Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Гидрофобные связи в белках температуры

    Для кислотного гидролиза белков и пептидов помимо 5,7 н. НС1 используют также сульфокислоты. Более легкому гидролизу пептидных связей, образованных гидрофобными аминокислотами, способствует проведение гидролиза в смеси концентрированной НС1 и сильной органической кислоты, например трифторуксусной (2.1). Время гидролиза в этом случае ограничивается 25, 50 и 75 мин. Температура гидролиза 166 С. [c.123]


    Из изложенного следует, что денатурацию можно рассматривать как процесс кооперативного перехода между двумя состояниями — нативным и денатурированным. Брандте обосновал эту концепцию [107]. Оба наблюдаемых макроскопических состояния являются результатом усреднения по совокупностям микроскопических состояний. Теория перехода между двумя состояниями исходит из того, что любое микроскопическое состояние относится к нативному или к денатурированному макроскопическому состоянию или фигурирует в распределениях и для того, и для другого состояния. С помощью статистической суммы (4,85), где д дается (4,87), Брандте вычислил изменение числа звеньев п, соединенных водородными связями, с температурой для белка с N = 200 (40% гидрофобных, 20% гидрофильных и 40% нейтральных остатков). Функция распределения микросостояний, характеризуемых числом водородных связей, оказывается отчетливо бимодальной. При изменении температуры от 20 до 50 °С резко уменьшаются вероятности состояний с п ж 200 и одновременно резко увеличиваются вероятности состояний с п ж 0. [c.248]

    Рассмотрим подробнее, какие типы взаимодействий могут возникать при образовании прочных межфазных адсорбционных слоев белков и полимеров. Проведенные исследования показывают, что прочность межфазных слоев поливинилового спирта и желатины уменьшается с повышением температуры и при добавлении салицилата натрия это означает, что основными типами связей, скрепляющих пространственную структуру, оказываются водородные связи. В случае глобулярных белков (вторая группа полимеров), у которых прочность межфазных адсорбционных слоев обусловлена в основном гидрофобными взаимодействиями, повышение температуры упрочняет возникающую структуру. Подобное влияние температуры и денатурирующих агентов наблюдалось и при исследовании объемного структурообразования в водных растворах рассмотренных полимеров. Таким образом, наблюдается полная аналогия механизмов образования прочных межфазных адсорбционных слоев и трехмерных (объемных) структур этих же высокомолекулярных поверхностно,-активных веществ. [c.53]

    Наличие в молекулах полиэлектролнтов групп различной природы определяет возможность возникновения взаимодействий разных видов (электростатических, гидрофобных, водородных связей) и повышенную по сравнению с нейтральными полимерами склонность цепей полиэлектролитов к конформационным изменениям при изменении pH, температуры раствора, природы растворителя. Об изменении конформации макромолекул можно судить по значению параметра а уравнения Марка — Куна — Хаувинка [т]] = = КМ . Известно, что а зависит от конформации макромолекул в растворе и изменяется от нуля для очень компактных клубков до 2 для палочкообразных частиц. Для многих глобулярных белков а = 0. В растворе сильного полиэлектролита при достаточно высокой ионной силе раствора а = 0,5, т. е. цепь имеет конформацию статистического клубка с уменьшением ионной силы параметр а увеличивается и при ионной силе, близкой к нулю, стремится к а = 2. Для слабого полиэлектролита в заряженной форме, а также для полипептидов в конформации а-спирали а = = 1,5—2. [c.123]


    Характерное увеличение устойчивости многих гидрофобных связей с ростом температуры вплоть до 60 °С связано с положительной энтальпией взаимодействия [31, 65]. Помимо рассмотренных выше примеров, этот тип классической гидрофобной связи наблюдается в связывании этана, пропана и бутана рядом белков с ДЯ, близким к нулю [66] в полимеризации белка вируса табачной мозаики, где АЯ составляет 190 ккал/моль (796 10 Дж/моль) и А5 = 682 энтр. ед. (2860 Дж/моль-К), что соответствует переходу большого числа молекул воды в среду растворителя [67] в мицеллообразовании с участием неионных детергентов, сопровождающимся величиной ДЯ --5 ккал/моль (21 -10 Дж/моль) и Д5 = 30 энтр. ед. [23, 68]. [c.323]

    Размер мицелл ПАВ совпадает по величине с размером глобулярных белков в водном растворе. Большой вклад в стабилизацию пространственной компактной структуры глобулярных белков и мицелл ПАВ вносят гидрофобные взаимодействия, приводящие к образованию в глобулах белков и в мицеллах неполярных областей. Поланд и Шерага [81] рассмотрели стабильность мицеллы, образованной неионогенными ПАВ, с точки зрения представлений о гидрофобных взаимодействиях. Авторам удалось объяснить зависимость размера мицелл от концентрации и температуры. -Образование мицелл и глобул белка сопровождается весьма незна-чительным выигрышем энтальпии, но значительным увеличением энтропии. Явления мицеллообразования связаны с вытеснением неполярных групп из воды в результате сильного взаимодействия ее полярных молекул и ван-дер-ваальсовьш сцеплением углеводородных цепей, т. е. гидрофобные взаимодействия также играют существенную роль в стабилизации мицелл. Следовательно, природа мицеллообразования не только энергетическая, но и энтропийная. Подобный подход был успешно применен при рассмотрении мицеллообразования в случае ионогенных молекул [82—84] и полимерных мыл [85]. Термодинамика мицеллооб-разованпя подробно обсуждена в работе Песика [86]. [c.18]

    Денатурация может происходить а) при повышении температуры б) при изменении pH среды в) в присутствии окислителей или восстановителей, которые разрушают дисульфидные связи г) при внесении детергентов, нарушающих гидрофобные взаимодействия между молекулами воды и белка д) при добавлении сильных акцепторов водородных связей, например, мочевины, и е) при физических воздействиях (например, под действием ультразвука). [c.412]

    Кроме этого, молекулы белков и липидов очень быстро вращаются вокруг своих продольных осей (вращательная диффузия). Перескок липидных молекул из одного монослоя в другой (флип-флоп) осуществляется редко, а белки, по-видимому, к такому перескоку вообще не способны. Причина исключительно медленного флип-флопа заключается в его энергетической невыгодности, поскольку необходимо перенести полярную головку молекулы липида через гидрофобную область бислоя. Подвижность липидных молекул тесно связана с фазовыми переходами в мембране, т. е. изменением ее состояния из жидкокристаллического в кристаллическое (или гелеобразное). Основным фактором, вызывающим фазовые переходы мембранных липидов, является изменение температуры среды. Значение температуры, при которой происходит переход данного липида из кристаллического в жидкокристаллическое состояние (и обратно), называется температурой фазового перехода гель — жидкий кристалл (рис. 22.4). [c.307]

    Большинство гидрофобных боковых цепей (Ала, Лей, Иле, Вал, Фен, Про) расположены внутри белковой глобулы, а почти все заряженные полярные группы — на ее поверхности (обычное строение для глобулярных белков). Лизоцим обычно димеризуется при pH>7, и поэтому его лучше всего изучать при pH = 6 или более низких. Лизоцим человека и лизоцим белка куриного яйца были изучены с помощью метода ЯМР [7—И, 19—28], причем первый исследован более подробно. В ранних работах [7, 8] были установлены основные характеристики его спектра в ОгО и отмечена относительно высокая устойчивость к развертыванию при нагревании до 65 °С, что, по-видимому, отчасти обусловлено наличием четырех дисульфидных мостиков. Измерения при 220 МГц обнаруживают небольшие изменения спектра в температурной области 35— 60 °С, но в общем подтверждают этот вывод [24—27]. Однако при нагревании от 65 до 75 °С происходит денатурация и в спектре наблюдаются заметные изменения. (Природа этих изменений будет обсуждена детально немного позднее.) На рис. 14.3 показаны полные спектры 10%-ных растворов Лизоцима в ОгО (рО = 5,5) при 30, 54 и 80 °С. На рис. 14.4 приведены детальные записи слабопольных и сильнопольной областей спектра при температуре несколько ниже (65 °С) и несколько выше (80 °С) температуры денатурации. Для сравнения представлен спектр, рассчитанный и построенный на основании данных табл. 13.1 и, следовательно, соответствующий неупорядоченному состоянию белковой молекулы. Ширина линии была принята равной 10 Гц [11, 24]. Спектр при температуре 80 °С очень близок к спектру лизоцима в неупорядоченном состоянии, если учесть искажения, вызванные дисульфид-ными связями. Если эти связи разрываются, то линии спектра еще [c.353]


    С) высокой вязкостью. Если такой раствор нагреть до температуры выше 80-90°С или довести его pH до экстремальных значений, то вязкость раствора резко упадет, что указывает на изменение физического состояния ДНК. Мы уже видели, что высокая температура и экстремальные значения pH приводят к денатурации, или раскручиванию глобулярных белков (разд. 6.12). Точно так же высокие температуры и экстремальные значения pH вызывают денатурацию, или расплетание, двухцепочечных спиралей ДНК, разрушая водородные связи между спаренными основаниями и гидрофобные взаимодействия, с помощью которых удерживались вместе уложенные в стопку основания. В результате двойная спираль расплетается с образованием хаотических, беспорядочных одноцепочечных клубков до тех пор, пока обе цепи, наконец, не разделятся полностью. При денатурации (ее называют также плавлением) ковалентные связи в остове молекулы не разрываются (рис. 27-14). [c.865]

    Данные о гидродинамических свойствах белков в растворе и оценка размеров элементарной ячейки, полученная с помощью рентгеноструктурного анализа кристаллических белков, свидетельствуют о компактности и жесткости белковой молекулы. Эти свойства белка нельзя объяснить одной лишь вторичной спиральной структурой, даже если принять во внимание наличие дисульфидных связей и остатков пролина. Легкость, с которой эта компактность может быть нарушена, свидетельствует вместе с тем о том, что структура стабилизирована не ковалентными связями. Стабилизация плотно свернутой третичной структуры глобулярных белков достигается за счет взаимодействия боковых цепей аминокислотных остатков, обладающих указанными выше химическими свойствами. Силы взаимодействия каждая в отдельности не велики ионное взаимодействие, водородные связи, гидрофобное взаимодействие и вандерваальсовы силы. Но поскольку число этих слабых связей очень велико и все они действуют одновременно по всей свернутой структуре белка, она обладает достаточной устойчивостью при обычной температуре. Оценить относительное значение связей различного типа в поддержании третичной структуры очень трудно и на этот счет еще нет единого мнения. [c.26]

    Из того факта, что многие ферменты утрачивают при низких температурах свою четвертичную структуру, был сделан предположительный вывод об особом значении гидрофобных взаимодействий для стабилизации агрегатов из полипептидных субъединиц. Как уже упоминалось, из всех слабых связей и взаимодействий, стабилизирующих структуру высших порядков, только гидрофобные взаимодействия ослабевают с понижением температуры. Высказывалась мысль, что само существование ферментов, состоящих из нескольких субъединиц, связано с избытком гидрофобных остатков в их полипептидных цепях, что таких остатков здесь больше, чем их может быть заключено внутри одной свернутой в третичную структуру цепи (фиг. 73). Судя по некоторым оценкам относительной доли гидрофобных остатков, необходимых для образования четвертичной структуры, наличие около 30% таких остатков почти всегда будет неизбежно вести к образованию четвертичной структуры. Как показывает анализ аминокислотного состава белков, состоящих из одной цепи и из нескольких субъединиц, ферменты первого из этих двух типов содержат 13—31% гидрофобных остатков, а ферменты второго типа —от 29 до 38% гидрофобных остатков. [c.219]

    Кроме того, текучесть алифатических цепей может играть роль в формировании гидрофобных связей. Так, в интервале температур перехода из состояния геля в состояние жидкост-но-кристаллическое происходит латеральное разделение в мембранах и белки взаимодействуют преимущественно с жидкостнокристаллическими зонами [43]. [c.311]

    ИЛИ совсем не обмениваться. В тех случаях, когда атомы водорода участвуют в водородных связях или находятся в гидрофобных областях вне контакта с растворителем, их нормальная скорость Обмена снижается. Для определения скорости обмена дейтерированный белок растворяют в Н2О и через определенные интервалы времени измеряют плотность растворителя, которая зависит от относительного содержания дейтерия. Можно также использовать в подобных экспериментах радиоактивный тритий или определять скорость обмена по уменьшению интенсивности амидной полосы поглощения в инфракрасной области при 1550 м , которое наблюдается при растворении белка в D2O. Последний способ является наиболее удобным. Определение скорости изотопного обмена можно производить и по другим полосам поглощения в инфракрасной области, а также с помощью магнитного ядерного резонанса. В случае малых полипептидов для этой цели можно использовать спектры комбинационного рассеяния. Следует учесть, что эти методы приводят к правильному результату только в тех случаях, когда изотопное замещение не вызывает изменения конформации белка. Например, для нормальной рибонуклеазы температура перехода в воде при pH 4,3 равна 62°, а для дейтерированной, растворенной в D2O, она равна 66°. Таким образом, дейтерирование способствует сохранению спиральной конформации. Поэтому при анализе экспериментов по изотопному обмену, проводимых при 65°, необходимо учитывать изменение относительного содержания фракций белка, имеющих различную конформацию. Во избежание подобных осложнений следует проводить опыты в условиях, исключающих возможность конформационных переходов. [c.295]

    Прочность межфазных слоев иоливинилового спирта и желатины уменьшается с повышением температуры и при добавлении салицилата натрия. Это означает, что основными типами связей, скрепляющих пространственную структуру, оказываются водородные связи. В случае глобулярных белков (вторая группа полимеров), у которых прочность межфазных адсорбционных слоев обусловлена в основном гидрофобными взаимодействиями, повышение температуры упрочняет возникающую структуру. Подобное влияние температуры и денатурирующих агентов наблюдалось и ири исследовании объемного структурообразования в водных растворах рассмотренных полимеров. Таким образом, наблюдается полная аналогия механизмов образования прочных межфазных адсорбционных слоев и трехмерных (объемных) структур этих же высокомолекулярных ПАВ. [c.217]

    Поскольку в образовании вторичной и третичной структуры частично участвуют относительно слабые связи, физическое состояние белка, а следовательно, и активность фермента, гормона и антибиотика в значительной степени зависят от температуры, pH, присутствия солей и т. д. Нагревание вызывает распрямление белковой молекулы, которое вследствие большой положительной энтропии проявляется тем больше, чем выше температура [106]. Некоторые химические реагенты, такие, как мочевина и гуанидин, вызывают изменения в физическом состоянии и реакционной способности многих белков, разрывая главным образом стабилизующие структур г водородные связи, в то время как под действием органических растворителей пройсходит разрыв гидрофобных связей. Изменение pH обусловливает разрыв водородных связей в результате удаления протона и вызывает электростатическую неустойчивость. Эти изменения часто происходят очень резко и напоминают переходы первого порядка. [c.385]

    Изменение устойчивости нативной конформации с изменением природы растворителя позволяет объяснить относительное значение различных факторов, определяющих третичную структуру белков. Стремление неполярных сорастворителей к денатурации водных растворов белков является сложным процессом. Когезия неполярных остатков в водной среде, с одной стороны, стабилизует спиральную конформацию, а с другой стороны, может быть основной причиной образования многих изгибов, посредством которых спиральные участки полипептидной цепи складываются в компактную структуру глобулярных белков в нативном состоянии. Уменьшение полярности среды может поэтому привести к уменьшению содержания спиральных конформаций [381, 390, 391] до того, как они разрушатся окончательно. Действие мочевины или солей гуанидина лишь частично объясняется разрушением гидрофобных связей. Было показано, что водный раствор мочевины является лучшим растворителем для неполярных веществ, чем сама вода [392]. Однако было также обнаружено, что водный раствор мочевины или солянокислого гуанидина оказывает специфическое сольватирующее действие па скелет полипептидной цепи, которое имеет совершенно другие характеристики, чем солюбилизация углеводородных остатков [393]. Наконец, уменьшение устойчивости нативной формы глобулярных белков с увеличением температуры доказывает, что разрушение третичной структуры является эндотермическим процессом, в то время как разрыв гидрофобных связей должен протекать экзотермически. Это приводит к выводу [394] о том, что знак измененля энтальпии определяет какой-то другой процесс,— возможно, разрыв водородных связей, сопровождающий разворачивание полипептидной цепи. [c.137]

    Вполне вероятно, что общий механизм чувствительности к холоду, которая появляется в результате мутаций генов,-кодирующих рибосомные белки, а также генов, кодирующих регуляторные ферменты, связан с требованием точной конформации белков обоих классов. К изменениям конформации приводит, по-видимому, ослабление гидрофобных связей при низких температурах (Brandts, 1967). [c.113]

    Основную роль в образовании третичной структуры играют нековалентные взаимодействия между радикалами аминокислот — водородные, ионные, гидрофобные связи. Аминокислоты, входяш ие в белки, различаются по физико-химическим свойствам радикалов. Между аминокислотами с неполярными (гидрофобными) радикалами возможны гидрофобные взаимодействия между полярными радикалами возникают водородные связи, а между заряженными полярными радикалами — ионные (рис. 1.16). Все эти связи относятся к числу слабых их энергия в водной среде не слишком сильно превышает энергию теплового движения молекул при комнатной температуре, и поэтому их образование и разрушение — легкообратимые процессы. [c.31]

    Ряд алкилагароз со структурой СНз(СН2)пМН—сефароза (где п принимает значения от О до 7), и-аминоалкилагароз со структурой ЫН2(СН2)п ЫН—сефароза (где п — от 2 до 8) характеризуется близким содержанием алкильных боковых цепей на гранулу геля [15, 49]. В одинаковых условиях (pH, ионная сила, состав буферного раствора и температура) способность СНз(СН2)пЫН—сефарозы удерживать фосфорилазу Ь зависит от длины углеводородных цепей. При хроматографии на производных сефарозы (я = 0 или 1) фосфорилаза Ь выходила из колонки с фронтом растворителя при п = 2 происходила задержка фермента, а при п = 3 фермент адсорбировался. Элюирование фосфорилазы Ь с модифицированной сефарозы (п = 3) возможно с помощью деформирующих буферных растворов, которые, как было показано, приводят к обратимым структурным изменениям фермента. На производном сефарозы с л = 5 связывание фосфорилазы было настолько сильным, что фермент не элюировался с колонки, даже когда pH деформирующего буферного раствора понижался до 5,8, хотя деформирующая способность такого буфера намного выше. Освободить фосфорилазу Ь из комплекса с этим производным можно только в неактивной форме после промывки колонки 0,2 М уксусной кислотой. Сама агароза содержит отрицательные заряды, а связывание алкил- или ариламинов на активированной бромцианом агарозе вводит в гель положительные заряды (разд. 8.2.4). В связи с этим йост и др. [28] обращали внимание на то, что на сефарозе с алкиламинами, прикрепленными после предварительной активации носителя бромцианом, связывание белков происходит большей частью при pH выше изоэлектрической точки выделяемых белков. Поэтому допускалось, что в этих случаях электростатические взаимодействия с положительно заряженной Ы-замещенной изомочевиной более существенны для связывания, чем гидрофобные взаимодействия с гидрофобной боковой цепью. Тем не менее гранулы агарозы не связывают фосфорилазу Ь, пока к ним не будут прикреплены алкильные боковые цепи некоторой минимальной длины. Кроме того, отмеченные выше заряды в равной мере присутствуют во всех членах гомологического ряда, и, следовательно, они не могут быть причиной различий в степени [c.152]

    Специфический комплекс выделяемых веществ с иммобилизованным аффинным лигандом может распадаться в результате пространственного модифицирования, напрпмер, мочевиной, солями гуанидина или хаотропными ионами. Эти реагенты разрушают водородные связи или изменяют структуру воды вблизи гидрофобных областей. При использовапии этих реагентов следует помнить, что компоненты комплекса могут быть необратимо разрушены при выделении. Однако известно, главным образом для иммобилизованных ферментов, что присоединение белков к нерастворимым носителям приводит к повышению стабильности. Подбирая концентрацию, температуру и время обработки, можно конформационные изменения адсорбционных участков ири десорбции уменьшить до минимальных то же самое относится и к обратимым конформаци-онным изменениям молекул в целом как выделяемых веществ, так и иммобилизованных аффинных лигандов. На практике следует предварительно найти минимальную концентрацию, необходимую [c.270]

    Хорошо известно (см., например, [8—11]), что молекулы биополимеров в растворе могут обладать различными конформациями в зависимости от температуры, состава растворителя, концентрации водородных и других ионов в нем. Так, молекулы ДНК и синтетических полинуклеотидов в растворе могут либо иметь структуру двойной спирали, стабилизуемой внутримолекулярными водородными связями и силами ван-дер-ваальсового взаимодействия (диполь-дипольными и дисперсионными), действующими между гидрофобными группами, либо находиться в конформации статистического клубка, в которой отсутствует упорядоченная система внутримолекулярных водородных связей. Синтетические полипептиды, в том числе полипептиды, несущие ионизуемые группы, как например поли-Ь-глутаминовая кислота, поли-Ь-ли-зин, также могут находиться либо в стабилизуемой внутримолекулярными водородными связями и ван-дер-ваальсовыми силами спиральной конформации, либо в конформации клубка. Глобулярные белки обладают компактной структурой, стабилизованной гидрофобными взаимодействиями и характеризующейся в ряде случаев наличием спиральных областей при денатурации компактная структура разрыхляется, спиральные области разрушаются. [c.19]

    Физические агенты. Денатурация белков может осуществляться и за счет действия различных физических агентов. Наиболее общим и наиболее изученным денатурирующим воздействием является нагревание. Тепловое движение полипептидных цепей вызывает как разрыв водородных связей между ними, так и нарушение взаимодействия гидрофобных групп. При постепенном повышении температуры можно наблюдать иногда признаки ступенчатого, скачкообразного течения процесса денатурации. По-видимому, процесс разрушения водородных связей в нативных молекулах имеет кооперативный характер, что позволяет говорить о температуре и теплоте плавления а-спиральных участков у ряда белков. Денатурированные нагреванием белки легко агрегируют и выпадают в осадок, хотя коагуляция представляет собой вторичное явление. Вероятно, коагуляция является результатом возникновения дополнительных дисульфидных мостиков, солеобразных и вторичных водородных связей между различными молекулами. То, что коагуляция тесно связана с образованием дисульфидных связей, подтверждается тем фактом, что д-хлормеркурибензоат ингибирует свертывание. В свою очередь коллаген, не содержащий сульфгидрильных групп, при нагревании превращается в растворимую желатину. [c.186]

    Обсуждая проблему устойчивости и толерантности к замерзанию, мы касались до сих пор лииш вопросов образования льда и соответствующих последствий для организма. Однако образование ледяных кристаллов — это только одно из тех изменений, зависящих от слабых связей, которые происходят при низких температурах. Другая существенная опасность, возникающая с приближением температуры к точке замерзания, состоит в возможном разрушении третичной и четвертичной структуры белков в результате дестабилизации гидрофобных взаимодействий. [c.304]

    В заключение нам хотелось бы рассмотреть еще один пример субклеточных структур, стабилизируемых слабыми связями или взаимодействиями, — плазматическую мембрану. Основу структуры этой мембраны (стр. 291) составляет двойной слой липидов с сильно гидрофобной внутренней областью и сильно полярными наружными поверхностями. Белки мембраны находятся в ассоциации как с полярной, так и с гидрофобной областями фосфолипидного слоя. При низких температурах (обычно где-то между О и 20°С) мембраны у многих организмов переходят в твердое состояние вследствие кристаллизации алифатических цепей фосфолипидов (стр. 292). В отличие от этого функционирующая мембрана находится в квазижидком ( жидкокристаллическом ) состоянии. Если алифатические цепн мембранных фосфолипидов подвержены фазовым переходам вроде тех, какие наблюдаются in vitro в экспериментах с алифатическими углеводородами, то температура перехода их из жидкого состояния в твердое должна сильно изменяться при изменении давления. [c.327]

    Как для водородных, так и для гидрофобных (неполярных) связей характерна низкая энергия, однако если их число достаточно велико, то они вполне способны придать большой молекуле устойчивую структуру, точно так же как лиллипутяна.м удалось множеством слабеньких цепочек приковать к земле лежащего Гулливера. Сколь ни мала энергия этих связей в макромолекуле, оказывается, она достаточна для того, чтобы противостоять нарушению структуры, которое могут вызвать столкновения с другими молекулами при комнатной температуре. Однако по мере повышения температуры возрастающая сила молекулярных столкновений и возрастающая энергия внутримолекулярных колебаний легко вызывают разрыв и водородных, и неполярных связей, что служит причиной таких явлений, как тепловая денатурация белков и плавление молекул ДНК. [c.25]

    Приступая к разделению белков, необходимо тщательно подобрать pH, ионную силу, температуру, электролит и носитель, поскольку от перечисленных условий зависят физико-химические и биологические свойства каждого отдельного белка. Формирование высших структур (т. е. вторичной, третачной и четвертичной), а также надмолекулярных агрегатов обусловлено ионными и гидрофобными взаимодействиями и образованием водородных связей. Эти же взаимодействия определяют и процесс разделения. Очевидно, условия хроматографии должны быть такими, чтобы выделенный продукт сохранил определенные представляющие интерес свойства, каковые, как правило, связаны ссохра-нением его нативного состояния и биологической активности. В то же время для определения физических свойств субъединиц белка часто его необходимо денатурировать и с этой целью подвергнуть жесткой обработке (например, мочевиной или гидрохлоридом гуанидина) с последующей химической модификацией (например, расщепить дисульфидные связи и блокировать сульф-гидрильные группы). Таким образом, конкретная задача определяет выбор метода разделения белков. Следует также отметить, что в процессе разделения нативных белков участвуют функциональные группы, расположенные на поверхности. Однако если белки полностью или частично денатурированы, появляются новые группы, ранее скрытые внутри макромолекулы, которые могут изменить не только силу, но и природу взаимодействия белка с сорбентом. В результате при хроматографиче- [c.104]

    Линдерстром-Ланг [232, 233] был одним из первых исследователей, связавших пониженную скорость водородного обмена, особенно атомов водорода пептидных связей, с надмолекулярной структурой белка. Правда, следует отметить, что основу для такого предположения дала ранее опубликованная работа Блаута [237] по полипептидам. Инфракрасные спектры, полученные Хаггисом [238], подтвердили предположение, что медленно обменивающиеся атомы водорода принадлежат пептидным группам, а не функциональным группам боковой цепи. Хотя обычно принимали, что атомы водорода, обменивающиеся в разбавленных растворах почти мгновенно (в пределах 30 сек) при температуре около 0°, являются свободными атомами водорода, а атомы водорода, обменивающиеся в тех же условиях значительно медленнее, входят в состав водородных связей, Шерага [27], например, указывает, что такая интерпретация результатов является лишь предположительной и приемлемой, но не вполне правильной. Шерага в цитируемой книге отмечает возможность существования экранированных или недоступных атомов водорода, находящихся в гидрофобных областях структуры белка. Кроме того, как уже указывалось выше, обмен может сильно замедляться пространственными затруднениями у некоторых пептидных связей [214], хотя до сих пор прямых экспериментальных подтверждений этого предположения получено не было. [c.392]

    Роль конструкционных элементов и взаимодействий между ними проявляется в наличии особого промежуточного состояния, возникающего в процессе денатурации белков (Е. М. Шахнович, А. В. Финкельштейн, О. Б. Птицын). Промежуточное состояние (расплавленная глобула) получается из нативного путем кооперативного температурного плавления в узком интервале температур. Оно энергетически менее выгодно, а энтропийно значительно более выгодно, чем нативное. Это связано с резким ослаблением в нем внутримолекулярных взаимодействий и уменьшением внутримолекулярной упорядоченности. Небольшое набухание в промежуточном состоянии резко ослабляет короткодействующие силы притяжения Ван-дер-Ваальса по сравнению с гидрофобными взаимодействиями. Одновременно происходит резкое увеличение микроконформационной подвижности и флуктуаций структуры белка. Таким образом, по своим свойствам термодинамически стабильное промежуточное состояние близко к нативной вторичной структуре, но обладает флуктуирующей пространственной структурой (подробнее см. гл. X). С этой точки зрения фазовые переходы в белке могут быть обусловлены не разворачиванием белковой глобулы, а разрушением ее уникальной пространственной структуры. Фазовый переход совершается между более плотным (нативное) состоянием с сильным ван-дер-ваальсовым притяжением, но заторможенными боковыми группами и менее плотным (промежуточное) состоянием, где боковые группы разморожены , а ван-дер-ваальсовые контакты разрушены. Так как боковые группы прикреплены к жесткому структурному каркасу глобулы, состоящему из а- и -участков, нарушение плотной упаковки в одном месте белка или белкового домена может произойти лишь при смещении или разрушении этого каркаса по всему объему глобулы. Таким образом, двум состояниям белка соответствуют и два различных объема компактной глобулы, а промежуточные между ними объемы термодинамически неустойчивы. Поэтому локальные нарушения плотной упаковки оказываются невозможными и разрушение нативной структуры белка является фазовым переходом первого рода (см. 2 гл. УП). [c.244]

    ЛИТЬ по образованию продуктов катализируемой им реакции. Большинство используемых ферментных меток способно за 1 мин при обычных температуре и давлении превращать в продукты 10 молекул субстрата в расчете на одну молекулу фермента. Каталитическая эффективность фермента сильно зависит от его трехмерной структуры (конформации), Пространственная структура фермента, как и любого белка, поддерживается многочисленными нековалентными взаимодействиями, такими, как гидрофобные и водородные связи, ионные контакты, а также ковалентными дисульфидными связями. Трехмерная структура фермента обеспечивает близкое соседство определенных аминокислотных остатков в положениях, наиболее выгодных для осуществления катализа. Нековалентные химические связи непрочны и легко разрушаются или ослабляются под влиянием тепловой энергии или дополнительных нековалентных взаимодействий, возникающих, например, при связывании ионов, хао-тропных агентов, детергентов, липидов и т. д. Известно, что присоединение к ферменту другой молекулы (скажем, аллосте-рического эффектора) в области, удаленной от активного центра (т. е. каталитического центра), может вызвать конформацион-ную перестройку, изменяющую пространственное расположение аминокислотных остатков в этом центре. Изменения в некова- лентных взаимодействиях, приводящие к новой, необычной конформации фермента, способны существенно повлиять на каталитическую активность. Подобная конформационная гибкость становится одной из помех при использовании фермента в качестве метки. Однако эта же гибкость полезна для разработки иммуноферментного анализа без разделения компонентов, основанного на вызываемых антителами изменениях в конформации конъюгата [лиганд — фермент]. Другое преимущество применения ферментов в качестве меток обусловлено наличием в их молекулах многочисленных функциональных групп (аминогрупп, сульфгидрильных, карбоксильных, карбамоильных, остатков тирозина), через которые можно ковалентно присоединять молекулы лигандов. [c.12]

    Одно из преимуществ фракционирования с помощью органических растворителей заключается в том, что его можно проводить при. температуре ниже нуля, так как все смешивающиеся с водой растворители образуют смеси, замерзающие при температуре значительно ниже 0 С. Это очень важное свойство, так как в ходе фракционирования необходимо поддерживать низкую температуру. При температуре выше -ЫО°С становится заметным денатурирующее действие органического растворителя. Денатурация связана с изменением молекулярных гидрофобных взаимодействий, стабилизирующих структуру белка. Отсутствие денатурации при низкой температуре обусловлено малой вероятностью того, что молекулы органического растворителя проникают во внутренние участки белковой глобулы и дестабилизируют ее. При более высоких температурах небольшие молекулы органических веществ проникают в поверхностные трещины , образующиеся спонтанно в результате естественной подвижности структуры, и связываются за счет гидрофобных взаимодействий с внутриглобулярными остатками, такими, как Leu, Пе, Туг, Phe, Val и т.д. (рис. 3.12). С повышением температуры внутренние гидрофобные взаимодействия в белковой молекуле усиливаются и начинают играть относительно более важную роль в поддержании целостности молекулы. Все это ведет к автокаталитической денатурации. [c.76]

    Возможно, что причина снижения температуры плавления связала с обоими указанными выше факторами и включ ает как диспергирование, так и увеличение гидрофобности молекул. Во всяком случае, можно ожидать по аналогии с влиянием адреналина, что параллельно с возрастным уменьшением температуры плавления клатратного гидрата — коллагена должна возрастать температура расслаивания в бинарной системе коллаген — вода как следствие эффективного уменьшения взаимодействия вода — вода. Если наблюдаемый у коллагена процесс затрагивает и другие рецепторные белки, то интегрально механизм старения можно связывать с их постепенной гидрофобизацией , ведущей к росту температур расслоения и, следовательно, к снижению эффективности рецёпторных взаимодействий. Последнее будет проявляться в том, что для осуществления одних и тех же операций потребуются все увеличивающиеся количества трансмиттера, с одной стороны, и большая амплитуда изменений солености — С другой, для того, чтобы рабочий цикл биомолекулярной машины оставался замкнутым. Вероятно, негативный эффект роста температуры расслоения может быть отчасти скомпепсирован-введением в пищевой рацион определенных доз над- [c.83]


Смотреть страницы где упоминается термин Гидрофобные связи в белках температуры: [c.247]    [c.39]    [c.151]    [c.254]    [c.142]    [c.296]    [c.66]    [c.192]    [c.219]    [c.265]    [c.265]    [c.308]    [c.309]    [c.185]    [c.196]   
Стратегия биохимической адаптации (1977) -- [ c.218 , c.262 ]




ПОИСК





Смотрите так же термины и статьи:

Гидрофобные связи

Температура белки



© 2024 chem21.info Реклама на сайте