Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Палладий на носителях гидрирование

    Для удаления из коксового газа окиси азота, ацетилена и диолефинов применяют большей частью каталитическое гидрирование их (катализаторы на основе металлов платиновой группы на носителях). Наиболее активным компонентом катализаторов гидрирования ацетилена и диолефинов является палладий, при гидрировании окиси азота — рутений. В процессе гид]>ирования указанных примесей протекают следующие реакции  [c.195]


    Изомеризующий катализатор (платина, палладий, молибден) обычно наносится на кислотный носитель (окись алюминия, алюмосиликат, цеолит), который ускоряет реакции гидрирования - дегидрирования. [c.19]

    Гилман и Кон [17] впервые предложили использовать для гидролитического гидрирования дисахаридов рутениевые катализаторы. В патенте [18] для гидрирования сахарозы, мальтозы, лактозы использовались 5%-ные рутениевые катализаторы на угле, окиси алюминия и других носителях, а также катализаторы, содержащие 4% рутения и 1% платины или палладия. В этих же условиях платиновые и палладиевые катализаторы дали худшие результаты по сравнению с рутениевыми рутений имеет наилучшее структурное соответствие для реакции гидрирования углеводов, как показал А. А. Баландин с сотр. [19]. [c.76]

    Промышленные катализаторы гидрирования представляют собой высокодисперсные металлы, обычно нанесенные на пористые носители. Высокой гидрирующей активностью отличаются металлы УП1 и I групп периодической системы элементов (никель, кобальт, платина, палладий, родий, медь и др.). В качестве носителей этих металлов наиболее часто используются окиси алюминия, кремния, цинка, хрома, активный уголь, диатомиты. Находят применение в промышленности и сплавные катализаторы [46, 55]. Готовят катализаторы пропиткой носителя растворами легкоразлагающихся соединений активного металла или же методом их совместного осаждения с носителем [56]. Как правило, перед использованием в процессе катализаторы предварительно восстанавливают. [c.411]

    Примером применения этих принципов служат катализаторы 38-1 и 38-2 фирмы Ай-Си-Ай, разработанные для селективного гидрирования ацетилена в олефины. Активным и селективным металлом является палладий, а носителем — окись алюминия. Пористая структура окиси алюминия сформирована таким образом, чтобы сочетание активности и селективности.наилучшим образом отвечало данным конкретным требованиям. [c.31]

    Полученный азеотроп МБИ — вода подвергают гидрированию при давлении водорода 0,5—1 МПа и температуре 30—80 °С. В качестве селективного катализатора используют коллоидный палладий на носителе. Конверсия МБИ в МБЕ в этих условиях почти полная. Высокая селективность катализатора устраняет необходимость разделения МБИ и МБЕ. Вследствие близости температур кипения очистка этих двух спиртов и двух азеотропов оказалась бы сложным и довольно дорогим процессом. [c.216]


    Реализация атомарно-дисперсного состояния металла фиксируется при нанесении палладия на различные носители (уголь, силикагель, сульфат бария, карбонат кальция). Скорость гидрирования резко возрастает при появлении на поверхности кристаллической фазы палладия. Это объясняется тем, что при определенной степени заполнения поверхности в катализаторе появляется растворенный водород, который более активен при гидрировании соединений с тройными связями и нитросоединений. При этом меняется не только состав активного центра, но и форма активного водорода. Таким образом, кинетический метод позволяет уловить начало [c.111]

    Внесение инертного носителя (окись алюминия, силикагель) в систему, содержащую катализатор (платина, палладий, никель), с образованием механической смеси может вызывать значительное увеличение скорости гидрирования для хорошо адсорбирующихся непредельных соединений и на катализаторах, содержащих адсорбированный водород (рис. 20). Для палладия и соединений, плохо адсорбирующихся (гексен), введение носителя не оказывается на скорости. Это подтверждает разделение функций отдельных участков поверхности и значительное влияние объемных слоев катализатора на состояние поверхности. [c.123]

    И. Г. Фарбениндустри селективное гидрирование ацетилена, получаемого из карбида кальция, проводилось на палладии, нанесенном на силикагеле. Флеминг с соавторами [13] указывают, что из большого числа запатентованных в США катализаторов наиболее удовлетворительным оказался сульфид молибдена на активной окиси алюминия как носителе. Ими же были предложены три варианта катализаторов для селективного гидрирования ацетилена в продуктах пиролиза на этилен различного сырья А — при крекинге этана В — нри пиролизе пропана и С — нри крекинге тяжелого угле- [c.152]

    Роль инертного носителя состоит в увеличении поверхности контакта металла или другого активного компонента катализатора с реагирующими веществами. Поэтому удельная поверхность самого носителя и его структура влияют на активность катализатора. Кроме того, его активность, селективность и стабильность нередко могут быть повышены добавлением небольшого количества других металлов, солей, оксидов или минеральных кислот, называемых промоторами (активаторами). Для платиновых катализаторов это обычно соли платины, палладия, олова, железа, цинка или минеральные кислоты. Так, промотирование катализатора Адамса хлоридами железа или олова (6,5-7 % по массе) увеличивает скорость гидрирования валерианового альдегида в 8-10 раз  [c.19]

    Скорость гидрирования зависит от количества катализатора. Сложные эфиры практически не гидрируются при температуре 100 °С на скелетном никеле, если его количество не превышает 10 % от массы эфира, но энергично восстанавливаются даже при 50 °С, когда масса катализатора достигает 70 %. За исключением экстраординарных случаев, подобных вышеприведенному, когда реакция вынужденно проводится при заведомо слишком низкой температуре и ее необходимо ускорить, избыточное количество катализатора ухудшает избирательность гидрирования. При заданном типе катализатора (скелетный никель, палладий на носителе и др.) чем более он активен, тем менее селективно его действие. При этом, по-видимому, нужно отличать общий уровень активности катализатора (разные сорта скелетного никеля, частично дезактивированные сернистыми соединениями или хинолином палладиевые катализаторы и др.) от активации или дезактивации его по отношению к восстановлению той или иной функции (оксид платины, активированный сульфатом железа (II), селективно восстанавливает карбонильную группу, дезактивированный ацетатом цинка, - этиленовую группу и т. п.). [c.38]

    В качестве активных соединений при нанесении на носители в последнее время используют комплексные соединения переходных металлов, оказавшиеся эффективными при гомогенном катализе в растворах. Синтез комплексов на поверхности носителей позволил получить оригинальные катализаторы, не имеющие аналогов среди растворимых комплексов (рис. 5). Закрепленные кластеры палладия обладают высокой селективностью в процессах гидрирования при производстве гербицидов. [c.56]

    Селективное каталитическое гидрирование ацетиленовых углеводородов. Способ базируется на большом различии скоростей гидрирования углеводородов разной степени непредель-ности при применении селективных катализаторов главным образом это катализаторы на основе палладия и никеля, нанесенные на оксид алюминия или другие носители. С их помощью удается снизить массовое содержание ацетиленовых соединений от 0,1—0,6 до 0,01—0,02%. При этом гидрируется 1—2, иногда до 4—8% бутадиена. Очистка фракций С4 после дегидрирования н-бутиленов с массовым содержанием бутадиена до 30% и ацетиленовых соединений до 0,1% на катализаторе никель на кизельгуре осуществляется при 18 °С, давлении 0,5 МПа, объемной скорости фракции 10 ч > и подаче водорода 20 моль на 1 моль ацетиленовых соединений (в пересчете на [c.59]


    Размер кластера является определяющим параметром в прогнозировании его каталитических свойств. Соединения палладия как катализаторы находят широкое применение в процессах гидрирования и гидрокрекинга углеводородов. Для проведения этих процессов с высоким выходом по целевому продукту имеет важное значение размер частиц катализатора и их дисперсность в случае нанесения катализатора на поверхность инертного носителя. На рис. 8.3 приведены диаграммы активности палладиевого кластера при активации Н—Н и С—Н-связи. [c.517]

    Алкены устойчивы к действию водорода в момент выделения. Их гидрирование осуществляют в присутствии катализаторов, в качестве которых чаще всего используют никель, платину и палладий в мелкодисперсной форме (например, только что полученные восстановлением оксидов), когда их поверхность наиболее развита и активна. Подобные катализаторы для придания им структурной устойчивости обычно наносят на так называемую подложку (носитель) - активированный уголь, оксид алюминия, силикагель, пемзу и т.д. Реакцию проводят при повышенной температуре. Механизм такого катализа, называемого гетерогенным, заключается в том, что на поверхности катализатора адсорбируются молекулы водорода и алкена, которые при этом не только пространственно сближаются, но и активируются. [c.63]

    Палладий и промотированный палладием носитель применяют как катализаторы для гидрирования товарного этилена, когда начальные концентрации ацетилена незначительны (до 0,1%). В этих условиях размеры реактора и потребное количество катализатора невелики. Однако стоимость катализатора превышает в 2—3 раза стоимость обычных перечисленных выше катализаторов. Количество подаваемого водорода составляет 2—3 моля на 1 дюль ацетилена. Конечные концентрации ацетилена < 0,01%. [c.131]

    Каталитическую активность гетерогенного катализатора характеризуют константой скорости реакции, отнесенной к одному квадратному метру поверхности раздела фаз реагентов и катализатора, или скоростью реакции при определенных концентрациях реагирующих веществ, отнесенной к единице площади поверхности. Промышленные катализаторы применяют в форме цилиндров или гранул диаметром несколько миллиметров. Гранулы катализатора должны обладать высокой механической прочностью, большой пористостью и высокими значениями удельной поверхности. Большую группу катализаторов получают нанесением активного агента, например платины, палладия, на пористый носитель (трегер) с высокоразвитой поверхностью. В качестве носителей применяют активированный уголь, кизельгур, силикагель, алюмогель, оксид хрома (П1 и другие пористые материалы. Носитель пропитывают растворами солей металлов, например Pt, Ni, Pd, высушивают и обрабатывают водородом при 250—500° С. При этом металл восстанавливается и в виде коллоидных частиц [л = (2 -f- 10) 10 м1 осаждается на поверхности и в порах носителя. Можно провести синтез катализатора непосредственно на поверхности носителя, пропитав носитель растворами реагентов, с последующей термической обработкой. Так получают катализаторы с металлфталоцианинами, нанесенными на сажу, графит и другие носители. Широко применяются металлические сплавные катализаторы Ренея. Их получают из сплавов Ni, Со, u, Fe и других металлов с алюминием в соотношениях 1 1. Сплав металла с алюминием, измельченный до частиц размером от 10" до 10" м, обрабатывают раствором щелочи, алюминий растворяется, остающийся металлический скелет обладает достаточной механической прочностью. Удельная поверхность скелетных катализаторов превышает 100 м г" . Такие катализаторы применяются в процессах гидрирования, восстановления и дегидрирования в жидкофазных гете рогенно каталитических процессах. [c.635]

    Ацетилен и его гомологи гидрируются медленнее олефинов, но промежуточно образующиеся олефины легко вытесняются с поверхности катализатора нз-за меньшей способности к сорбции и поэтому могут быть иолучеиы в качестве целевых продуктов. Селективное гидрирование до олефинов осуществимо при катализе платиной и палладием на носителях, а также молибдатами кобальта и никеля, железом н др. При большем времени контакта гидрирование идет до парафина  [c.498]

    Первые работы по использованию благородных металлов -для гидрирования углеводов, в частности моносахаридов, относятся к 60-ым годам. Это были, в первую очередь, рутений, палладий и платина, нанесенные на различные носители [34]. В составе сплавных катализаторов благородные металлы использовались как промоторы никеля Ренея [22, 35], так как промотирование палладием, рутением, платиной и родием создает благоприятные условия для активации как водорода, так и двойных связей. Поскольку гидрирование глюкозы осуществляется в слабощелочной среде, в которой равновесие сильно смещено в сторону енольной формы, это дает основание считать, что добавление к скелетному никелю [c.42]

    Гидрирование ацетилена в пирогазе и этиленовых потоках. Пирогаз непосредственно за счет водорода, в нем содержащегося, или этиленовый поток после отделения метан-водородной фракции (с добавлением внешнего водорода) подвергаются обработке на палладийсодержащих катализаторах. Палладий нанесен яа прочный носитель — окись алюминия или силикагель (в частности, могут использоваться катализаторы НО-10 и НО-11). Основные параметры процесса  [c.21]

    Гидрирование ацетиленового спирта в диметилвинилкарбинол осуществляется на суспендированном в воде катализаторе, представляющем собой коллоидальный палладий, осажденный на носитель, с добавкой модификатора. Реакция протекает в системе из двух реакторов 6 (на рисунке показан один) при 30—80°Си давлении 0,5 — 1,0 МПа. Гидрирование происходит с выходом, близким к теоретически возможному. Продукты реакции проходят газосепаратор 7. Непрореагировавщий водород возвращается на гидрирование. Водная суспензия катализатора отделяется от органических продуктов с помощью центрифуги 8 и также возвращается в реактор 7. Сырой 2-метил-3-бутен-2-ол испаряется в теплообменнике 9 и поступает в реактор дегидратации 10. Превращение изоамиленового спирта в изопрен осуществляется в стационарном слое высокочистой окиси алюминия при атмосферном давлении и 250—300 °С. Цикл контактирования длится более 100 ч, после чего катализатор подвергается окислительной регенерации. Степень превращения изоамиленового спирта достигает 97%. Контактный газ конденсируется и подвергается водной отмывке в промывной колонне 11, в сочетании с отпарной колонной 12. Отмытый изоамиленовый спирт возвращается на контактирование Изопрен-сырец направляется на систему колонн экстрактивной ректификации Ы и 14, пройдя которые мономер достигает степени чистоты 99,9%. [c.382]

    В качестве катализаторов гидрирования применяют никель, платиновую и палладиевую чернь. В последнее время используются сложные катализаторы, состояш,ие из смеси окислов хрома и некоторых других металлов (меди, цинка). Особенно активным катализатором является никель Ренея, который получается при обработке сплава никеля с алюминием (1 1) едким натром. Катализаторы применяются в мелкораздробленном состоянии, в большинстве случаев на носителе (активированный уголь, асбест) и при различных температурах. В присутствии никеля Ренея, платины и палладия гидрирование обычно проводят при комнатной температуре, а в присутствии никеля и меди — при нагревании. [c.147]

    В присутствии железа Ренея [245] и специально обработанных палладиевых катализаторов, в отличие от предыдущих, скорость гидрирования заметно снижается после поглощения 1 моль водорода. Но эти катализаторы гораздо менее активны, и процесс приходится вести при высоких температурах и давлениях, а в таких условиях может произойти изомеризация продуктов в /тгрямс-этилены. Поэтому в большинстве методов используются катализаторы из палладия, осажденного на таких носителях, как карбонат бария [246], сульфат бария [168, 247, 248], карбонат кальция [227, 234, 249] или окись алюминия [250], часто с добавками небольших количеств контактных ядов (пиридина [251], хинолина [105. 248. 252—254]). В новейшей литературе [c.54]

    Разновидности и способы приготовления палладиевых катализаторов аналогичны описанным для платиновых. Широко употребляется в лабораториях палладий, нанесенный на карбоиат кальция (бария) или сульфат бария. Для получения этих катализаторов све-жеосажденный карбонат кальция (сульфат бария) замешивают с раствором хлорида палладия при температуре 50-60 °С и после адсорбции соли палладия осадок отфильтровывают, тщательно промывают водой и высушивают. Адсорбированная на поверхности носителя соль восстанавливается до металлического палладия водородом в процессе гидрирования. Палладиевая соль может быть также восстановлена щелочным формалином или водородом сразу после смешения ее раствора с горячей суспензией носителя в процессе приготовления катализатора. [c.20]

    Об аналогичном наложении заместителей на носитель свидетельствуют опыты по гидрированию разных стереоизомеров коллоидальным палладием, приготовленным по Скита и защищенным оптически активным коллоидом-гуммиара-биком (автор, Е. И. Клабуновский и Ю. И. Петров [284—285]). В этих работах исследовались конфигурационные со- [c.69]

    Тетрагидро-7--пироны. Восстановление цикла 7-пирона химическими средствами не пригодно для получения тетрагидропирона. Большая часть, восстановителей или не действует на пироновый цикл, или приводит к раскрытию цикла [118]. Однако можно восстановить пироновый цикл каталитически. Борш [162] провел селективное гидрирование двух углерод-угле-родных двойных связей с помощью коллоидальной платины. Аналогичные результаты позднее были получены при применении палладия на карбонате стронция [163]. Изучение реакции гидрирования многих производных у-пирона с применением палладия на различных носителях показало, что-исчерпывающее гидрирование приводит к тетрагидро-т--пиранолам [164]. Если остановить гидрирование после присоединения 1 и 2 молей водорода, то удается получить с малыми выходами дигидро- и тетрагидропироны. Гидрирование --пирона под высоким давлением в присутствии хромита меди [165] приводит к получению 50% 4-окситетрагидропирана и 23% тетрагидро- у-пирана, в то время как гидрирование в присутствии скелетного никелевого катализатора при умеренных давлениях [166] дает только первое из названных веществ. Гидрирование в присутствии скелетного никелевого катализатора, активированного платинохлористоводородной кислотой и следами щелочи, приводит к частичному раскрытию цикла, главными же продуктами гидрирования в случае диметилпирона являются два изомерных 2,6-дк- [c.302]

    Активность катализаторов, применяемых в реакциях гидрирования нитросоединений, зависит от их химического состава и физического состояния. Чаще всего применяются металлические катализаторы, особенно металлы VIII группы периодической системы — платина, палладий, родий, никель, кобальт, а также сплавы никеля и хрома, никеля и меди и другие. Доказано, что активность катализатора увеличивает находящиеся в них примеси некоторых веществ — загрязнения или же специальные добавки — так называемые активаторы. Большое значение имеет также степень измельчения катализатора. Максимальное раздробление достигается осаждением каталитически активного вещества на так называемый носитель. [c.120]

    Известно, что селективное восстановление ненасыщенных альдегидов трудно осуществить при использовании гетерогенных катализаторов, так как даже небольщие изменения в способе приготовления катализатора (например, растворитель, носитель и т. д.) приводят к образованию смесей различных продуктов, в том числе и продуктов полного восстановления альдегидной группы. Гомогенным катализаторам также присущи эти недостатки [см., например, о декарбонилироваиии с применением катализатора (21)]. Селективное гидрирование а.р-ненасыщенных альдегидов может быть достигнуто с использованием систем типа (32) и (33) [68]. Представляют интерес системы борогидрид — соль палладия(П), гидрирующие только углерод-углеродную л-связь и не затрагивающие альдегидную группу [схемы (7.56) — (7.58)]. Соединения никеля (II) также эффективны, но менее селективны. Из всех известных катализаторов палладиевые системы дают наибольшую воспроизводимость при селективном восстановлении двойной связи в ненасыщенных альдегидах. [c.274]

    Наилучшие результаты при гидрировании бензольного пли пиридинового ядра дают родий на угле (или оксиде алюминия) и оксид платины. Оба катализатора эффективны при низких температурах (50—80°С) и давлениях (2—3 атм). Восстановление на Р10г проводят в кислой среде [схема (7.59)], что является недостатком в случае гидрирования анилинов и пиридинов (например, возможно образование нерастворимых четвертичных аммониевых солей). Родиевые катализаторы на носителях склонны к ингибированию сильными азотсодержаш,ими донорами в этих случаях Р10г или Р(1 на носителе при высоких температурах (70—100°С) и давлениях (70—100 атм) менее подвержены отравлению и часто оказываются эффективными. Поскольку ароматическое кольцо медленно гидрируется в присутствии палладия в кислых средах, палладиевые катализаторы можно применять для частичного восстановления, однако при этом обычно необходимо высокое давление. [c.275]

    Ароматические субстраты. Палладий на носителе неэффективен для восстановления алифатических карбонильных соединений, однако палладий на угле является наилучшим катализатором гидрирования ароматических альдегидов и кетонов. Основной недостаток этого катализатора связан с гидрогено-лизом, в результате которого образующийся спирт превращается в углеводород. Палладий обычно промотирует гидрогепо-лиз (см. также разд. 7.8). Гидрогенолиз с использованием палладия дает хорошие выходы продуктов в мягких условиях и может конкурировать с более известным восстановлением по Клемменсену или Кижнеру—Вольфу [схемы (7.75), (7.76)] [93, 94]. [c.284]

    Нитрозосоединения и оксимы являются интермедиатами при гидрировании нитросоединений аналогично, в результате частичного гидрирования нитрилов образуются амины. Эти промежуточные соединения редко выделяют в чистом виде, поскольку они легко гидрируются в соответствующие амины. По этой причине катализаторы восстановления нитро- и цианогрупп могут одновременно служить катализаторами восстановления оксимов, иминов и нитрозосоединений. Обычно используют никель Ренея, палладий или платину на носителе. При восстановлении нитро- и цианогрупп трудности возникают в тех случаях, когда частично восстановленные аналоги подвергаются дальнейшему гидрированию. Так, восстановление иминов и оксимов часто приводит к образованию вторичных аминов, и для получения первичных аминов с высокими выходами необходимо применять специальные меры. Как и в ранее описанных случаях, хорошими каталитическими системами являются никель Ренея — аммиак или уксусный ангидрид, а также родий на угле — аммиак. Как отмечалось выше, гидрирование нитросоединений часто протекает экзотермично то же относится и к гидрированию оксимов и нитрозосоединений. При применении никеля Ренея при повышенных температурах и давлениях. (70—100°С 70—100 атм), обеспечивающих высокие [c.307]


Смотреть страницы где упоминается термин Палладий на носителях гидрирование: [c.196]    [c.361]    [c.182]    [c.183]    [c.398]    [c.323]    [c.183]    [c.216]    [c.131]    [c.156]    [c.20]    [c.225]    [c.302]    [c.216]    [c.910]    [c.284]   
Гетерогенный катализ в органической химии (1962) -- [ c.0 ]




ПОИСК





Смотрите так же термины и статьи:

Палладий

Палладий на носителях

Палладий палладий



© 2025 chem21.info Реклама на сайте