Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Комплексные ионы связь в них

    Кратные связи. До сих пор мы рассматривали молекулы с одинарными связями, т. е. молекулы лишь с а-связями. Однако значительно более разнообразны молекулы и комплексные ионы, средняя кратность (порядок) связи в которых больше единицы. Повышение кратности связи обязано наложению на ст-связь я- и б-связей. Например, в молекуле N2, имеющей тройную связь [c.77]


    В чем отличие способов, которыми теория валентных связей и теория кристаллического поля объясняют магнитные свойства комплексных ионов  [c.248]

    Докажите, что э. д. с. этого гальванического элемента Е и константа нестойкости комплексного иона связаны соотноше- ием (при 298,15 К) [c.270]

    До сих пор мы интересовались главным образом установлением связей и неподеленных пар электронов в льюисовых структурах молекул и ионов. Но о строении молекул можно сообщить намного больше, чем это следует из льюисовой структуры. Молекулы и комплексные ионы имеют определенную геометрическую форму, и именно этот аспект их строения будет обсуждаться в данном разделе. [c.489]

    Достоинством теории валентных связей является то, что она позволяет качественно объяснить магнитные свойства комплексных соединений. Так, исходя из электронного строения комплексов железа, видно, что комплекс [РеР ] - содержит четыре неспаренных электрона и поэтому парамагнитен. В комплексе [Ре(СМ)б] все электроны спарены. Поэтому этот комплексный ион диамагнитен. При помощи теории валентных связей можно предсказать реакционную способность комплексных соединений. Последняя в значительной степени определяется скоростью обмена лигандов комплекса на другие ионы или молекулы, находящиеся в растворе. Условия, благоприятствующие обмену лигандов, — внешняя гибридизация и наличие у комплексообразователя свободных внутренних -орбиталей. [c.45]

    Координационное число центральных ионов в аквокомплексах в разбавленных растворах (т. е. при достаточном количестве молекул воды) в общем случае соответствует значению характерного координационного числа катиона (акцептора) и аниона (донора). Так, для ионов АР+, СгЗ+, Со + координационное число обычно равно шести, а для Ве + — четырем. В разбавленных водных растворах, следовательно, эти ионы находятся в виде гидратированных комплексных ионов типа октаэдрического [А1(0Н г) в тетраэдрического [Ве(ОН2)4] - Для иона СГ, имеющего четыре неподеленные электронные пары, координационное число, по-видимому, равно четырем, что отвечает образованию четырех водородных связей. [c.129]

    Льюисовыми структурами (валентаыми структурами, валентными схемами) называются графические электронные формулы молекул и комплексных ионов, где для обозначения обобществленных между атомами связьшающих электронных пар (связей) используются прямые линии (валентные штрихи), а для обозначения неподеленных пар электронов используются две точки. Для молекул и комплексных ионов, содержащих только элементы первого и второго периодов, наилучшие льюисовы структуры характеризуются тем, что в них каждый атом окружен таким же числом электронов, как атом благородного газа, ближайшего к данному элементу по периодической системе. Это означает, что атом Н должен быть окружен двумя электронами (одна электронная пара, как у Не), а атомы неметаллических элементов второго периода (В, С, К, О, Г) должны быть окружены восемью электронами (четыре электронные пары, как у 1 е). Поскольку восемь электронов образуют замкнутую конфигуращ1Ю 2х 2р , правило записи льюисовых структур требует окружать каждый атом элемента второго периода октетом (восьмеркой) электронов, и поэтому называется правилом октета. [c.501]


    При проведении анализа может возникнуть необходимость разрушить комплексный ион, связав ион-комплексообразователь или лиганд в малорастворимое соединение, или наоборот —растворить осадок за счет образования растворимого комплекса. Необходимые расчеты при этом можно провести на основе рассмотрения конкурирующих реакций осаждения и комплексообразования. [c.88]

    В меньшей мере доступны для молекул воды минеральные компоненты в форме комплексных гетерополярных производных гуминовых веществ. Последние образуются при совместном проявлении ионной или ковалентной и координационной связей между поливалентными ионами-комплексообразователями и молекулами гуминовых кислот. В данном случае ионная связь реализует обменное состояние, а координационная — дополнительную связь поливалентного катиона с функциональными группами типа —ОН, —СО, —Н. В случае адсорбционных образований гуминовых соединений торфа с нерастворимыми минеральными частицами функциональные группы органической составляющей частично взаимосвязаны с активными центрами минералов, и в целом эти соединения менее гидрофильны, чем отдельные их составляющие. [c.64]

    В общем случае принимается, что электропроводность комплексного иона связана с электропроводностью аниона А" (когда лигандом является анион) соотношением  [c.16]

    Пользуясь изложенными выше правилами, можно вычислить степени окисления атомов в большинстве молекул и комплексных ионов. При этом оказывается, что каждому элементу присущи характерные для него степени окисления, которые связаны с его положением в периодической системе. На рис. 10-1 показано изменение степеней окисления типических (непереходных) элементов с повышением их порядкового номера. Высшая степень окисления этих элементов в каждом периоде обычно возрастает от -Ь 1 до -Ь 7. [c.417]

    НгО, К Нз, РНз и молекулы многих органических соединений. Образование комплексного иона связано с возникновением общих электронных пар комплексообразователя и нейтральных молекул лигандов. Силы электростатического отталкивания между молекулами лигандов меньще, чем возникающие при образовании ацидокомплексов. Поэтому комплексы внедрения, как правило, образуются легче, чем ацидокомплексы, и их прочность (при прочих равных условиях) выше. Однако полярные молекулы — доноры электронных пар — по своим геометрическим размерам обычно больше доноров-ионов. Ввиду этого образование комплексов внедрения затруднено чисто стереометрическими факторами. Как следствие, электростатические дипольные взаимодействия лигандов и центрального иона могут оказаться несколько ниже, чем при образовании ацидокомплексов, и сложный ион в таком случае характеризуется невысокой прочностью. Из-за того что лигандами комплексов внедрения являются нейтральные молекулы, заряд комплексного иона не меняется по сравнению с зарядом комплексообразователя. Например, при действии на растворы СоЗ+ аммиаком происходит взаимодействие [c.101]

    Решетки комплексных ионов. Решетки веществ, содержащих ионы, состоящие из нескольких атомов, не отличаются принципиально от решеток веществ с одноатомными ионами, описанных выше. Как и в последних, ионы взаимно притягиваются электровалентными связями. Однако атомы, входящие в комплексный ион, связаны между собой ковалентными связями и, следовательно, имеют определенную и постоянную геометрическую форму. Симметрия решетки комплексных ионов обычно отличается от симметрии простых ионных решеток из-за своей формы и размеров. [c.116]

    Таким образом, изменение термодинамических свойств воды при введении в нее многоатомных или комплексных ионов связано с тремя вкладами в изменение структуры воды. Первые два рассматривались при анализе структурных изменений воды, связанных с гидратацией одноатомных ионов. Третий вклад связан с дополнительным эффектом упорядочения молекул воды за счет вращения многоатомных и комплексных ионов. Он проявляется в стабилизации структуры воды вследствие дополнительного упрочнения водородной связи между ее молекулами. Как и в предыдущем случае, общий знак изменения энтропии, связанного со структурными изменениями воды нри гидратации многоатомных или комплексных ионов, зависит от преобладающего влияния эффектов упорядочения и разупорядочения. Характер структурных изменений воды в зависимости от удаленности иона подобен рассмотренному ранее для одноатомных ионов. [c.196]

    ИЛИ комплексные ионы, которые объединяются в кристаллическую решетку за счет соответственно межмолекулярной или ионной связи. [c.104]

    Следует различать два вида ионных пар— внешняя ионная нара, в которой молекула растворителя расположена между ионами, и близкая ионная пара, в которой ионы находятся в тесном контакте. Различия между ними наиболее ясно видны в случае неорганических комплексных ионов, таких, как (Сг(Н20)5С1] 2+и [Сг(Н2О)0]з+.С1 , в которых сольватные оболочки соседних ионов прочно связаны. Гораздо более трудно охарактеризовать различие между веществами с истинной ковалентной связью и близкой ионной нарой. [c.477]


    В заключение отметим, что несмотря на успехи теории кристаллического поля, связанные, в основном, с учетом симметрии, особенно для соединений с ионной связью, она ограничена. Опыты по электронному парамагнитному резонансу показывают, что вопреки теории кристаллического поля электронная плотность не сосредоточена на лигандах и центральном ионе, а частично размазана в объеме комплексного иона, т. е. связь в координационных соединениях не ионная, а ковалентная с большей или меньшей полярностью. Для описания такой связи необходимо привлечь теорию молекулярных орбиталей как более общую, чем электростатическая теория ионной связи. [c.125]

    Исследования [97] показали, что наибольшей деактивирующей способностью обладают соединения, образующие кольца из пяти или шести атомов. Прочность комплексного соединения, кроме числа атомов, зависит и от числа колец, образуемых данным соединением при комплексообразовании с медью. Большее число колец обусловливает большую прочность комплекса. Наиболее эффективные деактиваторы металлов найдены среди соединений, образующих с металлами так называемые внутрикомплексные соли. В таких соединениях один гетероатом связывается с металлом ионной связью, а другой — замыкает внутрикомплексное кольцо координационной связью. [c.253]

    На с. 54 на основе метода валентных связей был рассмотрен тип гибридизации орбиталей ионов Ag+, 2п +, Со +, а также пространственная структура образующихся при этом комплексных ионов — линейная для [Ag(NHз)2l , тетраэдрическая для [Zn(NHз)4] + и октаэдрическая для [Со(ЫНз)б] +. Соединения с координационным числом 4 могут, кроме того, иметь структуру плоскостного квадрата, которому отвечает iisp -гибpидизaция орбиталей центрального иона. [c.181]

    Связь, при которой два атома обобществляют две электронные пары, называется двойной связью при обобществлении трех пар электронов между двумя атомами образуется тройная связь. Число обобществленных электронных пар между двумя атомами называется порядком связи. Порядок связи для простой, двойной и тройной связей равен соответственно 1, 2 и 3. По мере возрастания порядка связи между любыми двумя атомами прочность (энергия) связи увеличивается, а длина связи, наоборот, уменьшается. Если на каком-либо атоме в льюисовой структуре остается неспаренный (нечетный) электрон, молекула или комплексный ион имеет незамкнутую (открытую) оболочку. [c.501]

    Комплексный ион (Вр4] имеет тетраэдрическое строение, которое характерно н для других соединений бора, имеющих донорно-акцепторные а-св.язи. В этих соединениях формируются 4 ковалентные а-связи, образующиеся из 5р -гибридных орбиталей атома бора. [c.328]

    Известно очень много комплексов рассматриваемых элементов. Связь металл-лиганд в них обычно прочнее, чем в комплексных соединениях Р е, Со, Ni. Это обусловлено большим зарядом ядер атомов платиновых элементов и уменьшенными в результате й- и /-сжатия радиусами ионов. Простых соединений рассматриваемых элементов известны десятки, а комплексных — тысячи. В растворах существуют только комплексные ионы платиновых металлов. Очень большей вклад в химию комплексных соединений платиновых металлов внесли работы русских и советских ученых К. К. Клауса, Л. А. Чугаева, И. И. Черняева, А. А. Гринберга и др. [c.575]

    Аналогичное превращение одного комплексного иона в другой происходит и при попадании комплексного соединения в растворитель, молекулы которого образуют с комплексообразователем более прочную связь, чем связь лигандов с центральным ионом растворенного комплекса. Так, при растворении Си[(Н20)4]504-Н20 в жидком аммиаке образуется ион [Си(МНз)4 12+. [c.201]

    Вполне очевидно, что во многих кристаллах присутствуют связи двух илн более типов, совершенно различных по своим характеристикам. В молекулярных кристаллах, содержащих неполярные молекулы, связи внутри молекулы могут быть существенно ковалентными (например. Se или Sa) или промежуточной ионно-ковалентной природы (например, SIF4), а связи между молекулами являются вандерваальсовыми. В кристаллах, содержащих комплексные ионы, связи внутри комплексного иона могут приближаться к ковалентным, в то время как связи между комплексным ионом и катионами (или анионами) имеют преимущественно ионный характер, как это имеет место в уже цитированном случае NaNOa. В других кристаллах проявляются дополнительные взаимодействия между некоторыми атомами, не столь существенные для устойчивости кристалла, как в рассмотренных выше случаях. Примером могут служить связи металл — металл в диоксидах со структурой рутила — структурой, которая во многих случаях устойчива и в отсутствие таких связей. [c.16]

    В рассмо енных нами к.тассических переходных рядах Вернера — Миолати изменение заряда комплексного иона связано с взаимными замещениями в составе комплекса нейтральных молекул и кислотных остатков.- [c.112]

    Внутренняя сфера комплекса в значительной степени сохраняет стабильность при растворении. Ее границы показывают квадратными скобками. Ионы, находящиеся во внешней сфере, а растворах легко отщепляются. Поэтому говорят, что во внутренней сфере ионы связаны неионогенно, а во внешней — ионогенно. Например, координационная формула комплексной соли состава Р1С14-2КС1 такова К2[Р1С1б]. Здесь внутренняя сфера состоит из центрального атома платины в степени окисленности +4 и хло-рид-ионоз, а ионы калия находятся во внешней сфере. [c.583]

    Структур ) некоторых оксисолей А (ВО,,), содержащих комплексные ионы, связаны со структурами соединений АХ простыми соотношениями. Можно считать, что структура кальцита является производной от структуры камещюй солн и получается в результате замены Na+ на Са2+ и С1 на СО при этом происходит, конечно, некоторая деформация структуры вследствие того, что фор.ма ионов СО далека от сферической. Интересно, что KSH кристаллизуется как в структуре кальцита (низкотемпературная форма), так и в стрл ктуре каменной соли (высокотемпературная форма). Структура арагонита примерно таким же образом связана со структурой NiAs. [c.388]

    Пространственная конфигурация молекул и комплексов. Характер ги-бридишции валентных орбиталей центрального атома и их пространственное расположение определяют пространственную конфигурацию 1юлекул и комплексных ионов. Так, при комбинации одной 5- и одной р-орбитали возникают две р-гибридные орбитали, расположенные симметрично под углом 180° (рис. 48). Отсюда и связи, образуемые с участием электронов этих орбиталей, также располагаются юд углом 180°. Например, у атома бериллия ер-гибридизация орбитллей проявляется в молекуле ВеСЬ, которая вследствие этого имеет линейную форму  [c.73]

    Эта проблема была детально обсуждена в связи с вопросом о природе связи в комплексных ионах металлов (53). Оказывается, что тип связи (ковалентной или ионной) в значительной мере зависит от силы электрических взаимодействий с комплексообра-йующими группами. [c.454]

    Иоиы, находящиеся во внешней сфере, связаны с комплексным ионом в основном силами электростатического взаимодействия и в растворах легко отщепляются подобно ионам сильных электролитов. Лиганды, находящиеся во внутренней сфере комплекса, связаны с комплексообразователем ковалентными связями, и их диссоциация в растворе осуществляется, как правило, в незначительной степени. Поэтому с помощью качественных химических реакций обычно обнаруживаются только ионы внешней сферы. В формулах ко.милексных соединений внутреннюю сферу отделяют от внешней квадратными скобками. [c.197]

    Парамагнетизм [Ы1С1, -свидетельствует о том, что структура никеля (II) с двумя неспаренными электронами сохранилась в комплексном ионе, и, следовательно, образование его связано с участием 454р -орбиталей- Пространственная структура [N 14 " — тетраэдр- [c.181]

    Со(1П) образует комплексный ион Со(ЫНз)б . а) Какова геометрия этого иона Пользуясь теорией валентных связей, укажите, какие орбитали Со используются для образования связей с лигандами, б) Дайте номенклатурное название хлоридной соли этого комплексного иона, в) Пользуясь теорией кристаллического поля, схематически изобразите возможные варианты -электронной конфигурации этого иона. Охарактеризуйте каждую конфигурацию как высокоспиновую или низкоспиновую, парамагнитную или диамагнитную. Какие две из этих характеристик применимы к гексамминному комплексу г) Добавление электрона к иону Со(ННз)й приводит к его восстановлению в ион Со(НПз)й . Укажите предпочтительную -электронную конфигурацию для этого восстановленного иона. Почему она является предпочтительной  [c.251]

    Р1(П) образует комплексный ион Р1С14 . а) Какова геометрия этого иона Пользуясь теорией валентных связей, укажите, какие орбитали Р1 используются для образования связей с ионами С1 б) Дайте номенклатурное название натриевой соли этого комплексного иона, в) Пользуясь теорией кристаллического поля, схематически изобразите -электронную конфигурацию данного иона. Парамагнитен или диамагнитен этот ион г) Р1(П) может быть окислена до Р1(1У). Укажите -электронную конфигурацию хлоридного комплексного иона Р1(1У). Объясните различие между этой конфигурацией и конфигурацией хлоридного комплекса Р1(П). Парамагнитен или диамагнитен хлоридный комплекс Р1(1У)  [c.251]

    Объяснение химической связи в комплексах с помощью электростатических представлений. Начало разработки теории, объясняю1цей образование комплексных соединений, связано с исследованиями Косселя и Магнуса (Германия), проводимыми ими в 1916—1922 гг. В ее основу были положены электростатические представления. Ион-комплексообразователь притягивает к себе как ионы противоположного знака, так н полярные молекулы. С другой стороны, окружающие комплексообразователь частицы отталкиваются друг от друга, прп этом энергия отталкивания тем значительней, чем больше частиц группируется вокруг центрального иона. [c.119]

    Соли H N — цианиды подвержены сильному гидролизу. Ион N- (изоэлектронный молекуле СО) входит как лиганд в большое число комплексов d-элементов. Комплексные цианиды в растворах очень стабильны. В этих соединениях образуется дативная связь, аналогичная связи в карбонилах (см. разд. 2.7), причем, в отличие от карбонилов, в комплексных цианидах связь упрочняется в результате 51лектростатического взаимодействия ионов металла и N-. [c.364]

    Таким образом, кислая реакция водного раствора соли объясняется тем, что гидратированный катион теряет протон и аквагруппа превращается в гидроксигруппу. В рассмотренном случае могут образоваться и более сложные комплексы, например, [А1а(0Н))г,] +, а также комплексные ионы вида [А10(0Н)41 - и [А10. (0Н)2р , что связано с большим сродством алюминия к кислороду. [c.212]

    Донорно-акцепторные связи играют важнейшую роль при обра зованип комплексных соединений. Так, комплексные ионы пере ходных металлов [Ре(СЫ5)в ", (КЧ(ЫНз)б , [Си(Н20)4Р " обра зуются большей частью путем использования неподеленных элек тронных пар атомов, содержаш,ихся в лигандах ( N5), ЫНз, Н2О м свободных орбит ( -подуровня центрального иона (Ре , N1 + Сы "). [c.70]

    Теория валентных связей. Согласно теории валентных связей, например, при образовании комплексного иона [РеР,] шесть лигандов-ионов Р входят в координационную сферу по два элек- [c.44]

    Все связи в комплексных соединениях являются равноценными. Математически по теории валентных связей это можно описать как смешение з-, р- и /-орбиталей и образование так называемых гибридных орбиталей. В координационных соединениях переходных металлов (с незаполненными -орбиталями) большое значение имеет гибридизация с участием -орбиталей. Так, например, шесть связей между ионом Ре + и шестью ионами Р в комплексном ионе [РеРв] " согласно теории валентных связей следует рассматривать как образованные шестью гибридными орбиталями 3 /Ч 4р ( зр -орбитали), а шесть связей между ионами Ре + и ионами СЫ — как образованных шестью орбиталями (яр й -орбитали). [c.45]


Смотреть страницы где упоминается термин Комплексные ионы связь в них: [c.16]    [c.467]    [c.586]    [c.601]    [c.145]    [c.260]    [c.169]    [c.193]    [c.66]    [c.59]    [c.187]   
Электронное строение и химическая связь в неорганической химии (1949) -- [ c.155 , c.156 , c.290 , c.292 ]




ПОИСК





Смотрите так же термины и статьи:

Ион ионы связи

Ионная связь

Ионная связь в комплексных соединениях

Ионы комплексные

Комплексные ионы с двойными связями

Комплексные ионы тип связи по магнитному критерию таблица

Магнитный момент и двойные связи в комплексных ионах

Растворение малорастворимых осадков в связи с образованием комплексных ионов

Связь внутри комплексных ионов

Силы связи в комплексных иона

Степень ионности связи в комплексных ионах и в двухатомных моле кулах



© 2025 chem21.info Реклама на сайте