Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Алкилирование непрерывное

    При промышленном синтезе кумола смесь пропан — пропилен вводится в эмульсию бензола и серной кислоты и одновременно непрерывно удаляется некоторое количество алкилатной эмульсии. После отделения серной кислоты, которая большей частью снова подается на алкилирование (регенерируется только часть серной кислоты), это количество алкилатной эмульсии заменяется новой серной кислотой. [c.265]


    Изобутан и этилен. 2,2-диметилбутан является основным продуктом инициированного термического алкилирования изобутана. Опыты по изучению этой реакции проводились в непрерывном процессе при 427° и 176 ат с рециркуляцией непрореагировавшего изобутана при времени реакции 10 мин. При алкилировании изобутана этиленом (молярное отношение 5,5) в присутствии 1,0% вес. (на углеводород) хлорированного лигроина был получен алкилат с выходом 195% вес. на загрузку этилена (теоретически выход на этилен 307% вес.). Он состоял из 13,8% изопентана, 3,8% н-пентана, 43,2% неогексана и 11,2% других изомеров гексана, главным образом метилпентана. Выход неогексана составлял, таким образом, около 25% от теоретического. [c.308]

    Влияние давления на алкилирование в присутствии хлороформа при 400° исследовалось в непрерывном процессе при однократном пропускании. С повышением давления от 70 до 140 и до 210 ат выход жидких продуктов соответственно составлял 70, 140 и 210% вес. на этилен. [c.309]

    Алкилирование в непрерывном процессе при 3.7,8° с использованием в качестве катализатора 90%-ного фтористого водорода сопровождалось образованием гептанов с выходом 56% (67% 2,3-диметилпентана, 33% [c.323]

    Тот факт, что при алкилировании галоидалкилами реакции переноса водорода играют большую роль, чем при алкилировании олефинами, был подтвержден опытами, проведенными с целью доказательства, что процессы алкилирования изобутана олефинами и сложными эфирами в присутствии фтористого водорода неравноценны [28]. Опыты проводились в виде-непрерывного процесса при температуре 37,8° с пропиленом и при 36,7° с фтористым изопропилом. [c.334]

    Выбор в качестве промышленных катализаторов алкилирования серной и фтористоводородной кислот обусловлен их хорошей избирательностью, относительной дешевизной, продолжительными циклами работы установок благодаря возможности регенерации или непрерывного восполнения активности катализатора. Каталитическому алкилированию в присутствии серной или фтористоводородной кислоты могут подвергаться парафиновые углеводороды только изостроения, содержащие активный третичный атом углерода. При этом алкилирование изобутана этиленом идет с трудом, очевидно, вследствие стабильности образующихся промежуточных соединений — эфиров. Алкилирование пропиленом, особенно бутиленами, протекает достаточно глубоко. [c.81]

    Поскольку применяемые катализаторы способствуют полимеризации олефинов, необходимо, чтобы концентрация последних в реакционной смеси была ниже, чем требуется по уравнению реакции. С этой целью сырье разбавляют изобутаном, непрерывно циркулирующим в системе. Соотношение изобутан олефин в углеводородной смеси, поступающей на алкилирование, составляет обычно (4—10) 1, чаще— (6—7) 1. В присутствии избытка изобутана повышается качество алкилата и подавляются не только полимеризация, но и побочные реакции деалкилирования. Дальнейшее повышение кратности изобутана к олефину уже малоэффективно, так как незначительно влияет на октановое число алкилата. При повышенной кратности изобутана возрастают эксплуатационные расходы на его циркуляцию и охлаждение, а также возникает необходимость увеличивать размеры основных аппаратов установки. [c.82]


    Реакция алкилирования легко осуществляется как в стати-чески> условиях, так и по непрерывной схеме. [c.387]

    Несмотря на то, что основную долю составляют заводы небольшой мощности, они отличаются высокой степенью технической оснащенности. На них представлены практически все современные процессы нефтепереработки (гидрокрекинг, изомеризация, алкилирование, риформинг, в том числе с непрерывной регенерацией катализатора, ККФ с лифт-реактором, производство масел, битумов, кокса) и др. [c.38]

    Основной тенденцией развития химического машиностроения является значительное усовершенствование действующего оборудования, увеличение количества типоразмеров стандартного оборудования 1го-вышение мощности отдельных машин и агрегатов, разработка новых конструкций некоторых видов оборудования. Например, усовершенствование реакторов направлено на интенсификацию их работы, компактное оформление, непрерывное ведение процесса, а также на упрощение конструкции. Разработаны новые типы реакторов, основанных на взаимодействии реагентов под действием излучения электронов, которые находят широкое применение в процессах алкилирования, полимеризации и других, протекающих в газовой фазе и под высоким давлением. В последние годы появились мельницы-мешалки. Этот новый тип машин объединяет в себе шаровую мельницу, диспергатор и валковую мельницу. С помощью такого агрегата можно диспергировать, производить тонкий помол и гомогенизировать жидкотекучие материалы, например исходные смеси для лаков и красок. Помимо непрерывности технологического процесса, большой производительности и высокой степени измельчения эти машины обеспечивают высокое качество получаемой продукции. [c.6]

    Все описанные выше технологические схемы производства присадок основываются, на использовании установок периодического действия, которые, как уже говорилось, не могут быть в достаточной степени автоматизированы и механизированы, В последние годы наряду с синтезом новых, высокоэффективных присадок к маслам ведутся большие работы по усовершенствованию действующих процессов производства присадок. В частности, разрабатываются непрерывные схемы, являющиеся более эффективными и экономически выгодными. Особое внимание уделяется разработке непрерывных схем для тех стадий или узлов производства, которые являются общими для процессов получения многих присадок например, алкилирование ароматических углеводородов и их производных олефинами, конденсация алкилфенолов с формальдегидом и другими соединениями, нейтрализация и сушка различных продуктов и отделение механических примесей, сульфирование масел серным ангидридом, отгонка растворителей и непрореагировавших продуктов, а также утилизация отходов производства присадок. [c.248]

    Непрерывный процесс алкилирования фенола непредельными углеводородами на катионите КУ-2 [21, 276, 277] осуществляется по следующей схеме. Непредельные углеводороды и расплавленный фенол в массовом соотношении 1 1,5 из смесителя через теплообменник при 120—130 С подают в реактор, где поддерживается температура 135—145°С, Продукт алкилирования через теплообменник направляют в отгонную колонну. Отогнанные непрореагировавшие компоненты (смесь фенола и непредельных углеводородов) поступают в холодильник конденсатор, а затем возвращаются в смеситель алкилфенол используется по назначению. [c.248]

    Назначение процесса — производство высокооктанового компонента бензинов каталитическим алкилированием изобутана бутиленами и пропиленом в присутствии серной кислоты. В промышленности процесс осуществляют в реакторах различных типов с непрерывным перемешиванием эмульсии кислота—углеводороды. [c.167]

    Алкилирование происходит в присутствии избытка бензола причем катализатор непрерывно выводится из реактора и добавляется. После алкилирования промытый этилбензол подают последовательно в три ректификационные колонны, где получают этилбензол высокой чистоты, бензол и полиэтилбензолы. Бензол и полиэтилбензолы возвращают в цикл. [c.237]

    Аппаратура и методика. Смесь химически чистого изобутана и различных олефинов подвергали алкилированию в присутствии НР в реакторе непрерывного действия (рис. 1). Аппарат представлял собой небольшой автоклав 5 из нержавеющей стали, снабженный магнитной мешалкой. Катализатор отделяли от продук- [c.61]

    При алкилировании изопарафинов олефинами очень важно замедлять полимеризацию, конкурирующую с алкилированием. В лабораторных условиях это достигается путем проведения процесса в полунепрерывном реакторе, куда сначала загружали кислоту и изобутан, а потом непрерывно подавали олефин. Скорость подачи олефина не должна быть особенно высокой, чтобы он не накапливался в аппарате. Таким образом скорость полимеризации снижается до минимума. Процесс вели до тех пор, пока сохранялось необходимое исходное соотнощение изопарафина и олефина, примерно равное соотношению изопарафина и олефина, поддерживаемому при работе непрерывных промышленных установок. [c.73]


    Убытки от наличия этилена в сырье столь велики, что в целях рентабельности работы всей установки совершенно необходимо точно регулировать работу колонны деэтанизации. Этан, этилен и метан во фракции Сз—С4 должны отсутствовать при непрерывном хроматографическом контроле. Даже если углеводороды С2 содержатся в виде следов, это означает, что за сутки через систему пройдет примерно 1 м этилена. Случайное попадание в реактор малых количеств этилена может резко снизить силу кислоты и вызвать прекращение алкилирования, а абсорбция олефинов Сг кислотой способствует ее быстрому разбавлению и протеканию полимеризации олефинов. [c.216]

    Наряду с особенностями конструкции алкилатора и отличиями по расходу энергии на перемешивание, как перемешивание, так и алкилирование улучшаются благодаря тому, что 50% или более по объему кислоты образуют непрерывную фазу эмульсии. Рециркуляция эмульсии, содержащей 25—30% углеводородов, как и ожидалось, облегчает перемешивание и дает лучшие результаты, чем рециркуляция кислоты. В особенности это справедливо для работы установки с большой производительностью, при больших объемных скоростях подачи олефина (0,5 ч и выше) и при высоком содержании пропилена в сырье. Рециркуляция эмульсии имеет еще и то преимущество, что способствует возврату изобутана в реактор помимо секции фракционирования. [c.238]

    Интересен метод алкилирования аминов спиртом в присутствии треххлористого фосфора, который при взаимодействии со спиртом, очевидно, превращается в смесь фосфористой кислоты и хлористого водорода. При достаточно высокой температуре относительно большая скорость реакции позволяет провести алкилирование непрерывным методом. Моно- и диэтиланилин вырабатываются этим методом пропусканием спиртового раствора анилина, содержащего РС1з в количестве 0,3% от анилина, через систему из трех последовательно соединенных автоклавов при температуре, которая повышается от 200° в первом, до 300° в последнем автоклаве. Давление в системе 90—95 ат. При применении на 1 моль анилина 1,3 моля этилового спирта образующаяся смесь аминов содержит около 20% анилинэ, 65% моноэтиланилина и 15% диэтиланилина. Если количество диэтиланилина, который образуется при производстве моноэтиланилина, больше требующегося, то возможно возвращение диэтиланилина в процесс вместо части спирта. Состав смеси аминов при этом остается без изменения, что указывает на равновесность реакции алкилирования, т. е. на возможность превращения как вторичного амина в третичный, так и третичного (при взаимодействии с первичным амином) во вторичный. [c.529]

    Поэтому весьма целесообразным представлялось проводить реакцию алкилирования непрерывным методом на проточной реакционной колонке, изображенной на рисунке. Смесь фенолов иалкилирующего агента, взятого с 10—15%-ным избытком против эквимолекулярного, загружали в подогреватель сырья, откуда она непосредственно попадала на слой катионита, помещенного в термостатирующую колонку. Температура в зоне реакции 110—120° С. По мере фильтрации через слой катионита происходило присоединение алифатического радикала к ароматическому ядру фенолов. Продукты реакции выводили из колонки через сифонную трубку, посредством которой поддерживался уровень жидкости выше слоя катионита, и разделя-Схема установки для алкилирования фенолов ли их, как было описано вы- [c.30]

    Специально проведенными экспериментами по алкилированию при большом избытке изобутана (соотношение изобутан олефин равно 15 1) Гофман и Шрахейм [24] показали, что в процессе катализа серной кислотой имеется индукционный период , когда свежая кислота как бы разрабатывается , активность ее по общему выходу алкилата возрастает, и состав продуктов алкилирования непрерывно изменяется. В частности, изменяется соотношение триметилпентаны диметилгексаны в алкилате. Высокое вначале, оно затем понижается и, пройдя через минимум, вновь повышается до прежней величины (к моменту полной разработки катализатора), как это видно из данных, приведенных на рис. 2. Указанные изменения состава и выхода продуктов реакции трудно объяснить, исходя только из механизма, предложенного Шмерлингом. [c.27]

    Тонкая эмульсия бензола в серной кислоте соединяется в смесительном насосе с пропан-нропеновой смесью и подается в реакционный сосуд, где происходит реакция между бензолом и пропеном. Смесь в реакционном сосуде непрерывно перемешивается циркуляционным насосом, причем небольшая часть алкилата и серной кислоты постоянно отбирается от циркулирующей реакционной сл1еси и подается в отстойник, где в виде нижнего слоя отделяется серная кислота, которая вновь возвращается на установку алкилирования. Часть серной кислоты из процесса выводится и заменяется свежей. [c.231]

    Например, алкилирование в присутствии ила-виковой кислоты, как катализатора, производится следующим образом (рис. 144) [821. В котел загружают 107С кг бензола, предварительно охлажденного до -1-10 , 547 кг безводной плавиковой кислоты и 1472 кг пропенполимера, смесь энергично перемешивают. Реакция заканчивается через 3—4 часа, после чего плавиковая кислота отгоняется прп 20°, а не вошедший в реакцию бензол при 80". Из смеси отгоняется 200 кг плавиковой кислоты и 305 КЗ бензола. Остаток от перегонки в течение получаса перемешивают с 10 кг кальцинированпой соды, фильтруют через фильтрпресс и в таком виде он поступает на дальнейшую переработку. Алкилирование может производиться также непрерывным способом. [c.234]

    Алкилирование бензола тетрамером пронена может проводиться также в присутствии серной кислоты, лучше 100%-ной, при 10—20° непрерывным способом. Компоненты энергично перемешивают в смесителе в течение 1 часа, а затем подают в разделитель, где кислота быстро отделяется от углеводорода. Серная кислота возвраш ается в процесс, а углеводородный С.110Й нейтрализуется и нерегопкой освобождается от избыточного бензола. Условия работы при алкилировании бензола тетрамером пропепа с серпой кислотой как катализатором следующие. [c.235]

    И могут быть использованы в непрерывных процессах, йаилучшие результаты получены при применении жидких комплексов хлористого алюминия, которые вследствие нерастворимости в продукте алкилирования быстро отстаиваются. Это позволяет отделять их и снова вводить в процесс. Комплексы можно получать на месте (in situ) при помощи реакции алкилирования [2, 47] или же приготовлять предварительно путем взаимодействия хлористого алюминия с различными алифатическими углеводородами и углеводородными фракциями (например, с олефинами, с 2,2,4-триметил-пентаном, с керосином) [19]. Хорошие результаты давало использование в качестве катализатора жидкого комплекса, приготовленного взаимодействием хлористого алюминия с остатком от перегонки продукта (температура кипения около 160—200° 98,4% парафиновых и 1,6% олефиновых углеводородов), получаемого при алкилировании изобутана пропиленом и бутиленами в присутствии серной кислоты. [c.321]

    Аппараты непрерывного действия считаются эффективными, если при сильном перемешивании степень превращения составляет свыше 90% от степени превращения, достигаемой при полном перемешивании. Реактор Стратко для производства смазок (рис. ХЫ) представляет собой пример реактора, в котором обеспечивается интенсивное перемешивание объем реактора 1,89 м скорость подачи сырья 908 ж /ч, потребляемая мощность 22,4 кет в реакторе для алкилирования емкостью 34 Л1 —соответственно И 400 л /ч и 186 квт. [c.355]

    В эмульсионном катализе контакт реагирующих веществ с катализатором часто не ограничивается только зоной реактора, а продолжается и в отстойной аппаратуре с понижающейся интенсивностью в течение всего времени разложения эмульсии. При этом в связи с непрерывным изменением условий контакта возможно и изменение направления или усиление отдельных реакций. Применительно к эмульсионному процессу сернокислотного алкилирования был изучен характер разложения эмульсии во времени. Как правило, выделение углеводородной фазы из эмульсии серная кислота — углеводороды происходит во времени неразномерно. О/бычно наблюдается три характерных этапа началь- [c.83]

    Наиболее массовым нефтепродуктом в США является автобензин. За последние годы был принят ряд законов, ограничивающих использование в бензинах антидетонационных присадок на основе свинца, поскольку образующиеся при сжиганий таких бензинов соединения свинца загрязняют атмо сферу, а главное быстро отравляют катализаторы дожига выхлопных газов В 1984 г. потребление бензина, не содержащего свинцовых антидетонаторов достигло 62% от общего его потребления, а к 1990 г. должно возрасти до 70—90% (табл. П.10). Однако отказ от использования свинцовых антидето наторов не означает снижения требований к октановым числам бензина которые вследствие необходимости повышения топливной экономичности, ав томобилей должны оставаться на достаточно высоком уровне (табл. П.10 11.11). Поэтому в целях увеличения производства высокооктановых компо нентов бензина (риформата, алкилата, крекинг-бензина н др.) цреддолагается повысить мощность и жесткость процесса каталитического риформинга, в том числе за счет дальнейшего увеличения числа установок, работающих на би- и полиметаллических катализаторах (76,3% в 1983 г.), а также строительства установок непрерывного риформинга. Предусматривается расширить мощности традиционных процессов производства высокооктановых компонентов бензина (алкилирование, изомеризация) и новых каталитических процессов, например получения димеров пропилена (димерсол). Намечается также заметно повысить октановое число крекинг-бензина в результате применения в процессе ККФ специальных новых катализаторов. [c.29]

    Опыт исследовательских работ последних лет показывает, что, несмотря на упомянутые многочисленные затруднения, при дифференцированном подходе к отдельным стадиям синтеза присадок можно создать узлы непрерывного действия. Непрерывное ведение процесса особенно рационально в тех случаях, когда реакции протекают с большой скоростью. В настоящее время в опытном и опытно-промышленном масштабах уже созданы реакторы, обеспечивающие непрерывное ведение некоторых стадий синтеза присадок алкилирования фенола олефинами на твердых катализаторах, сульфирования ароматических углеводородов, конденсации алкилфенола с формальдегидом, нейтрализации и сушки промежуточных продуктов синтеза, фосфоросернения и др. [c.222]

    Алкилфенол получают алкилированием фенола в присутствии бензолсульфокислоты или катионита КУ-2 (на рис. 5 показана технологическая схема процесса получения алкилфенола в присутствии бензолсульфокислоты). Алкилирование фенола полимерди- стиллятом проводят в цилиндрическом аппарате 7 с механическим перемешиванием. В алкилатор. 7 подают фенол и бензолсульфокислоту, а затем при 85—95 °С и непрерывном перемешивании подают полимердистиллят в течение 8 ч. После этого повышают температуру до ПО—112 С и проводят реакцию до содержания не более 0,5 % свободного фенола в реакционной смеси. По окончании процесса алкилирования алкилат промывают водой при 65—75 С в аппарате 12. Кислые стоки нейтрализуют известковым раствором. Для освобождения от непрореагировавших веществ нейтрализованный алкилфенол перегоняют в кубе 2 с колонной. При 150—160 °С отгоняются непрореагировавший полимердистиллят и фенол при остаточном давлении 0,072—0,092 мПа. [c.229]

    В ИОВОМ процессе алкилирования фенола в нрисутствин ионообменных смол катализатор суспендирован в жидкости, находящейся в реакционной колонне. В низ колониы непрерывно подают фенол и олефин. При 120—140 °С на смоле КУ-2 пли прп 150— 160 °С на алюмосиликате объемная скорость подачи составляет л 0,15 ч . Реакционная масса отфильтровывается от частиц катализатора и поступает иа перегонку. Расход катализатора составляет всего 0,4% (масс.) от количества полученных алкилфенолов. [c.262]

    Главенствующей до последнего времени тенденцией в развитии производства автобензинов являлось непрерывное повышение их ДС (а в двигателестроении - увеличение степени сжатия), что способствовало существенному улучшению технико-экономических показателей эксплуатации транспортных средств. В то время, когда уровень 04 выпускаемых автобензинов был не столь высок, как в настоящее время, повышение ДС достигалось относительно легко за счет использования сравнительно дешевых термодеструктивных процессов и каталитического крекинга. Однако для последующего повышения ДС до современного высокого уровня потребовалось развивать в нефтепереработке более дорогие энергоемкие каталитические процессы, такие, как каталитический риформинг, алкилирование, изомеризация и т.д., в которых, кроме того, происходит снижение ресурсов автобензинов. Естественно, затраты на такие процессы в нефтепереработке должны окупаться экономией средств потребителей за счет применения высокооктановых бензинов. Следовательно, оптимальные значения ДС автобенэинов будут определяться уровнем химизации и технологии процессов нефтепереработки, а также мировыми ценами на нефть. [c.207]

    Отечественная технология процесса алкилирования бензола этиленом также непрерывно совершенствуется. Во ВНИИоле-фине [226] испытана схема адиабатического алкилирования цод давлением со снятием тепла реакции циркулирующим ка-тализаторным комплексом, концентрация которого в реакционной смеси доводится до 80%. Потери хлорида водорода в комплексе восполняются подачей этилхлорида, что позволяет в [c.238]

    Минимальное отношение изобутан олефины, при котором удается проводить сернокислотное алкилирование, составляет около 3 1, при этом очень велик расход серной кислоты (до 250 кг/т алкилата). Повышение отношения изобутан олефины на границе раздела фаз непрерывно повышает выход и качество алкилата и снижает расход кислоты до очень высоких — порядка 400—700 1 — значений. Концентрация изобутана на выходе из ре-аетора не должна быть меньше - 60% масс. При применении в качестве катализатора фтористого водорода в.следствие значительно лучшей растворимости в нем изобутана требования к концентрации изобутана значительно ниже, хорошие результаты алкилирования получаются при меньших соотношениях концентраций изобутана и олефинов, но и в этом случае повышение концентрации изобутана повышает качество алкилата и его выход. [c.186]

    Доминирующее положение процессов алкилирования на AI Ij объясняется их высокой селективностью, сравнительной простотой технологического оформления по непрерывной схеме, возможностью создания агрегатов большой единичной мощности, а также способностью AI I3 катализировать и реакции трансалкилирования. Недостатки метода — большое количество сточных вод и коррозия аппаратуры. [c.101]

    В ходе алкилирования ВР, уносится с поверхности AljOj вместе с продуктами реакции. Подпитку ВР3 в реактор проводят периодически или непрерывно. Сйычно BFj извлекают из продуктов реакции и непрерывно рециркулируют. [c.103]

    Физические факторы при алкилировании изобутана определяют условия проведения всего процесса, состав и качество алкилата [3]. Транопортирование изобутана к месту реакции (про тека-ющей на поверхности раздела двух фаз или вблизи нее) является основным фактором. Оно зависит от нескольких параметров. Конечно, важнейшим является интенсивность перемешивания, поскольку оно влияет не только на подвод изобутана, но и на величину поверхности раздела фаз. К числу других важных параметров относятся соотношение изобутан олефин в сырье, время пребывания в реакторе, концентрация химически инертных соединений в углеводородной фазе, объемное соотношение кислотной и углеводородной фаз. Важно также, какая из фаз эмульсии является непрерывной. От температуры, состава кислоты и олефина, используемого для алкилирования, также зависят транспортирование изобутана и кинетика реакции [4]. [c.130]

    Имеются сведения [17а] об алкилировании (при —10°С, в присутствии смеси НЗОзР+ЗЬРв в соотношении 1 1) н-бутана этиленом, которое приводит к образованию гексанов с выходом 38% (масс.), а также об алкилировании н-бутана пропиленом, приводящем к получению гептанов с выходом 29% (масс). Первую из этих реакций проводили тоже при 60 °С [31], однако состав продуктов в этом случае был близок к составу продуктов разложения полиэтилена. В описываемой работе, где использован катализатор НР+ТаРб (10 1), при 40°С в непрерывном реакторе при взаимодействии 14,19% (масс.) этилена с н-бутаном с 94%-ной селективностью был получен 3-метилпентаи в качестве начального лродукта (схема VI, путь а). Альтернативный путь, т. е. прямая реакция этилена с втор-бутильным катионом (путь б), исключается поскольку бутан при этих условиях не ионизируется (см. выше). [c.156]

    При алкилировании требуется определенная производительность перемешивающего устройства, чтобы подде рживать однородность смеси компонентов в каждой фазе, однородность и равномерность распределения диспдргированной фазы в непрерывной. Диспергированная фаза, в свою очередь, требует определенных напряжений сдвига для создания межфазной поверхности, через которую идет массопередача. Без соответствующих экспериментов невозможно знать необходимые значения перечисленных факторов. [c.196]

    Составы типичного катализатора, применяемого при алкилировании и включающего серную кислоту, воду и эфиры, представлены галочками на тройной диаграмме рис. 1. Содержание воды составляет 2—3%, содержание эфиров меняется от 5 до 9%. Обычно поток отработанной кислоты непрерывно выводят, перерабатывают на установке регенерации для извлечения эфиров, после 1 го регенерированную кислоту концентрацией 98,5—99,5% возвраща- [c.240]


Смотреть страницы где упоминается термин Алкилирование непрерывное: [c.529]    [c.199]    [c.274]    [c.323]    [c.69]    [c.13]    [c.255]    [c.266]    [c.110]   
Присадки к маслам (1968) -- [ c.78 ]

Основы синтеза промежуточных продуктов и красителей Издание 4 (1955) -- [ c.488 ]




ПОИСК







© 2024 chem21.info Реклама на сайте