Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Силы связи в комплексных иона

    До открытия электрона невозможно было понять природу химической связи. Правда, понятие о валентности существовало уже в 1852 г. и в эти же годы существовали некоторые представления о геометрических формах молекул. Вант Гофф и Лебель установили тетраэдрическую структуру атома углерода, а Вернер создал стереохимию комплексных ионов. Очевидно, для того чтобы молекула имела определенную геометрическую форму, должны существовать какие-то связывающие силы между ее частями. В структурных формулах такую химическую связь между связанными атомами изображали черточкой. Она указывала на существование связи, но, разумеется, не давала никакого описания ее природы. Незадолго до открытия электрона Аррениус предположил существование свободных ионов. На основе этого предположения были сделаны многочисленные попытки найти объяснение силам, связывающим атомы. Хотя эти попытки были неудачными, они содействовали представлению об электрическом заряде как основе образования связи. После открытия электрона стало возможно дальнейшее развитие теории связи. В течение немногих лет, основываясь на положительно и отрицательно заряженных атомах, было предлол<ено много разных объяснений образованию связи, но почти не было попыток связать заряды атома с его строением. В 1916 г. Льюис предложил свою теорию валентности. С тех пор было много сделано в области применения математики в теории валентности, но в основе представления о химической связи лежит по-прежнему теория Льюиса. Согласно Полингу , химическая связь возникает между двумя атомами в том случае, если связывающая атомы сила настолько велика, что приводит к образованию достаточно устойчивого агрегата, чтобы обеспечить его существование в виде самостоятельной частицы. Обычно различают пять типов химической связи ионная, ковалентная, металлическая, связь, обусловленная силами Ван-дер-Ваальса, и водородная, причем три первых очень прочны. Все эти связи одинаково важны, но металлическая связь здесь не будет рассмотрена о ней можно прочесть в других источниках . [c.134]


    Раствор электролита в этом случае является идеальным. Однако в действительности коэффициент Вант-Гоффа всегда меньше V, так как ионы в растворе связаны силами электростатического взаимодействия и не могут проявлять себя как вполне свободные частицы. Чем больпш силы межионного взаимодействия, тем больше отклоняется данный реальный раствор от идеального раствора электролита и тем меньше г. В комплексных соединениях I зависит от константы нестойкости комплексного иона. [c.80]

    Различают ионные и ковалентные комплексы. К комплексам первого типа относятся некоторые галогено-комплексы и многие аквокомплексы. В комплексах такого типа лиганды связаны с центральным ионом диполь-ными силами. В комплексах второго типа связь между центральным атомом и лигандами более прочна и направлена в пространстве так же, как ковалентные связи в органических соединениях. Такими связями можно объяснить существование геометрических и оптических изомеров и комплексов с квадратно-плоскостной конфигурацией. Комплексы первого типа обычно называют ионными комплексами, а второго — ковалентными. Прочность комплексного иона определяется электростатическими и ковалентными силами, которые в зависимости от свойств комплексного иона могут играть преобладающую роль. Стабильность комплекса ионного типа определяется зарядом и радиусом центрального иона. Стабильность же комплекса ковалентного типа характеризуется ионизационным потенциалом центрального иона. Так как комплексы в растворе образуются ступенчато, то и стабильность каждой формы характеризуется соот- [c.57]

    Закономерности, оправдывающиеся для соединений платины, в ряде случаев оказываются справедливыми для комплексных соединений трехвалентных кобальта, родия и иридия. Специфика кобальтовых комплексов состоит в увеличении лабильности внутрисферных групп и ионов по сравнению с Pt (II), строении внутренней сферы четырехкоординационных комплексных соединений Со (II). Вследствие увеличения степени ионогенности связи центральный ион — адденд эффекты, обусловленные трансвлия-нием выражены слабее и появляется тенденция к изомеризации. Соединения Со (III) в силу высокой подвижности групп сильнее подвержены гидратации, чем комплексы Pt. Поэтому в химии кобальта отступления от закономерности трансвлияния наблюдаются чаще, чем в комплексах двух- или четырехвалентной платины, не все превращения могут быть объяснены непосредственно трансвлиянием. [c.171]


    Теория, объясняющая образование комплексных соединений с позиций электростатического взаимодействия ионов, была разработана Косселем (1916—1922). Согласно модели, лежащей в основе этой теории, ионы лигандов и комплексообразователя представляют собой абсолютно твердые сферы с зарядом, сосредоточенным в центре. Используя эти представления, а также закон Кулона, можно вычислить энергию связи в любом комплексном ионе. Однако ионная модель, качественно правильно описывая строение комплексных соединений, не дает количественного совпадения экспериментальных и теоретически вычисленных значений энергии связи. Наибольшее расхождение имеет место в тех случаях, когда лиганды являются не ионами, а нейтральными молекулами. Расчеты Косселя показали также, что при увеличении числа лигандов силы взаимного расталкивания их возрастают, в связи с чем уменьшается прочность связей между лигандами и центральным атомом. [c.270]

    Формальный потенциал — это потенциал, относящийся к одномолярным концентрациям окисленной и восстановленной форм вещества и к определенным точно известным концентрациям остальных веществ, содержащихся в растворе. Так, стандартный потенциал пары при условии отсутствия побочных процессов и при активности обеих частиц, равной единице, равен 0,77 В. Однако потенциал этой же пары в 1 М растворе хлорной кислоты, отнесенный к 1 М концентрации (не активности) обеих частиц, становится равным 0,73 В. Хлорная кислота не образует каких-либо комплексных ионов с ионами железа изменение потенциала связано в данном случае с тем, что высокая ионная сила раствора приводит к изменению коэффициентов активности частиц, причем для ионов Ре - - это изменение вследствие более высокого [c.385]

    Иоиы, находящиеся во внешней сфере, связаны с комплексным ионом в основном силами электростатического взаимодействия и в растворах легко отщепляются подобно ионам сильных электролитов. Лиганды, находящиеся во внутренней сфере комплекса, связаны с комплексообразователем ковалентными связями, и их диссоциация в растворе осуществляется, как правило, в незначительной степени. Поэтому с помощью качественных химических реакций обычно обнаруживаются только ионы внешней сферы. В формулах ко.милексных соединений внутреннюю сферу отделяют от внешней квадратными скобками. [c.197]

    В любом кристалле, содержащем комплексный ион, всегда имеются два типа связей силы внутри комплексного иона — ковалентные с некоторой степенью ионного характера, тогда как силы, действующие между комплексными ионами, с одной стороны, и присутствующими простыми ионами — с другой, в основном ионные. При этом под комплексом понимается любой ион, включающий более одного атома. Простыми примерами являются хлористый аммоний или нитрат калия. Структуры таких кристаллов часто сходны со структурами простых ионных кристаллов, особенно когда комплексные ионы, как это часто бывает, могут достигать сферической симметрии при вращении. [c.249]

    Такие цепи или решетки предотвращают или препятствуют упорядочению ориентации атомов в самих цепях или решетках атомов, а также за их пределами. В беспорядочной структуре существует много остаточных силовых полей, которые способствуют адгезии как полярные молекулярные силы. Наоборот, отсутствие эффективных остаточных сил в упорядоченном кристалле ослабляет его тенденцию к адгезии. Для цементов беспорядочная структура является практически необходимой. Вторым важным условием в цементных структурах является тип связи. Комплексные ионы, из которых обычно образуются цементы, являются многоугольниками, которые способны образовывать водородные связи. [c.289]

    Явление сольватации обязано тому,, что заряженная частица (ион), появившаяся среди молекул растворителя, изменяет свойства и порядок распределения последних в растворе. Если молекулы растворителя имеют дипольный момент, то они взаимодействуют с ионами, образуя сольватные оболочки. При этом электростатическое бзаимодействие не является единственной причиной сольватации ионов. Сольватация может возникать и за счет некулоповских — химических сил. Многие соли образуют гидраты и сольваты не только в растворах, но и в твердом состоянии. К такому комплексообразованию склонны почти все соли. Например, образование гидратов солей меди является типичным процессом комплексообразования. В таких соединениях связь между ионами и молекулами воды чисто химическая, она обусловлена обычной координационной валентностью, типичной для комплексных соединений. [c.137]

    Схема энергетических уровней комплексного иона металла изображена на рис. 1.14. При образовании комплекса электроны неподеленных пар лигандов заполняют наиболее низкие уровни <21 , / и и е . Происходит смещение электронной плотности от лигандов к центральному иону и связь приобретает ковалентный характер. Электроны металла переходят на уровни и вполне соответствующие аналогичным уровням в теории кристаллического поля. Поэтому все заключения этой теории, касающиеся влияния энергии расщепления А на свойства комплексных соединений, остаются в силе. [c.47]


    Электростатическая теория позволяет рассчитать ряд свойств растворов сильных электролитов, которые находятся, однако, в удовлетворительном согласии с опытом лишь для весьма малых концентраций раствора, порядка 0,01 М и менее. Ряд фактов эта теория объяснить не может. Все это связано с неточностью принятых допущений. При малых расстояниях между ионами силы их взаимодействия не могут быть сведены лишь к электростатическим. Учет взаимодействия ионов с растворителем не должен игнорировать молекулярную структуру растворителя простым введением диэлектрической проницаемости. Характер этого взаимодействия зависит от строения и других индивидуальных особенностей ионов электролита и молекул растворителя и изменяется с разбавлением раствора. Представление о полной диссоциации электролита должно быть дополнено учетом ассоциации ионов и образования комплексных ионов и молекул. [c.214]

    Роданидные растворы. В роданидных растворах висмут образует с роданид-ионами шесть комплексных ионов состава В1(8СЫ) . Максимальное координационное число, равное б, в случае образования роданидных комплексов висмута подтверждают авторы работ [56—59]. При этом показано [56], что увеличение ионной силы раствора приводит к росту устойчивости роданидных комплексов висмута. С увеличением температуры значения констант устойчивости роданидных комплексов висмута с и = 1—4 возрастают. Последнее свидетельствует, что образование роданидных комплексов висмута протекает со значительными положительными изменениями энтальпии и энтропии. Положительные изменения энтропии, по-видимому, обусловлены дегидратацией сольватированного иона В1, а положительные изменения энтальпии свидетельствуют о преобладающем ионном характере связей в роданидных комплексах состава В1(8СЫ) [56]. [c.36]

    Оствальда, которые, как предполагалось, зависят только от положения соответствующих лигандов. Теперь приведем некоторые соображения по поводу того, что в действительности определяет соответствующие р-множители в различных случаях. Для многоосновных кислот взаимодействие кислотных групп, расположенных одна от другой значительно дальше, по своей природе является почти исключительно электростатическим, так что здесь 3-множители определяются главным образом зарядом отдельных кислотных групп и расстоянием между ними. Аналогично электростатический эффект наблюдается в комплексных акво-кислотах или в системах комплексов, где лигандами служат отрицательно заряженные анионы. Но здесь появляется дополнительный остаточный эффект, которым нельзя пренебречь. Этот остаточный эффект, который один определяет лиганд-эффект в системах с нейтральными молекулами, до некоторой степени, возможно, вызван отталкиванием диполей, индуцированных в лигандах центральным ионом (или постоянных диполей, ориентированных в поле центрального иона). Но, по мнению автора, вообще невероятно, чтобы это взаимодействие составляло значительную, не говоря об основной, часть остаточного эффекта. Более вероятно предположить, что остаточный эффект во всех системах комплексов прежде всего обусловлен влиянием лигандов на энергию связи с центральной группой. Это толкование также лучше согласуется с обычным представлением о том, что силы связи действуют главным образом между центральной группой и лигандами. Кроме того, это единственное непосредственное объяснение того факта, что остаточный эффект часто является отрицательной величиной в системах комплексов. [c.51]

    Кристаллогидраты в большинстве случаев представляют собой соединения, в которых молекулы воды связаны донорно-акцепторной связью с катионом, а образовавшаяся частица (катионный аквакомплекс) электростатически притягивается к аниону. Нетрудно видеть, что по своей химической природе кристаллогидраты близки к комплексным соединениям. Сила взаимодействия между ионом и полярной молекулой воды зависит от заряда и размера иона чем меньше радиус иона и чем [c.80]

    Мы уже говорили о том, что внутренняя и внешняя сфера комплексного соединения сильно различаются по устойчиности частицы, находящиеся во внешней сфере, связаны с комплексным ионом преимущественно электростатическими силами и легко отщепляются в водном растворе. [c.373]

    Эта константа характеризует термодинамическую устойчивость комплексного иона, т. е. устойчивость, не зависящую от времени. Существует еще кинетическая устойчивость, определяемая константой скорости диссоциации комплекса на составные части. Важнейшим понятием в координационной химии является координационное число центрального атома и лиганда. Для центрального атома, например в [ o(NH2 Hз)б] координационное число равно 6. Оно характеризует число электронодонорных (а иногда и электроноакцепторных) атомов, которые вступают в прямой контакт с центральным атомом металла за счет сил донорно-акцепторной связи. В гек-са(метиламин)кобальт(Ш)-ионе контактными (донорными) атомами являются атомы азота, составляющие вместе с Со(Ш) координационный узел oNg. Координационное число и иона металла зависит от его положения в периодической системе, заряда и радиуса, а также от структурно-энергетических свойств лиганда, особенно природы его контактного атома. Максимальное и стабильное координационное число для Ag Hg" , ТГ равно двум, для Hg u — [c.157]

    Комплексные ионы соединены с ионами внешней сфе-р л силами ионной связи. При растворении под действием полярных молекул воды ионные связи в мплексных соединениях разрываются и происходит электролитическая диссоциация с образованием в растворе комплексных ионов. [c.69]

    Эта проблема была детально обсуждена в связи с вопросом о природе связи в комплексных ионах металлов (53). Оказывается, что тип связи (ковалентной или ионной) в значительной мере зависит от силы электрических взаимодействий с комплексообра-йующими группами. [c.454]

    Как указывалось ранее (см. стр. 93), возможно, что большие ионы, имевэшие электронную оболочку инертного газа с низкой плотностью заряда, как, например, ионы калия или бария, в водном растворе, по-видимому, гидратированы весьма неполно. В противоположность этому ионы лития и кальция, вероятно, способны образовать первую сферу из молекул воды, но эти молекулы воды едва ли связаны направленными силами связи до такой степени, чтобы образовались акво-ионы с химической связью. Однако это, по-видимому, происходит в случае ионов металлов побочных групп и, вероятно, также ионов, имеющих электронную оболочку инертного газа, с наибольшей плотностью заряда. Пока нет точного доказательства этого, но ранее (стр. 80) было отмечено, что ион металла, который образует определенные комплексные ионы с комплексообразующими лигандами, например, с аммиаком, также, вероятно, должен образовывать акво-ионы с химической связью. Случай будет совсем простым, если ион металла имеет постоянное координационное число, например ионы кобальта (П1) и хрома (П1). Более трудная задача возникает в случае иона металла с более чем одним координационным числом. Тогда следует рассмотреть два вопроса, пренебрегая, конечно, любым стериче-ским препятствием со стороны лиганда 1) ведет ли себя ион металла в отношении координационной валентности по-разному относительно различных лигандов 2) является ли способность проявления двух координационных чисел свойством иона металла, обнаруживающимся в присутствии всех лигандов независимо от силы и типа связи В качестве первого примера можно упомянуть ионы кобальта (II) и никеля, которые проявляют исключительно координационное число 6 в соединениях с водой, аммиаком и этилендиамином, но в других случаях (см. стр. 66 и 96), по-видимому, проявляют характеристическое координационное число 4. В качестве второго примера следует указать ионы меди (П), цинка и кадмия, которые, по-видимому, всегда имеют характеристическое координационное число 4, и ионы меди (I), серебра и ртути (И), которые всегда, очевидно, имеют характеристическое координационное число 2. В случае ионов кобальта (II) и никеля, а также ионов железа (II) и марганца (II) (ср. стр. 96) кажется вполне естественным принять, что эти ионы в водном растворе образуют октаэдрически построенные гексакво-ионы. Но что можно сказать о другом классе ионов металлов, особенно интересных [c.106]

    AlFef- и т. п. В то время как связи межу частицами, образующими такую решетку, являются ионными, внутри сложных ионов атомы, как правило, соединены ковалентной связью. Поскольку комплексные ионы имеют большие размеры, то при равенстве зарядов силы взаимодействия частиц в решетке, содержащей многоатомные ионы, значительно слабее, чем в решетке, состоящей из одноатомных ионов. Ввиду этого температуры плавления и твердость вешеств, содержащих многоатомные ионы, более низкие. Так, например, температура плавления Na I равна 801° С, а NaN03 — только 311 °С. [c.254]

    Реакции ассоциации. Эти реакции называют также реакциями внешнесферного комплексообразования, обра зования сверхкомплексных соединений и др. Наиболее обычно образование комплексным ионом так называемой ионной пары, т. е. ассоциата в котором частица, находящаяся во внешней сфере, связана с комплексным ионом электростатическими силами  [c.38]

    Центральный атом и окружающие его лиганды образуют внутреннюю координационную сферу, которая для удобства заключается в квадратные скобки. Чаще всего внутренняя координационная сфера является комплексным ионом — [ u(NHj)4] , [СоСЦ] , который в твердой фазе, нейтрализуя свои заряды с помощью анионов или катионов, образует комплексную соль [Си(ННз)4]С12,,К2[СоС14]. Такая соль имеет кроме внутренней еще внещнюю координационную сферу из противоионов (СГ, К и т. д.). Разделение комплексной соли на две сферы не является формальным, а определяется природой сил связи во внутренней и внешней координационных сферах. Во внутренней сфере центральный атом и лиганды прочно связаны донорно-акцепторной связью. Между внутренней и внешней сферами действуют только силы электростатического взаимодействия (ионная связь), дополняемые в ряде случаев силами водородной связи. Поэтому комплексные соли все являются сильными электролитами и в водной среде диссоциируют нацело на простой и комплексный ионы  [c.156]

    Внешнесферная частица может быть связана неэлектростатическими силами. Например, катион [Со(ЫНз)5ЫСЗ] + ассоциирует с катионом А +. Ассоциация осуществляется за счет свободного донорного атома 5 у роданид-иона, и связь в значительной мере ковалентна. При внешнесферной координации катиона образуется двуядерная комплексная частица. Реакции ассоциации инертных комплексных ионов приводят часто к образованию двуядерных частиц, у которых одна из половин ведет себя как инертная, другая— как лабильная. Вся двуядерная частица при этом быстро и обратимо диссоциирует на одноядерные. [c.39]

    Согласно определению Бека [48], в понятие внешнесферных комплексов входит взаимодействие координационнонасыщенных комплексных ионов с другими лигандами , вследствие чего эти лиганды определенным образом удерживаются во внешней координационной сфере комплексообразователя. Одна из главных причин образования внешнесферных комплексов — это электростатические силы между внутрисферным комплексом и внешними лигандами. Такие силы могут возникнуть при наличии как заряженных, так и нейтральных, но сильно полярных лигандов. Кроме того, как показывают опытные данные, существенную роль в образовании внешнесферных комплексов может играть частичный перенос электронной плотности между внешними лигандами и комплексообразователем [49, 50], а также возникновение водородных связей между лигандами внутренней и внешней координационной сфер [48]. Очевидно, что вхождение подходящего активатора даже во внешнюю координационную сферу катализатора может изменить эффективный заряд центрального иона, его электронную структуру или сделать более подвижными некоторые лиганды внутренней координационной сферы, что скажется на каталитической активности. [c.26]

    Предположение о непосредственном восстановлении комплексного иона подтверждается рядом исследований. Так, было показано, что на катоде проходят процессы разряда ионов СгР , НеО , 1п01 Ag(NHз) , Си(Р207)2 , и др. При адсорбции сила связи с ад- [c.399]

    Весьма перспективным представляется новое направление, основанное на ирименении к гетерогенному катализу квантово-механических концепций кристаллического поля и поля лигандов [25]. Применительно к проблеме подбора это было впервые сделано Д. Дауденом [26], В полупроводниковых электронных теориях хемосорбции и катализа исходными являются макроскопические характеристики твердого тела и в первую очередь концентрации электронов и электронных дырок (выражаемые через ноложение уровня Ферми) и работа выхода электронов. В противоположность этому, по новой концепции, активация молекул в каталитических реакциях связана с образованием комплексов в результате присоединения к отдельным иопам металла (реже к анионам) решетки за счет тех же сил, что и связь лигандов в комплексных ионах в растворе или в кристаллической решетке. При таком подходе хемосорбционная связь и активация локальны, а макроскопические электронные свойства играют второстепенную роль. В то же время приобретает большое значение число -электронов в оболочке иона металла, играющего роль активного центра, так как это число определяет энергию образования комплексов и пространственное расположение лигандов. Мы не имеем здесь возможности подробнее разобрать эту концепцию отметим только, что она объясняет  [c.24]

    Ион водорода представляет собой ядро с зарядом +1, не имеющее ни одного электрона. Если бы фтористый водород HF обладал резко выраженным ионным строением, то его молекулу можно было бы представить такой, как на рис. 9.6, Л. Между тем положительный ион водорода в этом случае должен сильно притягиваться к отрицательному иону, например к иону фторида, образуя ион [р-Н+р-]- или НРг, как показано на рис. 9.6, Б. Это и происходит в действительности, и устойчивый ион Нр2, называемый ионом дифторида водорода, присутствует в значительной концентрации в растворах фтористоводородной кислоты и в солях, например в КНРг. Связь, скрепляющая этот комплексный ион и называемая водородной связью, слабее, чем одинарная ионная или ковалентная связь, но прочнее, чем обычные вандерваальсовы силы межмолекулярного притяжения. [c.250]

    Сравнение результатов расчета сил, действующих на ядро магния со стороны ближайшего окружения в двух комплексных ионах, которые отличаются наличием удаленных заместителей в лигандах (кривые 1, 2 ш рис 3 б, б), показывает что общий характер связи мегалл-лигацд и рас- [c.120]

    Выше было показано, что состав соединений ионов щелочных и щелочноземельных металлов в общем можно вполне объяснить при довольно очевидном допущении, что комплексо-образование определяют прежде всего заряд и размер ионов. Совсем другое дело в случае ионов металлов группы железа и побочных подгрупп. Эти ионы не только имеют большую способность к образованию амминов, чем следовало бы ожидать, учитывая электрические силы на поверхности ионов, т. е. большую, чем это соответствует плотности заряда, но имеют в гораздо большей степени направленные химические связи. Если отказаться по этой причине от электростатической точки зрения, то будет более уместно говорить об определенной пространственной структуре данных комплексных соединений. Поэтому при дальнейшем обсуждении автор пытается также учитывать стереохимические факторы, связанные с образованием амминов. [c.93]

    Электрод, предназначенный для определения активности ионов фтора, представляет собой специальный ионный датчик, используемый совместно с каломельным электродом (электродом сравнения) и рН-метром, который имеет шкалу, проградуированную в милливольтах. Главным элементом фторидного электрода является монокристалл фтористого лантана, на котором благодаря присутствию фтор-ионов возникает потенциал. Кристалл одной своей стороной контактирует с исследуемым раствором, а другой — с контрольным внутренним раствором (раствором сравнения). Предварительно должна быть построена соответствующая калибровочная кривая, устанавливаюнгая соответствие между показаниями рН-метра в милливольтах и концентрацией фторидов. Активность фторидов зависит от общей ионной силы раствора и, кроме того, прибор не регистрирует фториды, находящиеся в связанном состоянии (в виде комплексных ионов). Эти трудности в значительной степени удается преодолеть (если фториды связаны в комплекс с алюминием) добавлением лимонной кислоты и введением буферного раствора высокой ионной силы. [c.36]

    По-видимому, будет небесполезно вкратце перечислить для рассмотренных нами типов молекул те различные пути, какими орбиты валентной оболочки переходного металла принимают участие в связывании, а) В простейших октаэдрических комплексных ионах, таких, как ионы с Н2О, ЫНз или галогенидами, главный вклад в общую энергию связи неоспоримо создается за счет электростатических сил. Тем не менее ряд соображений, учитывающих все тонкости и основанных на спектрах и магнитных свойствах [31], а также на принципе электронейтральности Полинга [32] (помимо всего прочего), в значительной мере указывает на то, что. 4 , Ар и, как минимум, две из Зй АО (называемые здесь Ъйа) принимают участие в связывании. Остальные три 2>й АО (З тс), вероятно, остаются несвязывающими в случае Н2О и ЫНз, хотя имеются данные, указывающие на то, что, если эти орбиты не заняты, они могут использоваться для стабилизации промежуточных образований во время некоторых химических реакций подобных ионов. В окислах и галогенидах, и даже в большей мере в случае фосфорных и мышьяковых лигандов (т, е. лигандов со сверхвалентйыми -орбитами) Зйи орбиты [c.45]

    Особенно важный класс соединений, в которых часто сосуществуют различные типы связи, образуют соединения высших порядков. Поскольку при этом речь идет о комплексных соединениях, в тех из них, которые имеют характер электролитов, между составными частями, переходящими в раствор в виде ионов (без распада комплексов), большей частью также и в твердом состоянии существует ионная связь. Но внутри комплекса, т. е. между центральным атомом и его лигандами, могут быть связи совершенно иного рода. Они могут быть обусловлены электровалентными, ковалентными или вандерваальсовыми силами (подробнее см. гл. И). В неводных растворах (например, в жидком аммиаке) комплексные ионы имеют даже зачастую металлический характер (см. стр. 619). [c.333]

    Структура таких хемоадсорбционных форм имеет много общего и со-структурой кристаллических решеток, образуемых твердыми соединениями соответствующих металлов. При этом имеются и характерные различия между комплексными ионами и твердыми соединениями переходных и непереходных металлов. В первых особенно легко образуются радикальные формы. Силы электронного ион-лигандного взаимодействия с Ме" убывают медленнее с расстоянием и появляется своеобразие в уровнях энергий электронов, участвующих в ион-лигандных связях, на чем мьь здесь не имеем возможности останавливаться. [c.57]

    Другим типичным примером процессов электрофильного присоединения является присоединение к непредельным соединениям кислот. Реакции, как и в ранее рассмотреннщх случаях, инициируются воздействием положительно заряженного атома водо.рода кислоты на слабополярную молекулу непредельного соединения. Следует иметь в виду, что водород карбоксильной группы в растворах в зависимости от растворителя и условий реакции находится в различных состояниях в ионизирующих растворителях он существует в виде сольватированного протона, в неионизирующих, например в бензоле, связан с анионом в виде полярной молекулы. Присутствие же в растворах кислот солей, образующих с анионами кислот комплексные ионы, увеличивает силу кислоты возможно, что этим объясняется каталитическая роль 2пС12 при присоединении органических кислот к углеводородам (стр. 401). Наоборот, вещества, связывающие водород за счет образования водородной связи, должны уменьшать скорость реакций присоединения кислот к непредельным углеводородам, так как воздействие водорода на кратную связь в этом случае уменьшается. [c.416]


Смотреть страницы где упоминается термин Силы связи в комплексных иона: [c.377]    [c.601]    [c.145]    [c.169]    [c.300]    [c.176]    [c.56]    [c.404]    [c.50]    [c.50]    [c.84]   
Электронное строение и химическая связь в неорганической химии (1949) -- [ c.0 , c.155 , c.156 , c.290 , c.292 ]




ПОИСК





Смотрите так же термины и статьи:

Ион ионы связи

Ионная связь

Ионная сила

Ионы комплексные

Комплексные ионы связь в них

силы связи



© 2025 chem21.info Реклама на сайте