Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Дипольный момент и электростатическая связь

    Специфическая геометрия переходного состояния, по-видимому, определяется прежде всего не электростатическими факторами, как это принималось первоначально (Бергман), а квантовомеханическими (Меер п Поляни). Атака молекулы замещающим ионом со стороны, противоположной той, где расположен вытесняемый заместитель, в нашем случае очень хорошо объясняется дипольным моментом атакуемой связи  [c.371]

    Полярность связи количественно характеризуется так называемым диполь-ным моментом ( л), значение которого выражается формулой х=е/, где е—величина заряда, I — расстояние между центрами тяжести зарядов. Дипольные моменты молекул могут быть определены экспериментальным путем из найденных величии затем рассчитывают дипольные моменты отдельных связей. Величины дипольных моментов выражают в единицах Дебая О (Ш= 10 электростатических единиц). [c.33]


    Вследствие небольших различий в электроотрицательностях атомов С и Н связи в алканах малополярны, а молекулы этих углеводородов, в целом, имеют нулевые значения дипольных моментов. Электростатические силы притяжения между их молекулами отсутствуют, а силы Ван-дер-Ваальса сравнительно невелики. Тем не менее в средних и высших алканах эти силы заметны, причем силы притяжения можно считать пропорциональными поверхности контакта между молекулами. [c.7]

    Дипольный момент гомеополярных связей в огромном большинстве случаев не превышает 1,0 D, а для гомеополярных связей между одинаковыми атомами он близок или равен нулю. Ионная связь, напротив, обладает очень большой полярностью, так как результирующие положительный и отрицательный заряды сосредоточены в центрах ионов и находятся на сравнительно большом расстоянии друг от друга. Дипольный момент ионной связи равен примерно 9—12Д так как заряд электрона равен 4,8-10 ° электростатических единиц, а длина ионной [c.101]

    Проведенное квантово-механическое исследование образования Н-комплексов гидроксилсодержащими соединениями свидетельствует о том, что электростатические параметры сближающихся частиц (заряды, дипольные моменты, электростатические поля) оказывают существенное влияние как на характер сближения, так и на механизм образования Н-связи. [c.194]

    Ориентационная составляющая связана с полярностью молекул. Молекула, обладающая дипольным моментом, притягивает другую полярную молекулу за счет электростатических сил диполь-дипольного взаимодействия (например, в жидком сероводороде). Молекулы при этом стремятся расположиться либо [c.153]

    В действительности квадрупольный момент является тензором, а электрический момент диполя — вектором. Их взаимодействие с цеолитом надо рассчитывать с учетом соответствующих компонент и локального градиента напряженности электростатического поля в полости цеолита или представить общий квадрупольный (дипольный) момент как систему зарядов, распределенных на атомах или связях молекулы, и включить их взаимодействие с ионами решетки цеолита в атом-ионную потенциальную функцию. Последний путь является, вероятно, более правильным, однако он связан с трудностью решения задачи о распределении зарядов по атомам молекулы, которое, в свою очередь, может зависеть от напряженности поля в полости цеолита. Сделанные для СО2 расчеты на основе квантово-химических определений зарядов на атомах дали удовлетворительные результаты. [c.219]


    Первоначальный подход к изучению водородной связи был чист.о электростатическим. Связи А—Н и В—Яз —полярные, и принималось, что в мостике А—Н...В взаимодействие ориентационное. Но такой подход не мог объяснить наблюдаемой величины энергии водородной связи и некоторых других фактов например, диоксан, имеющий очень малый дипольный момент, образует с фенолами комплексы через водородную связь более прочные, чем сильнополярные молекулы ацетонитрила и нитрометана. [c.268]

    Вследствие образования сильного дипольного момента (ц = = 1,670) между атомами водорода одной молекулы и атомами кислорода соседней возникает электростатическое притяжение, как и между ионами, но с гораздо меньшей силой, так как на водороде сосредоточен не целый заряд, а часть (7з) его. Вследствие этого между молекулами возникает связь, называемая в о-дородной (показана точками)  [c.70]

    Катионы шелочных и щелочноземельных металлов координируют (связывают) молекулы воды в гидраты преимущественно посредством электростатического ион-дипольного взаимодействия. Последнее зависит от заряда и радиуса катиона, его массы и магнитного момента, дипольного момента воды, поляризации иона и воды и от кинетических параметров (импульс, момент количества движения и др.). Между катионами переходных металлов и молекулами воды возникает, благодаря наличию вакантных атомных орбиталей у катионов и неподеленных пар электронов молекулы воды, донорно-акцепторная связь. Часто электростатический и донорно-акцепторный вид связи в гидрате катиона проявляется совместно. [c.414]

    Если же электростатическое взаимодействие не является главным взаимодействием, то связь называется полярной. Мерой полярности служит величина дипольного момента связи ц=/-бе, которым называется произведение расстояния между центрами тяжести зарядов I на величину заряда 8е. Обычно дипольный момент измеряют в дебаях (1Д=3,34-10 30 Кл-м). [c.131]

    Ориентационные снлы возникают между молекулами с постоянными дипольными моментами. Если бы отсутствовала ориентация обоих диполей в пространстве, то притяжение и отталкивание компенсировались бы. Но так как положение диполей с меньшей потенциальной энергией статистически более вероятно, в результате возникают силы притяжения. Тепловое движение уменьшает силы притяжения, поэтому они всегда сильно зависят от температуры. К этому же типу электростатических сил (Кеезом, 1921) относится водородная связь. Она возникает между двумя веществами, одно пз которых содержит атом водорода, связанный с электроотрицательным атомом, а другое включает одну пару электронов  [c.177]

    Полярность связи обычно выражают при помощи ее дипольного момента (д,, представляющего собой произведение длины диполя I на величину заряда электрона е, выраженного в абсолютных электростатических единицах е = 4,80 10" абс. эл.-ст. ед.). Так как длина диполя I имеет порядок атомных размеров, т. е. 10 см, то дипольный момент связи (д, = /е характеризуется величиной порядка 10 и размерностью абс. эл.-ст. ед. см. [c.63]

    Помимо электронных и магнитных вкладов в протонные химические сдвиги для полноты картины нужно рассмотреть еще два эффекта, которые имеют иногда весьма большое значение. В молекулах с сильно полярными группировками под влиянием электрического дипольного момента могут происходить изменения плотности заряда на некоторых протонах, так как электростатические силы могут искажать зарядовое облако соответствующей связи С—Н. Связывающие электроны смещаются либо к атому водорода, либо от него в зависимости от направления связи С—Н по отнощению к вектору поля, что приводит соответственно к экранированию или дезэкранированию протона. Как можно представить себе на основании рис. IV. 17, диполь-ные моменты в пиридине и нитробензоле, локализованные на атоме азота и на центре связи С—N соответственно, вызывают дезэкранирование протонов, поскольку электроны смещаются вдоль силовых линий к положительному концу диполя. В соответствии с теорией Букингема эффект электрического поля можно количественно описать соотношением [c.103]

    Первое слагаемое характеризует вклад в образование донорно-акцепторной связи электростатических взаимодействий, второе - ковалентных. Уравнение (1.5) содержит четыре неизвестных параметра. Для их оценки в качестве стандартного акцептора выбрали молекулу иода. Для нее приняли равной = Сд = 1. Вычисление других параметров проводится, исходя из допущения, что д = а Хд Сд = йЛд, где Хд-дипольный момент донора, Лд- рефракция донора, а иЬ- коэффициенты. В результате подстановки доступных экспериментальных значений получают уравнение с двумя неизвестными. Рассматривая ряд комплексов, получают систему уравнений. Решение каждой пары уравнений дает значения а и й, которые затем усредняются. Исходя из этих средних величин рассчитывают параметры доноров д и Сд. Значения параметров модели Драго для ряда растворителей представлены в табл. 1.6. Для близких по строению комплексов можно, используя величины и С, рассчитать теплоты образования. Расхождения расчетных и экспериментальных величин связывают со стери-ческими эффектами, влиянием я-взаимодействий, перестройкой компонентов при комплексообразовании. Необходимо отметить, что в рассмотренном подходе не учитывается сольватационная составляющая, а все умозаключения проводятся без учета влияния растворителя, как, если бы реакция протекала в газовой фазе. Поэтому дальнейшая модификация уравнения привела к включению в состав рассматриваемых также и параметров неспецифической сольватации [18]  [c.16]


    Уравнение распространяется на производные бензола с заместителями в пара- и. мета-положениях к реакционному центру. Коэффициент р характеризует влияние заместителя на данную реакционную серию. Полярный заместитель оказывает на реакционный центр индуктивное воздействие плюс эффект сопряжения, если заместитель содержит я-связи или атом с неподеленной парой / -электронов (К, О и Т. д.). Если реакция заключается в атаке иона с зарядом на молекулу с заместителем X, имеющим дипольный момент цх, то в рамках электростатической модели [c.231]

    Ч. Коулсон увидел в том, что модель не объясняла резкого увеличения абсолютной интенсивности и полуширины ИК-полос поглощения валентных колебаний ОН- и ЫН-групп, отсутствие корреляции между энергией Н-связей и дипольным моментом основания и целый ряд других проявлений водородной связи. Трудно с помощью электростатической модели, например, согласовать слабую Н-связь, образуемую ацетонитрилом (дипольный момент 3,44 В), и сильную Н-связь, образуемую триметил-амином (0,7 Б). С представлением, что кислота А-Н образует водородную связь с основанием В посредством электростатических взаимодействий точечных зарядов, нельзя понять, почему ацетон, диэтиловый эфир и диоксан с дипольными моментами 2,85, 1,15 и 0,4 Б соответственно образуют примерно одинаковые водородные связи [120]. [c.123]

    Особое место в характеристике растворителей занимает диэлектрическая проницаемость. Преимущества последней по сравнению с другими критериями связаны с простотой электростатических моделей сольватации, и поэтому диэлектрическая проницаемость стала полезной мерой полярности растворителей. В этой связи важно четко представлять себе, что именно отражает макроскопическая диэлектрическая проницаемость растворителя (называемая также относительной диэлектрической проницаемостью Ег = е/ео, где ео — диэлектрическая проницаемость вакуума, т. е. постоянная величина). Диэлектрическую проницаемость определяют, помещая растворитель между двумя заряженными пластинами конденсатора. В присутствии растворителя напряженность электрического поля между пластинами Е снижается по сравнению с напряженностью Ео, измеренной в вакууме, и отношение Ей Е представляет собой диэлектрическую проницаемость растворителя. Если молекулы растворителя не обладают собственным постоянным дипольным моментом, то под влиянием внешнего поля внутримолекулярные заряды разделяются, индуцируя диполь. В электрическом поле молекулы с постоянным или индуцированным диполем ориентируются определенным образом это явление называют поляризацией. Чем выше степень поляризации, тем сильнее падение напряженности электрического поля. Следовательно, диэлектрическая проницаемость непосредственно связана со способностью растворителя к разделению зарядов и ориентации собственных диполей. Диэлектрическая проницаемость органических растворителей изменяется приблизительно от 2 (в случае, например, углеводородов) до примерно 180 (например, у вторичных амидов) (см. приложение, табл. А.1). Растворители с высокой диэлектрической проницаемостью способны к диссоциации (см. разд. 2.6), и поэтому их называют полярными — в отличие от неполярных (илп аполярных) растворителей с невысокой диэлектрической проницаемостью. Диэлектрическая проницае- [c.99]

    Второе ограничение теории Хьюза — Ингольда связано с тем, что в ней растворитель рассматривается как непрерывная диэлектрическая фаза с диэлектрической проницаемостью гг или дипольным моментом х, или электростатическим коэффициен- [c.270]

    С —О , обладающей намного меньшим или даже противоположно направленным дипольным моментом. Действительно, показано, что дипольный момент [1е(п- п ) низшего синглетного возбужденного состояния п- п бензофенона, равный Кл-м (1,5 Д), вдвое меньше дипольного момента основного состояния ((Ая= 10-10 ° Кл-м или 3 Д) [32, 33, 96]. При переходе к более полярным средам такое уменьшение дипольного момента должно сопровождаться гипсохромным сдвигом полосы поглощения, соответствующей переходу л->л (отрицательным сольватохромным эффектом). Кроме того, протонные растворители способны образовывать водородные связи с неподеленной электронной парой атома кислорода, в результате чего энергия л-состояния снижается еще больше, тогда как энергия л -состояния в первом приближении не меняется. Таким образом, наблюдаемый экспериментально при повышении полярности растворителя гипсохромный сдвиг полосы поглощения карбонильных соединений, отвечающей переходу можно объяснить как кооперативный эффект, обусловленный воздействием на молекулы растворенного вещества электростатических сил и водородных связей [97—106]. Этот хорошо известный гипсохромный сдвиг можно приписать также индуцируемой полярным растворителем более эффективной общей и специфической сольватации основного состояния и (или) менее эффективной сольватации менее биполярного возбужденного состояния п- п. Представленные на рис. 6.5 данные убедительно показывают, что основной причиной на- [c.431]

    Водородная связь всегда образуется между двумя электроотрицательными атомами. Сначала казалось, что она имеет чисто электростатическую природу [36, 37]. Действительно, теоретические расчеты электростатического взаимодействия привели к значениям энергии водородной связи, близким к опытным данным. Однако такое представление нельзя согласовать со спектроскопическими данными — с интенсивностями инфракрасных полос, а также с данными по дипольным моментам и спектрам протонного магнитного резонанса [33]. [c.201]

    При решении задачи расчета сил электростатического взаимодействия двух проводящих частиц часто используют приближения диполь-дипольного, диполь-кулоновского и кулоновского взаимодействий. В рамках этих приближений взаимодействие частиц рассматривается соответственно как взаимодействие двух электрических диполей, диполя и точечного заряда либо двух точечных зарядов. При этом размеры частиц определяют лишь значения дипольных моментов. Поэтому такие приближения можно использовать, только если расстояния между частицами намного больше суммы радиусов частиц. Однако довольно часто этими приближениями пользуются и тогда, когда зазор между поверхностями частиц сравним или меньше размеров частиц. В связи с этим возникает проблема оценки точности указанных приближений для различных значений расстояний между частицами. [c.296]

    Принимая во внимание, что элементарный электрический заряд равен 4,80-10 ° электростатических единиц, можно сделать вывод, что в молекуле НС на составляющих ее атомах имеется лишь около Vs части заряда электрона. Следовательно, между водородом и хлором связь не ионная, а /совалемгная, поляризованная на 20%. В более сложных молекулах дипольные моменты отдельных связей складываются с учетом их направления (по правилам векторного сложения). Например, дипольный момент воды  [c.484]

    Образование комплексного соединения ароматических углево- -дородов с ионами, находящимися на поверхности адсорбента, так же как и при их растворении в избирательном растворителе, связано с возникновением в электронейтральной молекуле-под влиянием электростатического поля адсорбента дипольного момента. Адсорбируемость так же зависит от строения ароматических углеводородов, как и растворимость. Поэтому, чем меньше экраниро-. ваны ароматические ядра нафтеновыми кольцами или боковыми парафиновыми цепями, тем легче в них возникает индуцированный дипольный момент и тем эффективней адсорбция таких углеводородов полярными адсорбентами. Чем больше колец в молекуле ароматических углеводородов, тем прочней они адсорбиру- -ются. Парафиновые и нафтеновые углеводороды слабо адсорбируются полярными адсорбентами. [c.237]

    Приведенное значение энергии связи Ое заметно отличается от экспериментального значения )е(эксп) = 9,906 эВ. Учет энергии корреляции (см. гл. 4, 6) позволяет существенно улучшить теоретическую оценку Ве. При обсуждении качества базиса следует обращать внимание не только на энергию, но и на такие физико-химические величины, как дипольный и квадрупольный моменты, диамагнитная восприимчивость, электростатический потенциал на ядрах и градиент электростатического потенциала, константа экранирования и тд. Некоторые из перечисленных величин изменяются по мере улучшения энергетических характеристик монотонно, а другие - немонотонно, например дипольный момент. Некоторые расширенные базисы, вполне приемлемые для оценки энергии, воспроизводят дипольный момент с довольно большой погрешностью. Включение в базисный набор поляризующих функций оказьшается весьма существенным. Это обстоятельство следует иметь в виду при решении конкретных задач. Например, при вычислении энергии взаимодействия полярных молекул важно получить достаточно точное значение ДИП0ЛЫ10Г0 момента в заданном базисе, так как дипольный момент определяет существенную компоненту в энергии взаимодействия -индукционное слагаемое. Поляризующие функции важны и при вычислении величины <г >, через которую выражается диамагнитная восприимчивость  [c.242]

    Явление сольватации обязано тому,, что заряженная частица (ион), появившаяся среди молекул растворителя, изменяет свойства и порядок распределения последних в растворе. Если молекулы растворителя имеют дипольный момент, то они взаимодействуют с ионами, образуя сольватные оболочки. При этом электростатическое бзаимодействие не является единственной причиной сольватации ионов. Сольватация может возникать и за счет некулоповских — химических сил. Многие соли образуют гидраты и сольваты не только в растворах, но и в твердом состоянии. К такому комплексообразованию склонны почти все соли. Например, образование гидратов солей меди является типичным процессом комплексообразования. В таких соединениях связь между ионами и молекулами воды чисто химическая, она обусловлена обычной координационной валентностью, типичной для комплексных соединений. [c.137]

    Простая электростатическая теория была впервые применена для объяснения комплексов металлов Ван-Аркелом и Де Буром" II Гэрриком примерно в 1930 г. В своей модели связи они исполь зовали хорошо известные уравнения потенциальной энергии классической электростатики. Этот подход требовал знания величин зарядов и размеров центральных ионов, а также величин зарядов, дипольных моментов, поляризуемости и размеров лигандов. Лег ко показать, что если принять чисто электростатическую модель, то нужно ожидать для комплексов с одинаковыми лигандами н любым координационным числом правильной конфигурации Так, для комплексов с наиболее распространенными координационными числами 2, 4 и 6 конфигурации должны были бы быть соответственно линейной, тетраэдрической и октаэдрической, так как они обеспечивают минимальное отталкивание между лигандами. Для некоторых комплексов, используя эту простую мо дель, можно вычислить энергии связи, которые хорошо согласуют ся с экспериментально найденными величинами .  [c.256]

    Мы уже отмечали в разд. 1.3 гл. II, что резонансным сигналам обменивающихся протонов нельзя приписать какую-либо область в 6-шкале, поскольку положение этих сигналов сильно зависит от среды и температуры. В общем образование водородных связей приводит к значительному сдвигу в слабое поле, хотя формально оно должно сопровождаться повышением электронной плотности на протоне за счет взаимодействия со свободной электронной парой акцепторного атома, а следовательно, приводить к росту экранирования. Но если рассматривать водородную связь как чисто электростатическое притяжение, то поле возникающего электрического диполя приведет к дезэкранированию. Как показано на рис. IV. 18, существует линейное соотношение между экранированием протона хлороформа и дипольным моментом несвязывающих орбиталей различных акцепторных атомов в разных классах соединений. [c.105]

    Таким образом, удается выяснить целый ряд особенностей механизма образования ион-молекулярных и межмоле1олярных связей в изучаемых системах На стадии сближения партнеров до 7 а е решающую роль играют электростатические эффекты молекулярные поля, дипольные моменты, заряды сближающихся частиц Образование же собственно меж-частичной связи определяется степенью переноса заряда от донора электронов к акцептору и главным образом зависит от локального окружения реакционного центра Поскольку, однако, образующаяся связь имеет явно ионный характер, влияние электростатического поля оказывается существенным и на расстояниях равновесной длины При увеличении электростатического потенциала связь становится прочнее и короче Появление в молекулах полярных заместителей приводит к изменению полного молекулярного поля и существенно сказывается на характере сближения партнеров, характер образования межчастичной связи при этом меняется мало [c.193]

    Однако специфика водородной связи определяется не электростатическими силами. Так, во-первых, сила водородной связи не связана простым соотношением с величиной дипольного момента основания V (фенол образует сильную Н-связь с диоксаном (0,3 В) и слабую Н-связь с ацетони-триллом (3,5 О) и нитрометаном (3,94 О)). Энергия комплексов с водородной связью, по-видимому, не столько зависит от дипольных моментов, сколько от потенциалов ионизации. Во-вторых, X—У расстояние всегда меньше -суммы радиусов Ван-дер-Ваальса, как это было показано выше. В-третьих, увеличение интенсивности валентных колебаний г(ХН), которое сопровождает образование водородной связи, не может быть объяснено электростатическим характером связи. Гурьянова (1964) показала, что при обра- [c.85]

    Если сравнить температуры кипения и дипольные моменты молекул спиртов, углеводородов и другах типов соедшений с аналогичным строением и близкими молекулярными массами, окажется, что температуры кипения у спиртов резко отличаются. Это нельзя объяснить только высокой полярностью молекул спирта, поскольку дипольный момент у спиртов не самый большой. Подобные аномалии у спиртов объясняются возможностью образования межмолекулярных водородных связей и за счет них - асоциаций молекул. Эти связи возникают между атомами водорода и электроотрицательными атомами других молекул и образуются за счет электростатического взаимодействия двух разноименных полюсов диполей. [c.19]

    Диполь-дипольное приближение было использовано Брантом и Флори в расчете энергии электростатических взаимодействий полипептидной цепи [86]. Предполагалось, что вектор эффективного дипольного момента пептидной группы равен по абсолютной величине 3,7 D и проходит через центр связи N- (O), образуя с ней угол 56°. Однако учет электростатических взаимодействий с помощью дипольных моментов неудовлетворителен при небольших расстояниях. Было показано, что при (/, у/) < 2 (/ - длина диполя) такое приближение приводит к результатам, существенно отличающимся от наблюдаемых экспериментально. Поскольку в конформационном анализе молекул рассматриваются взаимодействия атомов или атомных групп главным образом на близких расстояниях, то условие (г,у/) < 2 не соблюдается и дигюль-дипольное приближение использовать нельзя. Монопольный подход позволяет точнее рассчитывать энергию электрических взаимодействий. Но здесь встает вопрос принципиального порядка, касающийся правомерности самого классического подхода к решению обсуждаемой задачи, точнее, физического смысла аппроксимации размазанных в пространстве электронных облаков точечными зарядами. [c.117]

    Так как и диэлектрическая проницаемость ег, и дипольный момент ц являются важными взаимодополняющими характеристиками растворителей, рекомендовалось классифицировать последние в соответствии с их электростатическими коэффициентами ЕР (определяемыми как произведение Сг на ц), которые учитывают влияние и того и другого параметра [101]. С учетом величин ЕР и структуры органических растворителей предлагалось подразделять их на 4 группы углеводородные растворители ЕР—О—7-10 Кл-м), электронодонорные растворители ( = (7—70) 10 Кл-м), гидроксильные растворители ЕР = = (50—170)-10 ° Кл-м) и биполярные растворители, не являющиеся донорами водородных связей (растворители-НДВС) ( 170-10-30 Кл-м) [99 Ю1]. [c.100]

    Ориентационные силы. Электростатические взаимодействия между диполями. Дипольный момент р малой молекулы или атомной группы равен по порядку величины произведению заряда электрона (4,8 10 ед. СГСЭ) на длину химической связи ( 10 см). Единица дипольного момента, равная 10 ед. СГСЭ, называется дебаем (В). Диполи стремятся установиться аптипа-раллельно или в хвост друг к другу. Энергия ориентационного взаимодействия двух диполей обратно пропорциональна кубу расстояния между ними  [c.55]

    Дативная связь. В комплексах невернеровского тига как заряды центрального иона так и дипольные моменты лигандов невелики, так что нельзя ожидать сильного электростатического взаимодействия. Однако энергии связи Сг—СО в гексакарбониле хрома (0) составляет 127,0 кДж-моль , что трудно объяснить только взаимодействием несвязывающих орбиталей Сг(0) и орбиталей атома углерода, имеющих sp-гибридизацию. Следует предположить, что в комплексах невернеровского типа имеется другой тип связи. Если рассмотреть расщепление d-орбиталей в поле симметрии Ой, то на трехкратно вырожденных низколежащих орбиталях Сг(0)—dxy, йхг и dyz — расположатся шесть электронов с образованием диамагнитной структуры. Эти орбитали имеют центр симметрии и по симметрии совпадают с я-разрыхляющей орбиталью СО (незаполненной), что обеспечивает их взаимодействие (рис. 4.13). [c.238]

    Авторы высказывают предположение, что низкая скорость катодного процесса в безводном диметилацетамиде связана с существованием отрицательно заряженных комплексов цинка, которые практически не разряжаются либо из-за их прочности, либо из-за электростатического отталкивания от одноименно заряженной поверхности электрода. Второе предположение наиболее вероятно, так как при введении воды в растворитель молекулы ее, обладая более высоким дипольным моментом (ей,о =81 едмА=36,7), снижают заряд комплекса, вытесняя хлорид-ионы из внутренней сферы и образуют электрохимически активные частицы. [c.52]


Смотреть страницы где упоминается термин Дипольный момент и электростатическая связь: [c.62]    [c.395]    [c.536]    [c.236]    [c.37]    [c.265]    [c.117]    [c.289]    [c.447]    [c.467]    [c.24]   
Физические методы в неорганической химии (1967) -- [ c.82 ]




ПОИСК





Смотрите так же термины и статьи:

Дипольный момент



© 2025 chem21.info Реклама на сайте