Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Седиментация определение МБР

    Другой эффект, с которым всегда приходится считаться,— это обратный ток растворителя [57, 127, 176], вызванный повышением концентрации растворенного вещества у дна ячейки. Растворитель движется назад к границе раздела, так как его вытесняет концентрированный раствор. Поэтому при заметных концентрациях растворенного вещества константа седиментации, определенная по отношению к растворителю, отличается от значения, полученного в системе координат, связанной с ротором. Коэффициент трения [уравнение (63)] был определен для системы координат, связанной с ротором. [c.48]


    Зависимость у от термодинамического [38] и гидродинамического [39] взаимодействий предостерегает от использования приведенных соотношений с универсальной величиной у для расчета So полимеров по коэффициенту седиментации, определенному при одной концентрации раствора. Выбор значения параметра у при расчете So труден еще и из-за большого разброса экспериментальных значений у, связанного, вероятно, с неоднородностью образцов и фракций. [c.21]

    Метод скоростной седиментации определение коэффициента поступательного трения, константы седиментации и молекулярного веса [c.421]

    При работе внешней системы перемещивания материал забирается из нижней части кармана ванны и подается через фильтр и теплообменник в нижнюю часть рабочего объема таким образом, чтобы обеспечить движение рабочего раствора вверх по всему объему со скоростью, которая не должна быть меньше скорости седиментации. Определенное количество материала при этом подается в верхнюю часть рабочего объема вдоль зеркала ванны в сторону кармана и смывает в него пену (для разрушения пены в нижней половине кармана установлены фильтрующие перегородки). [c.218]

    ВЛИЯТЬ на коэффициент седиментации, определенный с помощью экстраполяции. Вывод о том, что наблюдаемый молекулярный вес полиэлектролита, определенный без добавления солей, в раз больше истинного [105, 106], [c.58]

    Особый интерес придает этому методу его главная особенность — непрерывная фермент-субстратная реакция в течение всего опыта в ультрацентрифуге, из-за чего метод и получил название седиментация активного фермента (САФ). Поэтому коэффициент седиментации, определенный в таких опытах, отражает динамическое состояние реагирующего фермента и может отличаться от коэффициента седиментации, измеренного в обычных опытах без субстрата [5]. [c.176]

    Непосредственный обмер отобранных порций частиц измерительным инструментом применим для частиц 3 мм и выше [64]. Более редко используют седиментацию в жидкости — до 200 мкм и отдувку или седиментацию в газе — до 200 мкм. Для часТиц размером более 100 мкм очень удобно по нашему опыту ие-пользовать инструментальные микроскопы, которые позволяют определять не только средний диаметр, но и другие геометрические размеры отдельных зерен, необходимые для оценки их коэффициентов формы. Для определения дисперсного состава доменного кокса применяют сита большого размера с квадрат- [c.52]

    Характерной особенностью генетических типов нефтей нефтегазоносных провинций, связанных с платформенными областями, являются различия иногда даже генетических показателей нефтей, залегающих в одновозрастных стратиграфических комплексах, но в разных тектонических зонах. Выше отмечалось, что это может быть связано с наличием нескольких зон генерации УВ, в каждой из которых имелись определенные различия в ОВ пород, что обусловлено разной геолого-биохимической характеристикой разных участков морских бассейнов седиментации. [c.102]


    Кинетика расслаивания жидкофазных систем. В связи с распространенностью многофазных систем большое внимание уделяется разработке теории их движения, причем в последнее время наблюдается бурное развитие этой области знаний. Обзор многочисленных работ, посвященных этой теме, изложен в [23, 24—26]. Сложность общего математического описания заставляет при решении конкретных задач делать те или иные допущения, вносящие определенные погрешности в решение задачи. Так, во многих случаях течение двухфазной системы может рассматриваться как ползущее, т. е. числа Рейнольдса, рассчитанные по диаметру частиц, очень малы (седиментация тонких эмульсий, суспензий и т. д.). Тогда возможна линеаризация уравнения Навье—Стокса, если пренебречь инерционными членами. Такое допущение справедливо и в случае, когда течение смеси в целом по отношению к внешним границам характеризуется большими числами Рейнольдса, тем не менее можно говорить о малости чисел Рейнольдса для движения частиц относительно сплошной фазы. Кроме того, инерционные эффекты менее существенны в системах, состоящих из группы частиц в органической жидкой среде. [c.288]

    В большинстве случаев при седиментации движение потоков может рассматриваться ползущим. Поэтому во многих работах для определения скорости движения частиц используются уравнения движения в стоксовом приближении. Так, в [43] скорость периодического осаждения и 1, х, т) частиц с 5 етом вытеснения жидкости вверх определяется выражением м [c.294]

    Глобулы их представляют деформированные шары с плотной упаковкой, они не способны к седиментации и характеризуются структурномеханическими свойствами, похожими на свойства гелей. К эмульсиям такого вида относятся, например, консистентные смазки и др. Для определения дисперсности высококонцентрированных полидисперсных эмульсий В. М. Мартынов предложил уравнение [17] [c.21]

    Методика седиментационного анализа на весах Фигуровского и торзионных следующая. Исследуемую пробу нефтяной эмульсии обратного типа перед анализом разбавляют керосином, чтобы концентрация эмульсии не превышала 2,5%, и после перемешивания напивают в цилиндр диаметром 40—45 мм и высотой 200 мм для седиментации. В эмульсию погружают стеклянную чашечку весов диаметром 20—25 мм, подвешенную на тонкой стеклянной нити к кварцевому коромыслу длиной 250 мм. Высота осаждения 90—110 мм (от мениска эмульсии до дна чашечки). За опусканием конца кварцевого коромысла наблюдают при помощи отсчетного микроскопа. Через определенные промежутки времени измеряют величину прогиба кварцевого коромысла, которая зависит от количества осевших на чашечку диспергированных частиц воды. Первое измерение положения кварцевого коромысла производят после погружения чашечки и прекращения колебания, вызванного погружением, а последующие измерения — через определенные промежутки времени, за которые конец коромысла переместился на одно или несколько делений отсчетной шкалы микроскопа. [c.25]

    С целью определения эффективности разделения водно-топливных эмульсий от воздействия только электростатического поля целесообразно проводить предварительное отстаивание их в поле сил тяжести. Установлено, что процесс разделения смесей водно-топливных эмульсий с топливами (Т-1, ТС-1, Т-2) при отстаивании начинается практически сразу после выключения механической мешалки. Процесс разделения идет тем интенсивнее, чем больше концентрация воды в исходной эмульсии. В эмульсиях с более вязкими топливами процесс разделения идет менее интенсивно. Так, водно-топливная эмульсия (сх-1 = 15 %) после 30 с отстаивания содержала всего 3,7 % воды, остальная вода коагулировала из коллоидного раствора. Наиболее интенсивно процесс седиментации под действием сил тяжести идет в начальный период времени. [c.20]

    Для определения устойчивости НДС против расслоения предложены [183—186] метод седиментации, основанный на осаждении ССЕ в гравитационном или центробежном поле, и метод определения устойчивости нефтяных остатков прн высокотемпературном нагреве различных видов сырья на лабораторной установке. [c.140]

    Так как седиментация происходит в определенной среде, то при ламинарном движении частицы возникает сопротивление в виде силы трения, пропорциональной скорости движения частицы  [c.188]

    Применимость закона Стокса ограничивается также дисперсностью частиц. Большие частицы (>100 мкм) могут двигаться ускоренно, и тогда для определения скорости их движения нельзя пользоваться уравнениями (IV. 5), (IV. ) и (IV. 8). Кроме того, быстрое движение больших частиц может вызвать турбулентный режим потока частиц, при котором также перестает соблюдаться закон Стокса. Очень малые частицы — ультрамикрогетерогенные (<0,1 мкм) осаждаются настолько медленно, что следить за такой седиментацией, как было показано ранее, практически невоз-мол<но. В этих случаях нельзя ие учитывать влияния на осаждение дисперсной фазы механических, тепловых и других внешних воздействий на систему. [c.193]


    Достаточно широко используется пипеточный метод дисперсионного анализа. Этот метод основан иа отборе проб фракций пи--яь петкой из градуированного цилиндра с определенной высоты слоя суспензии через установленные промежутки времени (рис. ГУ.3). Отобранные пробы фракций высушивают и взвешивают. По результатам анализа строят кривую седиментации. При аккуратной работе можно достигнуть неплохой точности анализа. Большое преимущество метода состоит в том, что можио работать с разбавленными суспензиями, например при концентрации до 0,5%, Одиако этот метод сравнительно трудоемок, главным образом, из-за необходимости сушки проб и их взвешивания. [c.200]

    Участие частиц дисперсной фазы в броуновском движении может отражаться на седиментации. При оседании частиц в гравитационном поле увеличивается их концентрация в нижних слоях, в результате чего возникает диффузионный поток, направленный противоположно потоку седиментации. Через определенное время может наступить диф-фузионно-седиментационное равновесие. Распределение частнц при равновесии в монодисперсной системе описывается гипсометрическим законом, который для частиц сферической формы радиусом г имеет вид [c.79]

    Цель работы получение кривой седиментации для низкодисперсного порошка построение интегральной и дифференциальной кривых распределения, определение гранулометрического состава порошка. [c.81]

    На рис. 1П.11 представлены значения миграции шариков плотностью 0,939 г см и диаметром 0,1—О,.5 мкм. При диаметре 0,2 — 0,45 мкм наблюдается прямолинейная миграция, при < 0,2 мкм шарики мигрируют быстрее. Точность этого метода проверяли центрифугированием монодисперсных латексов с известным диаметром частиц. Значения диаметров частиц 0.53. 0,74 и 1,08. адк.м, определенных с помощью электронного микроскопа, соответствовали 0,556, 0,74 и 1,17 мкм при центробежной седиментации. Таким образом, для частиц с указанными диаметрами метод оказался вполне удовлетворительным, но нри диаметре 0,26 мкм полученная величина равнялась 0,19 мк.ч. Причина такого расхождения неизвестна, [c.154]

    Для средних значений молекулярной массы, определенной по скорости седиментации, справедливо следующее соотношение (1.55) [c.48]

    Нуклеиновые кислоты в свободном состоянии и в виде соединени с белками так называемых нуклеопротеидов содержатся в клеточных ядрах и цитоплазме. К нуклеопротеидам относятся также многие виды вирусов. Их молекулярные веса, определенные по константам седиментации, очень велики у вирусов растительного происхождения они колеблются между 3 и 40 миллионами. [c.1044]

    Средневязкостный молекулярный вес получается в тех случаях, когда для определения молекулярного веса используется один параметр — вязкость, значение которого сравнивается с его значениями для гомологов известного молекулярного веса. Этот метод здесь не обсуждается. Получаемые значения средневязкостного молекулярного веса лежат между М и Мц,. Измерение характеристической вязкости может быть использовано для определения молекулярных весов только в сочетании по крайней мере с еще одним измерением, обычно с измерением коэффициента седиментации. Определенный таким путем молекулярный вес мало отличается от средневесового. [c.44]

    Для того чтобы проиллюстрировать имеющиеся расхождения при определении относительной скорости движения фаз в процессах седиментации и псевдоожижения сферическ 1Х частиц в режиме Стокса на рис. 2.1 приведены средневзвешенные кривые, характеризующие две группы имеющихся экспериментальных данных. Первая группа данных из пяти различных источников собрана Барни и Мизрахи [41] и представлена штриховой линией I. Вторая группа данных описывается эмпирической зависимостью вида [c.73]

    После вычнслення эквивалентных диаметров частиц определяют процентное содержание в порошке отдельных фракций с соотвс1 ствующими эквивалентными диаметрами. Для этого измеряют величины отрезков на оси ординат и выражают их в процентах от общей длины этих отрезков. Например, отрезок от начала координат до точки пересечения первой касательной (отрезок ОО1), отнесенный к общей длине ординаты (00,[о,г), дает процентное содержание фракции с частицами, диаметр которых находится в интервале между максимальным эквивалентным диаметром / дис и диаметром определенным по седиментационной кривой. Отрезок от предела седиментации до ближайшей к нему касательной (отрезок ОгОкоп) выражает, соответственно, относительное [c.23]

    Предоставив суспензии осаждаться под действием силы тяжести, через определенные промежутки времени определяют массу частиц, накопившихся на ча-ше 1ке, погруженной в суспензию на определенную глубину. Так можно установить расиределение частиц ио фракциям разного размера. Такой метод диспер-СН0 П10Г0 анализа суспензий получил название седиментац но нного а и а л п 3 а. Его широко применяют при изучении дисперсных систем с размерами частиц от 100 до 1 мкм, в частности почв и грунтов. [c.319]

    При разделении полидисперсных суспензий удельное сопротивление осадка определяется, в частности, седиментацией и миграцией частиц, вследствие чего оно зависит от времени [100]]. Влияние этих, а также других микрофакторов на удельное сопротивление осадка не удается выразить в виде эмпирических зависимостей, непосредственно пригодных для математического описания процесса. Влияние их следует учитывать путем надлежащего определения удельного сопротивления осадка как макрофактора постоянного значения в виде функции Га = Го х). Тогда может быть составлено математическое описание, включающее только макрофакторы. [c.79]

    При выборе улавливающего оборудования необходимо учитывать последующую обработку материала. Если требуется определить только его общее количество, можно применять практически любой из приведенных выше методов, поскольку улавливающее устройство можно взвесить до и после отбора пробы, и вычислить чистую массу образца. Если образец должен далее подвергнуться химичеокому анализу, его необходимо собрать с фильтра, либо смывая, либо используя растворитель в качестве фильтрующей среды. Возможно, требуется определить гранулометрический состав частиц, тогда решение проблемы связано с значительными техническими затруднениями. Если для определения размеров частиц будет использован метод жидкостной седиментации, или декантации, тогда фильтр можно прамьгвать седиментационной жидкостью. Однако как для воздушной, так и для жидкостной классификации и седиментации основным остается вопрос о сохранении размеров частиц и апромератов такими, какими они были в газовом потоке. [c.89]

    Ситовой анализ и визуальное изучение частиц под обычным или электронным микроокопо1м относятся к первой группе методов. Вторая группа включает декантацию (классификацию), седиментацию и инерционный зах1ват, тогда как в третью группу входят определение проницаемости, прямое определение площади поверхности (метод БЭТ), обратное рассеяние у-лучей и др. [c.90]

    С появлением седиментационных весов метод был автоматизирован [47, 65, 104, 281]. Действие весов основано на том, что нагрузка на чашку весов, подвешенную у дна мензурки и содержащую смесь, компенсируется каким-либо торсионным устройством, изменение момента закручивания регистрируется во времени. Изящным методом определения скорости седиментации является измерение обратного ра1ссеяния у-лучей от осевшего вещества, на которое был направлен источ ник Sr (1 мКи, или 3,7-10 с" в Международной системе единиц). Естественно, для ускорения седиментации можно использовать центрифугирование [223, 421]. [c.93]

    Определение распределения частиц по размерам возможно с помощью метода воздушной седиментации в приборе типа осадительного счетчика пыли [152]. В этом приборе в закрытый цилиндр заключают определенный объем воздуха. На дне цилиндра размещено устройство для последовательного размещения нескольких покрывных стекол. Измеряя время энопозпции и считая число частиц, осевших на каждом стекле, можно определить распределение частиц по размерам. [c.93]

    К другим типам усреднения приводят методы исследования гидродинамических свойств растворов асфальтенов и соответствующие им срёдние молекулярные массы навываются среднегидродинамическими М г). Их определяют по вязкости растворов, константе седиментации или коэффициенту диффузии. Средние молекулярные массы, полученные различными методами, различаются между собой в тем большей степени, чем шире молекулярно-массовое распределение полимера По относительному значению они располагаются в ряд М < Мш < Мг. Для различных асфальтенов установлена- высокая полидисперсность [306]- Так, для ряда асфальтенов, выделенных из битумов деасфальтизации, значение Мя (определенное криоскопически в бензоле), равно 2200, а Mw, определенная по скорости диффузии в бензольном растворе, составляет 8540. Отношение M lMn — 3,5 указывает на высокую степень полидисперсности асфальтенов. [c.152]

    Типичная кривая седиментации реальной полидисперсной системы представлена иа рис. IV. 1о. Эту кривую можно представить как ломаную линию, отвечающую бесконечно большому числу фракций. Кривая седиментации, представленная на рис. IV. 1 в разделена на четыре участка, соответствующих выбранным временам полного осаждения фракций (т н, то, Тмакс)- Такое разделение кривой лучше проводить после предварительного определения времени осаждения самой крупной и самой мелкой фракций. Полному осаладению самой крупной фракции отвечает Тмин. Время осаждения самой мелкой фракции соответствует времени окончания накопления осадка Тыакс В точках кривой, отвечающих моментам окончания осаждения фракций (В, С, О, Е) проводят касательные до пересечения с осью ординат, на которой получают отрезки, соответствующие массам фракции частиц. Зная высоту столба суспензии и время полного осаждения фракций, можно по формуле (IV. 20) определить скорость осаждения и по формулам (1 .8) или (IV. 22) рассчитать радиус частиц каждой фракции. Очевидно, что применительно к полидисперсным системам этот радиус является граничным для соседних фракций, а средний радиус фракции тем ближе отражает истинное значение, чем на большее число фракций разделена полидисперсная система. [c.197]

    Более эффективное разделение пробы суспензии (порошка) на фракции можно осуществить, если нанести ее на поверхность чистой жидкости без взмучивания, В этом случае прн седиментации все частицы должны пройти одинаковое расстояние, а так как они осаждаются с разной скоростью, то в процессе осаждения проба разделится на фракции частнц, отличающиеся скоростями седиментации, т, е. размерами частиц. Чем больше высота столба жидкостн, тем лучше разделение. Метод разделения напоминает элюционный метод в хроматографии. Сливая суспензию с определенных уровней, отделяют фракции, сушат и взвешивают. [c.200]

    Большими преимуществами обладает метод седиментациониого анализа, предложенный Оденом, который измерял увеличение массы осадка за определенное время в чашечке, опущенной в суспензию. Чашечка была связана с чувствительными весами, по показаниям которых можно было сразу определять зависимость массы осевшего осадка от времени и строить кривую седиментации. В качестве весов Н. А. Фигуровским предложена кварцевая нить, за прогибом которой под действием силы тяжести нарастающего осадка следят с помощью отсчетного микроскопа. Измерения упрон аются, если деформация нити пропорциональна массе (выполняется закон Гука). В настоящее время для этих целей широко пользуются торзионными весами (рпс. IV. 5). [c.201]

    Осаждение отложений в резервуарах является результатом совместного протекания двух физико-химических процессов броуновского движения и седиментации частиц, на скорости протекания которых изменение размера частиц дисперсной фазы сказывается различно. Так, при увгличе-нии диаметра частиц в гидрозоле серебра в 100 раз скорость броуновского движения снижается в 10 раз, тогда как скорость седиментации возрастает в Ю раз /34/. Как следствие, после увеличения размера частиц до определенных пределов броуновское движение, повышающее кинетическую устойчивость системы, перестает практически сказываться и дальнейшее увеличение размера частиц резко снижает время, необходимое для осаждения. [c.129]

    Чем объяснить различия в значениях средних молекулярных масс, определенных методом ультрацентрифугирования по скорости седиментации и при установивщемся равновесии [c.72]

    Эти факты все больше склоняют к мысли, что причина осер-непностн нефтей лен ит в региональных условиях бассейна седиментации. Можно думать, что сероводородное заражение отдельных участков водного бассейна привело еще на начальных стадиях седиментации к внедрению серы в органическое вещество со всеми вытекающими отсюда последствиями. Локальное сероводородное заражение отдельных участков даже одного общего морского бассейна в определенные периоды времени вполне возможно. Совсем недавно сероводородное заражение открыто в Аравийском море, далеко от береговой черты. Все это может хорошо объяснить региональный характер осернеяности нефтей. [c.181]

    Все белки денатурируются под действием кислот или при нагревании, что проявляется в коагуляции и уменьЩенин растворимости, а также в потере специфических биологических свойств. Определение молекулярного веса белков является трудной задачей. Исходя из содержания железа в гемоглобине крупного рогатого скота, было найдено, что молекулярный вес этого белка лежит в пределах 16 000— 17 000. Молекулярный вес казеина, определенный по содержанию легко отщепляющейся серы, равен 16 000 и т. д. Подобные выводы, однако, справедливы лншь прн том условии, что данный белок однороден и содержит в своей молекуле только один атом того элемента, который используется для расчета молекулярного веса. Криоскопическое определение молекулярного веса затрудняется тем, что даже растворимые белки образуют коллоидные растворы наблюдаемое малое понижение точки плавления соответствует большому весу мицеллы. Более подходящими являются методы, основанные на определении скорости диффузии и вязкости. Помимо них практическое значение приобрел предложенный Сведбергом способ определения велич1п-1ы частиц по скорости седиментации в ультрацентрифуге. [c.396]


Смотреть страницы где упоминается термин Седиментация определение МБР: [c.138]    [c.57]    [c.142]    [c.537]    [c.537]    [c.277]    [c.23]    [c.29]    [c.55]   
Экспериментальные методы в химии полимеров - часть 2 (1983) -- [ c.114 ]

Экспериментальные методы в химии полимеров Ч.2 (1983) -- [ c.114 ]




ПОИСК





Смотрите так же термины и статьи:

Величина поверхности внешней, определение методом седиментации

Высокоскоростная масляная ультрацентрифуга для определения скорости седиментации

ИССЛЕДОВАНИЕ ГИДРОДИНАМИЧЕСКИХ СВОЙСТВ МАКРОМОЛЕКУЛ И ПОЛИДИСПЕРСНОСТИ С ПОМОЩЬЮ УЛЬТРАЦЕНТРИФУГИ Метод скоростной седиментации определение коэффициента поступательного трения, константы седиментации и молекулярного веса

Константы седиментации, понятие и способ определения

Молекулярная масса, определение методом седиментации, диффузии

Определение МВР методом скоростной седиментации

Определение ММР разветвленных полимеров сочетанием методов ГПХ и седиментации

Определение коэффициента седиментации

Определение коэффициента седиментации по положению границы

Определение молекулярновесового распределения (МБР) методом скоростной седиментации

Определение молекулярных весов по коэффициентам седиментации

Определение молекулярных масс по коэффициентам седиментации

Определение полидисперсности по скорости седиментации

Определение размера частиц по скорости седиментации

Определение размера частиц по скорости седиментации в ультрацентрифуге

Определение размеров молекул поликарбонатов на основе бисфенола А методами седиментации, диффузии и вискозиметрии

Определение распределения по коэффициентам седиментации

Определение степени разветвленности и ММР разветвленных полимеров с помощью комбинации скоростной седиментации и эксклюзионной хроматографии с использованием проточного автоматического вискозиметра

Определение формы частиц методом скоростной седиментации ИЗ Определение молекулярных весов полимеров методом скоростной седиментации

Отстаивание сгущение, седиментация определение

Плотность определение седиментацией в градиенте плотности

Поверхность внешняя, определение методом седиментации

Седиментации коэффициент определение по плато концентраци

Седиментационная граница определение коэффициента седиментации

Седиментация

Седиментация и определение молекулярного веса

Седиментация седиментации

Седиментация, определение скорости

Ультрацентрифуга для определения скорости седиментации

Экспериментальное определение коэффициента седиментации



© 2025 chem21.info Реклама на сайте