Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Гранулы контактов

    Простейшим способом соединения компонентов катализатора является их механическое смешение, например перемешивание порошкообразных материалов в смесителе перед формованием из них гранул контакта. [c.9]

    Основная аппаратура установки пиролиза — реактор Р1 и нагреватель П1 (фиг. 85). Для подъема гранул контакта в верх установки, откуда они поступают в нагреватель, служит подъемник М1. В нагревателе контакт нагревается до заданной температуры тепло получается от сгорания топливного газа непосредственно в слое контакта. Теплота продуктов сгорания утилизируется в паровых котлах П2. Кокс, отложившийся на контакте в процессе пиролиза, выжигается (уменьшая тем самым расход топливного газа), пока гранулы контакта проходят под действием силы тяжести через нагреватель, направляясь в реактор. Охлажденный в реакторе контакт поступает из реактора через дросселирующий клапан в подъемник, который снова подает его на верх установки. [c.238]


    В уравнении Б. А.Захарова и A.B. Фроста влияние гранул контакта представлено в виде зависимости от среднего их размера (см. стр. 160), что упрощает вычисления и позволяет не производить экспериментального определения поверхности насадки и свободного объема, не занятого гранулами. Указанный упрощенный способ применим при средних размерах зерен катализатора выше 1,55 мм. [c.175]

    Разность температур между серединой и поверхностью гранул контакта ( =4 мм) к концу периода интенсивного теплообмена, °С.............. [c.214]

    Все эти выводы были сделаны при допущении отсутствия, неравномерности прогрева гранул контакта. В реальных условиях, конечно, неизбежны некоторые перепады температур в каждом зерне. Для выяснения того, в какой мере это может повлиять на ход процесса,, произведем приближенное определение подъема температуры А1 в кусковом материале в зонах наиболее интенсивного теплообмена. Расчет ведем по методу Б. И. Китаева, пользуясь фиг. 61 [255], определяющей температуру внешней поверхности и середины куска в зависимости от ряда критериев. [c.216]

    Эти катализаторы работают в основном наружной поверхностью или, точнее, тонким приповерхностным слоем. Внутренние слои катализатора не участвуют в реакции и, следовательно, присутствие никеля в глубине гранулы контакта практически бесполезно. Поэтому для экономии никеля целесообразно получать и использовать катализаторы, в которых он расположен преимущественно или полностью в приповерхностных слоях гранулы. [c.70]

    В качестве твердого теплоносителя применяются круглые гранулы глинозема диаметром 8 мм, их теплоемкость 1680 кдж-м- град удельная поверхность 415 пористость 45%. Теплоемкость Hj 2S,9 кдж-кмоль -град- . Физические данные для углеводородов можно найти у Максвелла . Теплоноситель предварительно нагревается до 1093 °С посредством прямого контакта с топочными газами и протекает сверху вниз через реактор параллельно потоку бутана, который имеет на входе температуру 260 С и избыточное давление 1,37-10 н/ж (1,4 ат). Требуемая степень превращения 90%, максимальная температура не должна превышать 871 °С. Найти необходимую скорость циркуляции теплоносителя, давление газа на выходе и объем реактора. [c.277]

    Процесс проводят при температуре на входе в реактор 400, на выходе — 700 С. соотношении пар бензин, равном 3 1, давлении 28 атм, на контактах, расположенных в двух зонах реактора. В начальной зоне, составляющей 50% всего объема реактора, находится иридиевый катализатор. Нижняя часть реактора заполнена смесью (70 30) цилиндрических гранул (4,8 мм) цемента и аналогичных гранул никелевого катализатора. Катализаторы восстанавливают водородом при температуре 750 С. Поток бензина и водяного пара пропускают через реактор сверху вниз. На катализаторе не обнаруживается отложе- [c.172]


    В качестве первого приближения может быть принята допуш,е-ние о том, что в любом элементе объема единичной гранулы катализатора доля вторичных частиц заданного размера равна отношению их обш его количества к суммарному количеству всех вторичных частиц, постоянна и соответствует их доле в функции распределения (см. рис. 3.5). Число контактов при этом усредняется. [c.147]

    Для окисления нафталина во фталевый ангидрид используют катализатор из плавленой пятиокиси ванадия, получаемой в виде гранул неправильной формы. Пятиокись ванадия в виде порошка или кусков контакта расплавляют в графитовых тиглях в электропечах при 690 °С. [c.197]

    Печи с топками кипящего слоя для сжигания отходов имеют футерованный огнеупором сосуд, с гранулами инертного материала, через который продувают газы для создания кипящего слоя. В слой щнековым транспортером подают отходы для сжигания. Горячие газы, пройдя кипящий слой, поступают в котел-утилизатор, а затем в систему очистки газа. Для предварительного нагрева слоя до требуемой начальной температуры предусмотрены горелки. Вследствие хорошего контакта горячих газов с отходами, подвергаемыми сжиганию, избыток воздуха обычно составляет лишь 40% от требуемого стехиометрического количества. [c.142]

    Это уравнение получено в результате исследований слоя, состоящего из материалов, гранулы которых были менее прочны, чем гранулы силикагеля и молекулярных сит и поэтому сильнее разрушались. Для обычного силикагеля с размером гранул 4—8 меш по уравнению (157) получены следующие значения скорости газа при различных давлениях и температуре контакта 26,7 С  [c.249]

    Уменьшение среднего размера гранул приводит к увеличению удельной поверхности контакта и уменьшению массового соотношения теплоноситель сырье. Однако здесь существует некоторый предел. Мелких фракций диаметром меньше 3 мм должно быть минимальное количество, так как эти фракции могут захватываться потоком образующихся нефтяных паров и газов и забивать выводные трубопроводы и ректификационную колонну. Поэтому необходимо улавливать мелочь в циклонах, фильтрах или промежуточных емкостях до поступления ее в шлемовую трубу и в ректифицирующие устройства. [c.113]

    В табл. 40 приведено содержание золы в некоторых образцах товарного кокса. Естественно, что зольность кокса, полученного из дистиллятного сырья, в несколько раз ниже, чем из остаточного. Например, зольность различных образцов пиролизного кокса может быть от 0,01 до 0,2% в зависимости от условий его хранения на складах нефтеперерабатывающих заводов или заводов-потребителей кокса и способа охлаждения. / Увеличение коэффициента рециркуляции на установка.х замедленного и контактного коксования приводит к некоторому снижению зольности получаемого кокса. При охлаждении горячего кокса обычной технической водой, содержащей много солей и механических примесей, зольность кокса может значительно увеличиться. Дополнительное озоление кокса получаемого в кубах в Грозном, от загрязнений при транспортировании и хранении составляет от 0,04 до 0,2%, а при охлаждении его технической водой около 0,01% [119]. В контактных процессах, где гранулы или порошкообразный кокс подвергаются многократному нагреву в токе воздуха, неизбежно дополнительное озоление кокса в зависимости от размеров частиц, степени нагрева их и длительности контакта кислорода воздуха с коксом. [c.141]

    Как следует из рис. 49, с увеличением длительности работы катализатора энергия активации процесса крекинга резко возрастает. Низкие значения кажущейся энергии активации (10 000— 24 700 Дж/моль) соответствуют короткой длительности работы катализатора (5—10 мин) и характерны для внешнедиффузионной области. Вероятно, в начале контакта паров с гранулами катализатора молекулы сырья расщепляются с большей скоростью на активной внешней поверхности и в порах, находящихся вблизи ее, [c.112]

    Интерес к фигурным гранулам катализатора объясняется увеличением поверхности контакта зерна по сравнению с традиционной цилиндрической формой гранулы при одновременном снижении гидравлического сопротивления слоя. [c.262]

    Разнообразная формовка позволяет получать частицы любой формы и размеров, регулировать поверхность и пористость катализатора, изменять механическую его прочность. Износоустойчивые контакты, используемые для работы в кипящем слое, лучше формовать методом коагуляции, дающим сферические высокопрочные гранулы. Однако область применения этого метода ограничивается относительно малоподвижными гелями коллоидных веществ. Для осажденных катализаторов наиболее характерна технология крупнотоннажного производства гранулированного алюмосиликатного катализатора крекинга нефтепродуктов. [c.105]

    А. Теплоотдача к плотноупакованным слоям. Коэффициент теплоотдачи стенки. Молекулярная теплопроводность газа между частицами плотноупакованного слоя сильно влияет на процессы теплообмена в слое и на перенос теплоты от стенок к слою. Так, значение эффективного коэффициента теплопроводности слоя на порядок величины меньше, чем теплопроводность самих твердых частиц, особенно когда слой находится при пониженном давлении. Когда теплота переносится от стенок к слою из частиц, оказывается, что сопротивление стенки сильно зависит от свойств переноса газовой фазы. Кроме того, происходит перенос теплоты излучением и теплопроводностью через площадь контакта между гранулами. [c.440]


    Распылительные сушилки предназначены для сушки растворов и суспензий с получением готового продукта в виде порошков или гранул. Аппараты обеспечивают интенсивное удаление влаги из материалов при кратковременном, обычно прямоточном, контакте с сушильным агентом, поэтому их применяют для сушки термочувствительных продуктов биологического и органического синтеза с большой начальной влажностью. В этих аппаратах благодаря тонкому распылению материала достигается настолько значительная поверхность испарения, что процесс высушивания завершается чрезвычайно быстро (за 15— 20 с) и, вследствие этого, несмотря на высокую температуру сушильного агента, температура на поверхности материала сравнительно невысокая. Из-за кратковременности процесса и мягких условий сушки свойства материала не изменяются. [c.140]

    Адсорберы с псевдоожиженным слоем адсорбента позволяют также осуществлять непрерывный процесс адсорбции. В этом случае в качестве адсорбента используются мелкие гранулы (обычно не более 500 мкм). Конструктивно адсорбер может иметь один или несколько кипящих слоев (рис. ДП-11), обеспечивающих контакт фаз в противотоке (ступенчато-противоточный адсорбер). В таком адсорбере на специальных контактных устройствах (тарелках) осуществляется взаимодействие между газом и порошкообразным адсорбентом, в результате чего адсорбент переводится в состояние псевдоожижения. Адсорбент, двигаясь сверху вниз через переточные устройства, передается с одной контактной ступени на другую. Газ движется в аппарате противотоком снизу вверх. отделения из га- [c.292]

    Известно, что при прямолинейном движении сырьевой смеси в зоне реакции в зависимости от физических свойств отдельных компонентов, линейных скоростей, геометрических размеров гранул контакта и диаметра сечения аппарата могут устанавливаться ламинарный, промежуточный или турбулентный режимы потоков. Влияние отдельных из перечисленных факторов при наличии насадки в реакционных аппаратах рассмотрено Чильтоном и Кольбурном [186] и более полно Н. М. Жаворонковым [187]  [c.132]

    В аппаратах для гранулированных контактов применяются специальные трубные решетки с ввальцованными (или вваренными) в них короткими патрубками, распределяющими катализатор и одновременно создающими сборное (или распределительное) паровое пространство над сходящим вниз твердым материалом (фиг. 97). Ввод воздуха и вывод продуктов горения из каждой секции регенератора в большинстве случаев осуществляются желобчатыми коллекторами, служащими также распределителями потока катализатора. Разобщение сред спаренных аппаратов создается сопротивлением столба катализатора. Для перемещения и подъема вверх гранул контакта вначале применялись преимущественно герметизированные нории, [c.301]

    Имеется два вида катализаторов смешанные (соосажденные) и нанесенные. Катализаторы первого вида изготовляются прокалкой смеси, содержащей активный компонент (никель), связывающие и промотирующие добавки (окись алюминия). Нанесенный контакт получается пропиткой прокаленного носителя (окиси алюминия). Преимущество такого способа в том, что он дает возможность проводить прокалку носителя (окиси алюминия) при весьма высоких температурах (до 1500° С) до нанесения активного компонента и получить прочную и стабильную при высоких температурах гранулу контакта, не опасаясь взаимодействия активной добавки, обычно вводимой в окисной форме, с окисью алюминия (шпинелеобразования). [c.79]

    При изучении отработанных катализаторов риформинга на рентгенограммах отдельных гранул контакта проявлялись линии, характерные для а-ЛЬОз [291]. Очевидно, в процессе эксплуатации имели место местные перегревы, возможно, в период окислительных регенераций, что привело к изменению фазового состава носителя и способствовало ускорению процесса агрегации платины. [c.175]

    При нисходящем направлении потока усповия.течения дтя жидкости разрывные, т. е. она существует а виде капель, отдельных струй и пленки, стекающей по поверхности гранул, в то время как газ равномерно распределяется по слою. При высоких скоростях газа происходит возрастание перепада давления в жидкостном потоке и режим течения может стать пульсирующим. Режим пульсации наблюдался как в реакторах пилo77foгo, так и промышленного масштаба (63] и чаще всего преобладает в пристенощом пограничном слое. При малой скорости газового потока жидкость располагается преимущественно в центре слоя и у стенок реактора. В целом, присутствие жидкой фазы в реакторе создает ряд осложнений. Распределение жидкости по слою катализатора в большей степени зависит не только от скорости жидкости и газа, но и от физико-химических свойств сырья, конструктивных особенностей реактора и распределительных устройств для ввода жидкости. Все зти факторы влияют на эффективность контакта жидкости с катализатором и на содержание ее в слое [27]. [c.92]

    В другом процессе непрерывного коксования нефтяных остатков-а именно в сплошном, медленно опускающемся слое контакта, применяются вначнтельно более крупные гранулы кокса размером 3—11 мм, 149]. [c.68]

    За рубежом имеется установка такого типа для получения твердого парафина. Процесс проводят в аппаратах колонного типа, в верхнюю часть которых через форсунки вводят расплавленный гач. Мельчайшие частицы парафина затвердевают в результате контакта с восходящим потоком воздуха. Масло, находящееся на поверхности частиц парафина, удаляется при помощи растворителя в системе противоточных смесителей и отстойников. Метод позволяет получить твердый парафин с содержанием масла не более 0,5% (масс.). К недостаткам данного процесса следует отнести значительные эксплуатационные затраты, связанные с грануляцией сырья в токе охлажденного воздуха, необходимостью получения гранул строго определенных формы и размера, поскольку чем больше размер получаемых гранул, тем хуже отмывается содержащееся в них масло. Для увеличения проницаемости осадка на фильтре к сырью добавляют инертный несжимаемый материал определенной степени грануляции. В качестве добавок предложны различные глины, бумажная пульпа, ламповая сажа, силикат и др. [85]. Для улучшения фильтрования и частичного предохранения фильтровальной ткани от забивки применяют фильтрующие добавки —газонаполненные микробаллончики из инертных по отношению к [c.164]

    В аппарате описанной конструкции стадии набухания и сульфирования осуществляются последовательно и непрерывно друг за другом. Требование к качеству продукта обусловливает такой технологический режим, при котором достигается заданная степень набухания и заданная степень превращения сополимера в ионит. Требуемая степень набухания и требуемая степень превращения сополимера в ионит достигаются соответствующим временем пребывания сополимера в зоне набухания и зоне сульфирования. Как следует из анализа, проведенного в главах 4 и 5, время, необходимое для полного набухания гранул сополимера в рабочем диапазоне температур, не превосходит время необходимое для превращения этого сополимера в ионит. Например, для полного набухания сополимера стирола с 5% парадивинилбензола необходимо 0,3 часа контакта сополимера с тионилхлоридом при 20 С, а для сульфирования этого сополимера после набухания до степени превращения 90% необходимо 4 часа контакта сополимера с серной кислотой при 20 С. Поэтому при конструировании аппарата необходимо учитывать, что протяженность зоны набухания не должна превосходить протяженность зоны сульфирования. Для заданной степени превращения (или соответствующей величине времени пребывания) при определенных диаметре аппарата и расходах по сополимеру и растворителю нетрудно рассчитать протяженность зоны сульфирования, а следовательно, и зоны набухания. Данная методика расчета предполагает, что все гранулы сополимера находятся в одинаковых условиях как в зоне набухания, так и в зоне сульфирования. Это действительно так потому, что в зоне набухания концентрация растворителя, а в зоне сульфирования концентрация серной кислоты вокруг гранул сополимера не меняются. Кроме того, в зоне набухания всплывание гранул исключается благодаря наличию шнека. В зоне сульфирования при всплывании гранулы [c.391]

    Рассмотрим характерные черты апнаратурногб оформления непрерывного способа процесса отмывки гранул ионита. Моделирование и экспериментальные исследования процесса отмывки ионита позволили сделать следуюш ие выводы а) процесс отмывки необходимо проводить так, чтобы исключить одновременное действие на гранулы ионита релаксационных и термических напряжений б) в качестве отмываюш его агента необходимо применять насыщенные растворы солей в) время контакта ионита с отмывающим агентом и количество отмывающего агента должны обеспечить полное замещение и нейтрализацию серной кислоты отмывающим агентом г) температура реакционной массы в аппарате не должна превышать 30° С. [c.392]

    Перечисленные условия проведения процесса отмывки реализуются в аппарате непрерывного действия, состоящем из двух последовательно соединенных колен (вертикального и наклонного) трубчатого типа [7]. Принцип работы аппарата непрерывного действия для осуществления процесса отмывки гранул сульфокатионита состоит в следующем. Ионит с вибролотка направляется в загрузочное устройство вертикального колена аппарата отмывки. В верхнюю часть вертикального колена аппарата подается карбонат аммония в весовом соотношении к иониту 1 1. Смешиваясь с карбонатом аммония, ионит из вертикального колена попадает в наклонное колено аппарата, откуда после контакта с раствором карбоната аммония при помощи шнека выводится из аппарата в ванну с циркулирующей деминерализованной водой, где окончательно отмывается от сульфата и карбоната аммония. По мере насыщения солями аммония вода выводится из ванны и1 используется для приготовления насыщенного раствора карбоната аммония. В конце наклонного колена в аппарат дозируется насыщенный раствор карбоната аммония, который, контактируя в наклонном колене и нижней части вертикального колена с ионитом, нейтрализует и замещает серную кислоту, превращаясь в сульфат аммония, после чего выводится в вертикальном колене в нейтрализатор. Все детали аппарата, контактирующие с реакционной массой, изготавливаются из кислотостойкой стали. Для поддержания температурного режима оба колена аппарата снабжены рубашками. Использование в качестве отмывающего агента раствора карбоната аммония и добавление соли карбоната аммония позволяет нейтрализовать серную кислоту и уменьшить тепловой эффект процесса отмывки, так как растворение и разбавление карбоната и сульфата аммония сопровождается поглощением тепла. [c.392]

    Основные результаты расчета при различных технологических параметрах представлены в табл. 10.1. В расчетах варьировались теплопроводность зерна катализатора, линейные размеры гранул катализатора, состав смеси на входе в аппарат, скорость фильтрации и время контакта. В таблице представлены средние за цикл концентрации аммиака на выходе из слоя и максимальная температура катализатора. Из данных, приведенных в таблице, можно сделать вывод о влиянии размеров зерна катализатора на технологические характеристики нестационарных режимов. С ростом размеров зерна катализатора уменьшается максимальная температура, что вызвано снижением коэффициента межфазного теплообмена и ростом характерного времени теплопереноса в пористом зерне. Сов-иместное действие этих двух факторов увеличивает ширину зоны реакции, и, как следствие, максимальная температура понижается. Выход аммиака увеличивается. Это еще раз подтверждает уже обсуждавшийся ранее вывод о том, что при осуществлении процесса в нестационарном режиме часто при увеличении размера зерна внутренний массоперенос оказывает меньшее влияние на выход продукта, чем межфазный теплообмен и теплоперенос внутри зерна катализатора. Например, по данным расчетов при увеличении диаметра зерен катализатора с 5 до 14 мм максимальная температура в слое уменьшается с 587 до 552°С. При этом средняй- за цикл выход аммиака увеличивается с 15,5 до 17,2%. Дальнейшего снижения максимальной температуры можно добиться за еявт использо- [c.213]

    Катализаторы, предназначенные для эксплуатации в кипящем слое, получают главным образом нанесением активных компонентов на прочные носители или сплавлением исх одных составляющих. Из осажденных контактов для использования в условиях взвешивания наиболее пригодны алюмосиликаты, алюмогели, силикагели, в процессе приготовления которых происходит коагуляция геля в прочные, макрогладкие сферические гранулы. [c.98]

    Пятиокись ванадия в виде порошка или кусков контакта, уже бывших в работе, расплавляют в графитовых тиглях в электропечах при 690 °С. Расплав выливают на стальные противни (20 X X 10 X 2 см) слоем / -3 мм. Образовавшиеся при застывании расплава пластины дробят и рассеивают в валковой дробилке с классификатором. В промышленности используют гранулы размером 8—10 мм (1фупная фракция) и 5—8 мм (мелкая фракция). Преимуществом плавленой V2O5 по сравнению с другими известными катализаторами окисления нафталина является ее высокая производительность недостатком — относительно низкий выход фталевого ангидрида 72—73% (на 10—15% ниже выхода на промотированных ванадиевых катализаторах). [c.165]

    Выбор способа восстановления и использования катализатора зависит от его структуры и от действия ядов. Во время восстановления железо, образовавшееся в одной части катализатора, не должно подвергаться действию воды, получаюш ейся при восстановлении других частей катализатора. Этого нельзя избежать в отдельной грануле, поскольку железо, образовавшееся на ее поверхности, подвергается воздействию воды, образуюш,ейся в результате восстановления внутри гранулы. Вследствие этого более крупные гранулы катализатора имеют тенденцию к более низкой удельной активности, чем более мелкие гранулы катализатора, которые во время восстановления в меньшей степени подвергаются действию воды. (Более мелкие частицы также реакционноспособнее, поскольку, как это обсуждается далее, они в меньшей степени подвержены влиянию газовой диффузии.) Во время восстановления в слое катализатора вода, получившаяся от восстановления нижних частей слоя (на выходе), не должта вступать в контакт с верхним слоем восстановленного катализатора (на входе) в результате обратной диффузии или смешения. При рециркуляции газа — восстановителя необходимо удалять воду из выходяш,его газа путем его охлаждения в рецикле. [c.165]

    В системах, использующих гранулированный, в основном шариковый, катализатор с размером гранул 3—5 мм, процесс осуществляется в аппаратах шахтиого типа, через которые сплошным потоком по всему сечению аппарата в направлении сверху вниз движется катализатор противотоком или прямотоком с ним контакти-руются пары пли газы. В системах с мелкозернистым (частицы до [c.626]

    Значительным шагом вперед в области технологии термических и термо-каталптических процессов явилось использование принципа передачи тепла крекируешму сыр ю пссредствсм прямого контакта его с горячим твердым теплоносителем. Теплоносителем может служить инертный материал, например кокс, песок, а также катализаторы. Частицы твердого теплоносителя имеют различные размеры — от крупных гранул (округлой или цилиндрической формы) диаметром до 10 —15 мм, до мелкого порошка размером частиц 10— 100 мк. [c.72]

    Реакционное устройство второго типа с использованием твердого теплоносителя представлено на рис. 14, б. Реакторный блок отличается от вышеописанного применением движущегося сверху вниз под действием силы тяжести сплошного потока частиц твердого теплоносителя. Неразрывность потока создается гидравлическим сопротивлением в нижней части аппарата, которая переходит в стояк-трубопровод, выводящий теплоноситель в систему транспорта. Гранулы теплоносптеля должны быть крупными (не менее 2 мм) и иметь округлую форму, что облегчает их перемещение и сокращает потери от истирания. Сырье можно подавать прямоточно или проти-воточно по отношению к потоку теплоносителя. Охладившийся в результате контакта с сырьем теплоноситель посредством транспортного устройства попадает в нагреватель (регенератор). В нагревателе температура теплоносителя восстанавливается до первоначальной величины за счет тепла сгорания отложившегося на поверхности его частиц кокса или сжигания другого рода топлива. Теплоноситель нагревается в противотоке с поступающим из нижней части нагревателя воздухом или дымовыми газами. Нагретый теплоноситель через второе транспортное устройство возвращается в реактор. Реактор и нагреватель можно располагать по одной оси, при этом устраняется необходимость в одной из линий транспорта. [c.75]

    Предложено несколько вариантов пиролиза на твердом теплоносителе. В одних процессах используют движущиеся крупные гранулы теплоносителя. Таков процесс, разработанный Н. А. Бут-ковым, и процесс фирмы Фарбверке Гехст (ФРГ) , схема которого приведена на рис. 43. Характерным для процесса Гехст является способ разогрева теплоносителя вместо непосредственного контакта с воздухом или горячими дымовыми газами, как это практикуется в других системах, поток теплоносителя, частично охладившегося в реакторе 3, пссле пневмоподъемника попадает в трубчатый нагреватель 1. Трубы изготовлены из легированной жароупорной стали и обогреваются потоком дымовых газов, образующихся от сжигания топлива при этом две трети тепла передаются радиацией. Принятая конструкция нагревателя менее эффективна, чем нагревателя контактного типа, но зато в нем исключается возможность неполноты сгорания углерода теплоносителя при высоких температурах. Известно, что в обратимой реакции С + СОз 2СО равновесие сдвигается в сторону образования окиси углерода при высоких температурах. Так, при 600 " С равновесная концентрация СО составляет около 22%, а при 850 С она достигает 93%. Поскольку сам процесс пиролиза протекает при температуре около 700° С, температура теплоносителя должна бЬ(ТЬ не менее 800° С, т. е. вероятность образования окиси углерода очень значительна. [c.134]

    В других модификациях ироцесса в качестве теплоносителя вместо гранулированного кокса используются гранулы минерального или искусственного ироисхождения (наиример, базальтовая порода, отличающаяся большой прочностью, шамот и др.). Теплоноситель такого типа разогревается обычно прямым контактом с кислородсодержащим газом (ироцесс Н. А. Б у т к о в а. Гроз- [c.135]


Смотреть страницы где упоминается термин Гранулы контактов: [c.133]    [c.133]    [c.233]    [c.97]    [c.260]    [c.145]    [c.240]    [c.393]    [c.318]    [c.441]    [c.65]    [c.99]   
Минеральные удобрения и соли (1987) -- [ c.129 ]




ПОИСК





Смотрите так же термины и статьи:

Гранула

Гранулят



© 2025 chem21.info Реклама на сайте