Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Сродство веществ элементарных

    Аналогичный процесс имеет место и при взаимодействии магния с рядом других элементарных веществ, атомы которых имеют значительное сродство к электрону, Наиример, магний сгорает в струе хлора, реагируя с ним, как и с кислородом, по урап.чению [c.54]

    Окислительная способность элементарных веществ. Окислительные свойства веществ обусловлены способностью их атомов притягивать к себе электроны извне. Окислительная активность атомов является функцией величины энергии сродства к электрону чем она выше, или чем больше электроотрицательность элементов, тем сильнее выражены окислительные свойства атомов. Из окислительных элементов самыми энергичными окислителями являются фтор, кислород, азот, хлор и бром, атомы которых характеризуются самыми большими значениями энергии сродства к электрону. Окислительными свойствами элементарных веществ обусловлена их способность вступать в реакции взаимодействия с различными восстановителями, в качестве которых могут выступать элементарные вещества, а также соединения. [c.47]


    Взаимодействие элементарных окислителей с различными соединениями. Различные элементарные окислители могут восстанавливаться при взаимодействии с соединениями, которые играют роль восстановителей как в сухом виде, так и в виде растворов, в том числе водных. Условием для протекания реакций между элементарными окислителями и сухими соединениями — восстановителями является меньшее значение энергии диссоциации соединения — восстановителя по сравнению с энергией образования продукта восстановления окислителя. Весь процесс взаимодействия складывается из ряда эндотермических и экзотермических стадий. Первая из них — диссоциация соединения — восстановителя, а вторая — образование продукта восстановления из элементарного окислителя и вещества, образовавшегося при диссоциации соединения — восстановителя. Окислительная активность элементарного вещества здесь также тем сильнее, чем больше энергия сродства к электрону его атома и чем меньше энергия диссоциации его молекулы. [c.48]

    Для ориентировочной оценки возможности протекания окислительно-восстановительной реакции между элементарными веществами можно воспользоваться значениями ионизационных потенциалов, сродства к электрону и электроотрицательности. [c.143]

    Окислительно-восстановительные свойства элементарных веществ определяются их энергетическими характеристиками — энергией ионизации / и сродством к электрону Е (см. стр. 69). Очевидно, чем меньше I атомов элемента, тем ярче выражены его восстановительные свойства, и, напротив, чем больше Е элемента, тем легче он присоединяет электроны и тем, следовательно, является более сильным окислителем. Поскольку обе энергетические характеристики — энергия ионизации и сродство к электрону (величина Е определена не во всех случаях) — носят периодический характер, то это и лежит в основе периодического изменения окислительновосстановительных свойств элементарных веществ. При сопоставлении подобных свойств различных элементарных веществ пользуются также величиной их электроотрицательности (/+ , см. стр. 69), особенно характерной для окислительных элементов. В реакциях между двумя элементарными веществами окислителем будет то из них, которое обладает большей электроотрицатель-ностью. [c.141]

    Фтор — один из самых химически активных элементов. Поэтому долгое время после его открытия не удавалось получить элементарный фтор в заметных количествах. При нормальных условиях фтор представляет собой двухатомный газ, обладающий большим сродством ко многим веществам и являющийся сильнейшим окислителем. [c.331]


    В растворах элементарный процесс окисления разыгрывается непосредственно у анода с соответствующим потенциалом, а восстановление— у катода электрохимия). Соответствующие ряды напряжения из-за процессов сольватации лишь приблизительно коррелируют с потенциалами ионизации и сродством к электрону. Сродство к электрону, так же как и полярографический потенциал полуволны, зависит от энергии НСМО вещества А. Электрохимические реакции приобретают в органической химии все большее значение [1.5.6]. Элементарный процесс восстановления может быть осуществлен в растворе также за счет сольватированных электронов, имеющихся, например, в растворе металлического натрия в жидком аммиаке [1.5.7]. [c.149]

    Практически любая элементарная реакция сводится к электронному взаимодействию двух сталкивающихся частиц. При этом одна из них может обладать сродством либо к электронам, либо к атомным ядрам и, в соответствии с этим, притягиваться к центрам, богатым или бедным электронами. Существование таких центров в молекуле обусловлено взаимным влиянием атомов и способностью химической связи к поляризации. Такое рассмотрение химических реакций лежит в основе разделения химических веществ на нуклеофильные и электрофильные. [c.21]

    Несколько иной точки зрения на физическую природу явлений катализа придерживался Л. В. Писаржевский ( 925 г.). Он считал основной, причиной катализа взаимодействие реагирующих веществ со свободными электронами катализатора. При этом молекулы веществ, подвергаемых воздействию катализатора, превращаются в положительные или отрицательные ионы в зависимости от их сродства к электронам. Описываемый механизм воздействия катализатора применим лишь к гетерогенно-каталитическим реакциям с газообразными веществами. Для объяснения гетерогенно-каталитических реакций в растворах применяется иной механизм, при котором предполагается переход в раствор небольшого количества ионов металла, применяемого в качестве катализатора. Изложенное показывает, что элементарные процессы образования газового электрода и элементарные процессы каталитического воздействия вещества оказываются тождественными. По теории Л. В. Писаржевского катализаторами, очевидно, могут быть только металлы и вещества, обладающие электрической проводимостью. На основании общих положений этой теории выводятся правила подбора катализаторов среди катализаторов особое место занимают переходные элементы. С точки зрения электронной теории Л. В. Писаржевского процесс адсорбции вещества на катализаторе имеет второстепенное значение. [c.5]

    Аналогичный процесс имеет место и при взаимодействии магния с рядом других элементарных веществ, атомы которых имеют значительное сродство к электрону. Например, металлический магний [c.235]

    Основные положения новой теории А. М. Бутлеров сформулировал в статье О химическом строении органических веществ (1861) Исходя от мысли, что каждый химический атом, входящий в состав тела, принимает участие в образовании этого последнего и действует здесь определенным количеством принадлежащей ему химической силы (сродства), я называю химическим строением распределение действия этой силы, вследствие которого химические атомы, посредственно или непосредственно влияя друг на друга, соединяются в химическую частицу И далее Химическая натура сложной частицы определяется натурой элементарных составных частей, количеством их и химическим строением . Так по-новому определяет А. М. Бутлеров природу химического вещества. Это принципиальное положение легло в основу дальнейшего развития органической химии. Из него следует, что введенное А. М. Бутлеровым понятие химического строения вещества включает представление о расположении атомов и распределении связей в молекуле, а также о взаимном влиянии отдельных атомов и атомных групп в молекуле. [c.60]

    Среди тел, дающих химические соединения, все те, электрические энергии которых хорошо известны, оказываются противоположно заряженными примером таких противоположностей могут служить медь и цинк, золото и ртуть, сера и металлы, кислые и щелочные вещества. Предполагая полную свободу движения в их частицах или элементарных составных частях, мы должны считать, согласно вышеизложенным принципам, что эти тела будут притягивать друг друга под действием своих электрических сил. При современном состоянии наших сведений бьшо бы бесполезно пытаться делать умозаключения относительно источника электрической энергии или о тех причинах, в силу которых тела, приведенные в соприкосновение, электризуются. Во всяком случае, связь между электрической энергией и химическим сродством достаточно очевидна. Быть может, они тождественны по своей природе и являются основными свойствами вещества - [c.78]

    Окислительной способности, как известно, лишены металлы и благородные газы. Окислительная активность элементарного вещества тем больше, чем больше энергия сродства к электрону соответствующих атомов и чем меньше энергия диссоциации молекул элементарных окислителей. Очевидно, что каждый период начинается элементарными [c.50]


    Обозначим (Ху химический потенциал вещества у, а через А1 и Аг — величины сродства общих реакций по схеме (9.146) и через А1, Ап, Ац1—величины сродства элементарных реакций в схеме (9.147). Из определения химического сродства (А = —2vy[iy) получим  [c.365]

    В каждом сложном теле связаны или все единицы сродства, принадлежащие элементарным паям, или часть их — четная или нечетная, смотря по натуре элемента. Если часть сродства элементарных паев, составляющих сложное тело, осталась свободною, то тело это способно входить в прямое соединение с различными частицами, и причиною этой способно ( ти будет тот именно элемент, которого сродство не все потребилось при образовании сложного тела. В противном случае, сложное вещество способно лишь к двойным разложениям. [c.73]

    Классификация на основе природы элементарного акта. Если неподвижной фазой является твердое вещество, то элементарным актом взаимодействия анализируемого вещества (сорбата ) с твердой фазой (сорбентом) может быть 1) акт адсорбции— адсорбционная молекулярная хроматография 2) обмен ионов, содержащихся в твердой фазе, на ионы из раствора — ионообменная хроматография 3) химическое взаимодействие с образованием труднорастворимого осадка — осадочная хроматография. При адсорбционной молекулярной хроматографии жидких или газообразных веществ хроматографическое разделение основывается на различии адсорбционного сродства между компонентами разделяемой смеси и веществом твердой фазы, называемым в данном случае адсорбентом. Этот вариант хроматографии относится к классическому цветовскому варианту. [c.12]

    В 1861 г. в своем основополагающем докладе О химическом строении веществ А. М. Бутлеров ставил задачу выяснить, какое взаимное влияние могут оказывать два атома, находящиеся внутри одной и той же химической частицы, но химически не действующие непосредственно друг па друга . Оп указывал па перавноцениость единиц сродства, объясняемую взаимным влия-пием атомов, составляющих молекулу органического соединения. В 1862 г. А. М. Бутлеров писал ...говоря о различии единиц сродства, нельзя не указать на то влияние, которое оказывает на свойство одних единиц сродства натура паев (т. е. природа атомов.—/О. С.), связывающих другие единицы, и необходимо даже прибавить, что различие, быть может, условливается этим влиянием В статье О различных обт ясненпях некоторых случаев изомерии (1864) он развил мысль о взаимном влиянии атомов, входящих в состав данной молекулы ...элементарные атомы, находящиеся внутри молекулы, могут взаимно влиять иа химический характер друг друга, не будучи ири )том соединены непосредственно Различное распределение сродства по связям [c.201]

    При особом рассмотрении водорода нельзя не обратить внимания на его исключительное сходство с галогенами. Несмотря на некоторые различия, он обладает рядом характерных, общих с галогенами свойств. Так же как и галогены, он является неметаллом и, так же как и последние, в элементарном состоянии образует двухатомные молекулы. В этих молекулах, как в случае галогенов, так и в случае водорода, атомы связаны простой связью. Работа, необходимая для разложения молекул на атомы, постепенно убывает в ряду Н—С1—Вг—Р—I. Так же как галогены, водород может выступать в качестве электроотрицательного иона, т. е. водород аналогично галогенам обладает сродством к электрону. Последнее означает, что в случае присоединения одного электрона к нейтральному атому Н, выделяется энергия. Так же как водород, галогены в соединениях, где они отрицательно заряжены, исключительно одновалентны. Соединения водорода с металлами, в которых водород является электроотрицательной составной частью по строению и характеру связи, соответствуют аналогичным соединениям галогенов. По своему строению эти вещества подобны солям, и поэтому водород в полном смысле слова можно считать солеобразователем . Точно также и работа, которая должна быть затрачена, чтобы получить положительно заряженный водород, т. е. атом водорода с отщепленным электроном, является отнюдь не меньшей, чем у галогенов (за исключением фтора). В этом можно убедиться, сравнив ионизационные потенциалы (см. стр. 140). [c.42]

    ЗИЯ, которые связаны со смещением масс (молекул) вг подвижной среде, законно рассматривать вместе с Уэйлом эти процессы в рамках общей теории химической механики. Разница между изложенным и элементарным физическим представлением заключается в том,, что в данном случае среда рассматривается более сложно, чем просто континиум . Согласно этой теории, вещество рассматривается с точки зрения кинетико-атомистических представлений как объект действия внешних, сил. Например, диффузия растворенного газа в стекле есть не простое течение этого газа через молекулярные-промежутки (см. С. I, 14 и ниже) диффундирующие-молекулы прыгают с места на место. Кинетика такого-процесса предполагает определенную скорость реакции-и определенную энергию активации, необходимые для преодоления противодействующих энергетических барьеров. Обе эти величины определяются протискиванием растворенных молекул через соседние окружающие электростатические поля. 1По этой причине водород диффундирует через стекло гораздо медленнее гелия,, потому что движению этого нейтрального газа не препятствует химическое сродство с кислородным каркасов стекла. Однако оба газа, если они мигрируют в твер- дом теле, не содержащем в своей структуре кислородных анионов, диффундируют почти с одинаковой скоростью при прежних исключительно геометрических ил механических представлениях это явление оставалос1> необъяснимым. [c.114]

    Как мы уже упоминали (стр. 97), Вислиценус впервые постулировал существование, говоря современным языком, поворотных изомеров в случае простой связи С — С. В пользу этого предположения он приводит следующие соображения. Тот факт, что из ряда насыщенных соединений всегда образуются определенные изомеры этиленовых соединений, а не их смесь в равных отношениях, говорит о закономерном характере этого вращения, о его обусловленности особыми (spe ifis hen) силами притяжения между радикалами, связанными с данной парой углеродных атомов. При этом,— пишет Вислиценус,— во всяком случае надо сделать одно предположение, а именно, что в молекуле вещества оказывают притягивающее действие друг на друга также еще и атомы, не соединенные между собою непосредственно, причем это притяжение не только гравитационное, но и химическое [96, стр. 14]. Природа этого притяжения аналогична химическому взаимодействию молекул, с приближения которых начинается химическая реакция. Если бы такого притяжения не существовало в молекулах, то были бы необъяснимы процессы диссоциации молекул, внутримолекулярные перегруппировки и особое ориентирующее действие одного заместителя на способность к замещению другого . Свою точку зрения Вислиценус суммирует таким образом Внутримолекулярное взаимодействие прямо друг с другом не связанных элементарных атомов должно иметь ту же причину, как и действие друг на друга атомов, принадлежащих различным молекулам, это — действие специфических сродств [там же, стр. 14—15]. [c.127]

    В рассуждениях великих химиков прошлого века все абсолютно правильно, и тем не менее открытое ими вещество никак не назовешь элементарным бором. Из-за большого сродства бора ко многим элементам, и преноде всего к кислороду, продукт, полученный Гей-Люссаком и Тенаром, не мог содержать более 60—70% бора. То же самое и у Дэви. Это доказал Анри Муассан — выдающийся французский химик второй половины XIX века. Он же в 1892 году предложил магниетермический способ получения бора но реакции [c.75]

    Ранее уже было упомянуто, что после отказа Бутло ро-ва в 1863 г. от гипотезы различия единиц сродства объяснение реакционной способности органических соединений стало невозможным бв13 ссылок на взаимное влияние атомов. В этой области (разработка которой представляет актуальный интерес и в наши дни) в первую очередь были необходимы обобщения уже имевшихся литературных данных, без попытки пока проникнуть в механизм взаимного влияния атомов. Кроме отдельных обобщени1с, высказанных Бутлеровым в статьях в 1866 г., в третьем выпуске своего курса органической химии (см. следующую главу) он поместил специальный 1раздел, в котором суммировал выводы из известного в его время фактического материала. Относительно сделанных им обобщений он там говорит Химическую натуру элементов еще приходится пока изучать просто, не пускаясь в объяснение ее сущности, но что касается влияния химического помещения элементарного пая (атома. — Г. Б.) в частице на его свойства и влияния на эти свойства других элементарных составных частей той же частицы, то здесь, как читатель видел, могут быть подмечены известные правильности и формулированы некоторые обобщения. Обобщения эти еще очень шатки и поверхностны, но, руководясь ими, уже нередко можно, с достаточной ве(роятностью, делать заключения о химическом строении вещества по его превращениям и, наоборот, предвидеть до некоторой степени свойства тела, имеющего определенное, известное химическое строение. При большей разработке такие обобщения, без сомнения, приобретут более твердые основания, более определенный вид и заслужат названия законов [2, стр. 441]. [c.92]

    Система атомных весов Берцелиуса 1826 г., отличавщаяся большой точностью и проверенная сопоставлением различных числовых данных, пользовалась авторитетом до середины 30-х годов прошлого века. Дюма во Франции и Митчерлих в Германии пытались укрепить эту систему путем распространения метода непосредственного определения плотности в газообразном состоянии и на нелетучие элементы. Однако, как известно, эти попытки привели к обратным результатам они подорвали доверие к объемному методу. Закон Дюлона и Пти из-за многих отклонений также не внушал доверия в качестве объективного метода определения атомных весов. Открытие диморфизма уменьшило значение закона изоморфизма. С другой стороны, открытие в 1834 г. электрохимических законов Фарадея, опровергших идею Берцелиуса о зависимости силы химического сродства от величины заряда атома, одновременно указало на то, что количества выделяющихся на электродах элементарных веществ пропорциональны их химическим эквивалентам. Этот факт привел Фарадея к отождествлению химических эквивалентов с атомными весами. Он считал метод электрохимического разложения верньш средством контроля при определении атомных весов 38, стр. 435]. [c.147]

    Дальнейшее развитие электрохимической теории Дэви связано с именем А. Авогадро. В статье, опубликованной в 1809 г. [20, стр. 3], Авогадро развивает идею о кислотных и щелочных свойствах элементов и их соединений на основе электрохимических представлений. Присоединяясь к выводам Бертолле о существовании кислот, не содержащих кислорода, и опираясь на открытие Дэви щелочных металлов, доказавшее существование кислорода в самых сильных основаниях, Авогадро создает теорию кислотности и щелочности на более общей основе. Во-первых, он выдвигает идею об относительности понятий кислотности и щелочности, так как эти свойства зависят от вещества, с которым сравнивают соответствующие тела. Он считал, что все вещества образуют один последовательный ряд, на краях которого находятся наиболее кислотные и щелочные веи1.ества в середине же—более или менее нейтральные. Эти выводы Авогадро относит как к элементарным веществам, так и к их соединениям. Свой кислотно-щелочной ряд веществ Авогадро строит, опираясь на электрохимические взгляды Дэви Опыты и рассуждения, которые Дэви изложил в своем замечательном мамуаре О некоторых электрических явлениях (1807), подтверждают наш взгляд на кислоты и щелочи... они нам показывают, что имеется тесная связь между взаимным кислотным и щелочным антагонизмом и электродвижущей силой при контакте двух тел по Вольту,—кислота заряжается в этом случае отрицательно, а щелочь—полон итель-но... [20, стр. 385]. В связи с этим Авогадро выдвигает более общее. представление о кислотности и щелочности. Он считает, что вообще из двух веществ, которые соединяются, одно играет роль кислоты, а другое — основания, а этот антагонизм и определяет стремление к соединению или, собственно говоря, сродство... [20, стр. 384]. Он продолжает Так, если рассматривать таблицу, которая представляет собой лестницу кислотности и щелочности... во главе которой мы поставим, например... вещество, которое проявляет кислотный антагонизм по отношению ко всем другим на втором месте то вещество, которое обладает щелочным антагонизмом по отношению к первому и кислотным — по отношению ко всем остальным и, таким образом, до последнего вещества таблицы, которое будет иметь щелочной антагониз по отношению ко всем известным веществам, то такая таблица будет простейшим выраже- [c.154]

    Исследуя щелочи но методике Ф. Гофмана, Блэк показал, что белая магнезия (карбонат магния) и известняк — это два различных вещества. Хотя бурное выделение газов наблюдается при обработке кислотами и того и другого вещества, кристаллы их существенно различаются но форме. При интенсивном нагревании магнезия не образует земли , а остаток, получающийся при ее прокаливании (окисел), нерастворим в воде, но с кислотами дает те же самые соли, что и исходный карбонат, хотя при этом не происходит бурного выделения газов. Блэк установил, что в процессе прокаливания из веществ удаляется воздух (углекислый газ) , и предположил, что именно по этой причине вес вещества при такой обработке уменьшается и оно уже не столь бурно взаимодействует с кислотами. Чтобы подтвердить свою гипотезу, Блэк растворил окись магния в серной кислоте и осадил магний карбонатом натрия. Полученный осадок, как выяснилось, идентичен исходному карбонату магния, и наблюдаемые изменения веса незначительны. В результате Блэк сделал вывод, что щелочные карбонаты не являются элементарными веществами, ибо они отдают окиси магния тот самый воздух , который столь бурно выделяется под действием кислот. Проводя аналогичные исследования с известью и известняком, ученый установил, что воздух , выделяющийся из карбонатов, не идентичен атмосферному воздуху, а представляет собой лишь один из его компонентов. Блэк назвал его связанным воздухом . Поскольку этот компонент воздуха поглощает известь и гидроокиси щелочных металлов, следовательно, делает вывод Блэк, связь между щелочами и связанным воздухом подобна связи между щелочами и кислотами первые в некоторой мере нейтрализуются связанным воздухолг . Однако связь между кислотами и щелочами сильнее, потому что кислоты вытесняют связнный воздух . Соответственно слабые щелочи (карбонаты) содержат сильные щелочи (гидроокиси), и именно этим обусловлены едкие свойства первых после обработки связанным воздухом едкие свойства исчезают. Сродство извести со связанным воздухом сильнее ее сродства с водой, так как иод дей- [c.54]

    Следовательно, сродство представляет собой функцию активностей или концентраций исходных веществ и продуктов реакции в неравновесном и равновесном состояниях системы, а также стехиометрических коэффициентов уравнения реакции. Если реакция элементарная, то сродство А зависит от механизма реакции, который прежде всего определяется видом и числом реагирующих частиц. Феноменологичес- [c.188]

    Потеряв с допущением изменчивой атомности достоинство строгой научной системы, сделавшись схематическим выражением понятия об эквивалентах, учение, разбираемое нами, могло бы оставаться в науке как наглядное представ-.тение для изложения учения о формах химич[еских] соединений, если бы к нему не примешивали представления о связи элементарных атомов в частице частью сродств, свойственных атомам. Эта часть учения об атомности не может быть согласована с гораздо более прочными представлениями о строении вещества и о законах притяжения, а потому должна быть совершенно отвергнута. Атомы в частице должно представить находящимися в некотором подвижном равновесии и действующими друг на друга. Вся система связывается силами, принадлежащими отдельным частям, и нельзя представить, чтобы некоторые две части целого находились в зависимости от третьей части и не влияли бы друг на друга, особенно если все, что мы знаем об этих двух частях, указывает на их постоянное и ясное взаимодействие. Прка принимают, что в СН углерод есть единственная связь для атомов водорода, то еще нет ничего поразительного, но когда один водород заменится хлором, то оно является, ибо нельзя думать, чтобы хлор остался без влияния на водороды, чтобы связующим для водородов и хлора остался один углерод, чтобы притяжение Н к С1 не участвовало ни во время реакции, ни после нее. Этого нельзя допустить уже и потому, что хлор весит почти в 3 раза более, чем самый углерод. Если посредством так называемой связи элементов желают условно выразить только одно их распределение в пространстве, если в приведенном примере желают показать, что хлор занимает то же место, находится в тех же отношениях к углероду и прочим элементам, как и водород, то ничего не говорят более, чем то, что было сказано при самом открытии металепсии. [c.297]


Смотреть страницы где упоминается термин Сродство веществ элементарных: [c.164]    [c.164]    [c.164]    [c.221]    [c.48]    [c.108]    [c.245]    [c.76]    [c.281]    [c.281]    [c.13]    [c.240]    [c.49]    [c.21]    [c.75]    [c.48]    [c.108]    [c.370]    [c.370]   
Сочинения Научно-популярные, исторические, критико-библиографические и другие работы по химии Том 3 (1958) -- [ c.181 ]




ПОИСК





Смотрите так же термины и статьи:

Сродство



© 2025 chem21.info Реклама на сайте