде единичных кристаллов . Было найдено, что кристаллизации полимеров предшествует упорядочение аморфных полимеров, т. е. тозник-новение аморфных надмолекулярных структур. Достаточно высокая в ряде случаев скорость кристаллизации полимеров подтверждает наличие предварительной упорядоченности макромолекул полимера в аморфном состоянии. Надмолекулярная структура аморфных каучуков характерна наличием пачек цепей, при слиянии которых образуются полосатые структуры каучуков. Кристаллизация происходит сначала в пределах пачек, а затем идет постепенно дальнейшее упорядочение кристаллизованных пачек. [c.85]

    Важно отметить, что при высоких температурах жидкости по своим свойствам приближаются к газам. В критическом состоянии различие между жидкостью и газом исчезает, а при температурах фыше критической жидкость превращается в газ. Наоборот, при низких температурах, близких к температурам кристаллизации, жидкости по своим свойствам приближаются к кристаллам. Однако переход жидкости в кристаллическое состояние всегд происходит скачкообразно. Когда жидкости по тем или иным причинам не могут перейти в кристаллическое состояние, они с понижением температуры переходят в стеклообразное (аморфное) состояние. [c.56]

    Из содержащегося в цементном тесте раствора, нЕ1сыщенного гидроксидом кальция, последний выделяется в аморфном состоянии и, обволакивая цементные зерна, превращает их в связанную массу. В этом состоит вторая стадия — собственно схватывание цемента. Затем начинается третья стадия — кристаллизация или твердение. Частицы гидроксида кальция укрупняются, превращаясь в длинные игольчатые кристаллы, которые уплотняют массу силиката кальция. Вместе с тем нарастает механическая прочность цемента. [c.641]

    Оба примера относились к процессам фазовых превращ,е-ний (кристаллизация — плавление, парообразование—конденсация, сублимация — десублимацня, полиморфные изменения). А они характеризуются тем, что обе фазы могут сосуществовать, т. е. находиться в равновесии. Это значит, что путем сколь угодно малого изменения температуры и (или) давления можно осуществить соответствующий сдвиг равновесия. Так, подвод небольшого количества теплоты к системе, состоящей из кипящей воды и сухого насыщенного пара, приводит к смещению равновесия в процессе парообразования в одну сторону, небольшое сжатие— в противоположную. А5фп колеблются в довольно широких пределах — от небольших величин (порядка 0,1 э. е.) для превращения веществ из аморфного состояния в кристаллическое до десятков единиц для сублимации, причем очевидно  [c.47]

    Типичными аморфными телами являются силикатные стекла, поэтому часто аморфное состояние называют стеклообразнь1м, понимая -под стеклом аморфно (т. е. без кристаллизации) застывший расплав. Вследствие огромной вязкости стекол они сохраняются тысячелетиями без видймых признаков кристаллизации. В то же время многие жидкие вещества трудно получить в стеклообразном состоянии. [c.171]

    Твердые аещества в аморфном состоянии получают обычно быстрым охлаждением расплавов кристаллических веществ, например 5102 и т. п. Аналогичным путем ведут себя многие силикаты, которые при охлаждении образуют обычное стекло. Причина подобного явления связана с тем, что скорость затвердевания здесь значительно больше, чем скорость кристаллизации. Вместе с тем во многих случаях скорость кристаллизации настолько велика, что за счет ускорения охлаждения аморфное состояние получить нельзя В природе большинство твердых веществ находится в кристаллическом состоянии, в-аморфном состоянии встречаются янтарь, смолы, природные битумы и некоторые другие. В аморфном состоянии могут находиться как низкомолекулярные, так и высокомолекулярные соединения. [c.139]

    Высокие значения внутреннего трения, характерные для аморфных тел,— одна из важнейших причин большей или меньшей устойчивости аморфного состояния вещества. Однако запас внутр. енией энергии у аморфного вещества выше, чем у того же вещества в кристаллическом состоянии. Об этом г. известной мере говорит тот факт, что при кристаллизации происходит выделение тепла, чего не наблюдается при застывании вещества в аморфную масеу. В связи с этим аморфное состояние энергетически менее устойчиво, и всегда имеет место тенденция к переходу вещества в более устойчивую кристаллическую форму. Однако этот процесс весьма затруднен огромным внутренним трением системы. В связи с этим кристаллизация некоторых аморфных тел хотя и протекает, но требует для этого больших промежутков времени. Примером может служить обыкновенное стек- [c.114]

    Кристаллическое состояние полимеров. Большинство полимеров обычно находится в аморфном состоянии. Однако некоторые полимеры в определенных условиях могут иметь кристаллическую структуру. Способностью кристаллизоваться обладают лишь стереорегулярные полимеры. Благодаря регулярной структуре и гибкости макромолекулы могут сближаться друг с другом на достаточно близкое расстояние, чтобы между ними возникли эффективные межмолекулярные взаимодействия и даже водородные связи, которые приводят к упорядочению структуры. Процесс кристаллизации полимера протекает через несколько стадий. На первой стадии возникают пачки — ассоциаты упорядоченно расположенных молекул. Из пачек образуются фибриллы и сфе-ролиты. Фибриллы представляют собой агрегаты пачек продолговатой формы, а сферолиты — игольчатые образования, радиально расходяш,иеся из одного центра. Наконец, из фибрилл и [c.358]

    Кристаллические полимеры нельзя представлять как большие, хорошо сформированные кристаллы. Их надо представлять как мелкие кристаллики, распределенные в аморфной фазе того же вещества. В кристаллических полимерах до 40—60% вещества остается в аморфном состоянии объем их кристаллической фазы зависит от внешних условий. Упорядочени о структуры и кристаллизации способствуют растяжение и низкая температура. [c.190]

    Важнейшими природными силикатами являются, например, тальк (ЗMgO НгО-45102) и асбест (ЗMg0 2H20 25102). Как и для 5162, для силикатов характерно стеклообразное (аморфное) состояние. При управляемой кристаллизации стекла можно получить мелкокристаллическое состояние (ситаллы). Ситаллы характеризуются повышенной прочностью. [c.468]


Смотреть страницы где упоминается термин Кристаллизация из аморфного состояния: [c.164]    [c.124]    [c.55]    [c.275]    [c.511]    [c.19]    [c.163]    [c.388]    [c.178]    [c.309]    [c.131]    [c.158]    [c.287]    [c.9]    [c.315]   
Введение в термографию Издание 2 (1969) -- [ c.119 ]




ПОИСК





Смотрите так же термины и статьи:

Состояни аморфное

Состояние аморфное



© 2025 chem21.info Реклама на сайте