Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Волновые симметричные

    Таким образом, атомные Ь-орбитали двух атомов можно комбинировать двумя различными способами для получения двух молекулярных орбиталей - одной связывающей, а другой разрыхляющей. Связывающая орбиталь концентрирует электронную плотность между ядрами разрыхляющая орбиталь концентрирует ее за пределами межъядерной области и вообще не имеет никакой электронной плотности на плоскости, проходящей точно посередине между ядрами. Обе эти молекулярные орбитали симметричны относительно вращения вокруг прямой, соединяющей ядра сказанное означает, что при вращении вокруг данной прямой ни форма электронного облака, ни знак комбинации волновых функций не изменяются. Орбитали с такой симметрией называются сигма (а)-орбиталями. Связывающую орбиталь отличают при записи от разрыхляющей орбитали тем, что последней присваивают значок . [Молекулярные орбитали различных типов обозначаются символами сигма (0), пи (и), дельта (5),... по аналогии с обозначениями атомных орбиталей 5, р, [c.517]


    Энергетические уровни молекулярных орбиталей располагаются симметрично относительно энергетических уровней атомных орбиталей (рис. 6). Если в химической связи принимают участие р-электроны, то для я-орбиталей нормированные волновые функции имеют вид  [c.12]

    На первый взгляд парадоксально, что ненаправленные связи направляют отвердевание вещества по пути образования симметричных плотных структур, отличающихся высокой степенью упорядоченности, тогда как направленная связь толкает этот процесс в сторону образования аморфных веществ, которые выглядят как максимально разупорядоченные вещества. В самом деле, благодаря ковалентной составляющей связи атомы соединяются друг с другом в определенном порядке и в определенных положениях по отношению друг к другу, притом в одних и тех же, при одних и тех же условиях отвердевания. Пространственные конфигурации электронной волновой функции определяют взаимное расположение и порядок соединения атомов. Аморфные вещества вовсе не следует рассматривать как бесструктурные. Это вещества, обладающие крайне сложным, запутанным строением. Если для одного и того же состава вещества число вариантов кристаллической структуры весьма ограничено, число вариантов непериодической структуры для такого вещества бесчисленно велико. Примитивность кристаллических и сложность непериодических структур указывает на резкое различие творческих возможностей соответствующих структурообразующих факторов. [c.161]

    Молекулярные волновые функции, полностью симметричные относительно вращения вокруг межъядерной оси, называются сигма(а)-орбиталя-ми. Молекулярные волновые функции, изменяющие знак при вращении на 180° вокруг межъядерной оси, называются пи(т )-орбиталями. Как а-, так и г -орбитали могут быть связывающими (а или тс) либо разрыхляющими (ст или л )  [c.543]

    Этого еще недостаточно, чтобы полностью определить класс многоэлектронных функций. Дело в том, что в квантовой механике детализированный анализ принципа тождественности частиц, каковыми являются электроны, позволяет утверждать, что волновые функции систем тождественных частиц должны быть либо полностью симметричными, либо полностью антисимметричными функциями (должны преобразовываться по одному из двух одномерных неприводимых представлений группы перестановок из элементов). Полностью симметричной называют функцию которая при любой транспозиции не меняется  [c.53]

    Начнем с изучения влияния октаэдрического поля на полное представление, для которого базис образует совокупность -волновых функций. Чтобы получить это полное представление, необходимо найти элементы матриц, которые выражают результат действия каждой из операций симметрии группы на наш базис из -орбиталей. Характеры этих матриц содержат представление, которое мы ищем. Поскольку все -орби-тали четны, т. е. симметричны по отнощению к операции инверсии, в результате операции инверсии никакой новой информации получить не удастся. Таким образом, мы можем иметь дело с более простой чисто вращательной подгруппой О, а не О . Если вы хотите убедиться в этом сами, то вспомните, что в любой группе, включающей г (например, или Сзй), соответствующая группа вращений (например, или Сз) имеет то же самое неприводимое представление для двойных произведений, за исключением нижних индексов и и д в первой группе. Напомним, что -волновые функции состоят из радиальной, спиновой и угловой (0 и ф) компонент. Радиальной компонентой мы пренебрегаем в силу ее ненаправленного характера, поскольку она не меняется при любых операциях симметрии. Кроме того, мы примем, что спиновая компонента не зависит от орбитальной и в данной ситуации пренебрежем первой. Угол 0 определяется относительно главной оси, например оси вращения, поэтому он не меняется при любом вращении и им также можно пренебречь. Меняется только ф эта составляющая волновой функции выражается как е"" . (Для -орбиталей = 2, а т, принимает значения 2, 1, О, — 1, —2.) Для того чтобы определить влияние поворота [c.75]


    Результаты расчета энергии электронов в молекуле На представлены на рис. 1.32. Кривые 2 и 3 соответствуют выражениям (1.49) и (1.50) причем кривая, полученная расчетом с помощью симметричной волновой функции имеет вид, характерный для устойчивой молекулы,— она показывает образование химической [c.78]

    Существует три квантовые статистики. Одна из них — полная квантовая статистика (квантовая статистика Больцмана) — применима к тем системам, при изучении которых можно не учитывать или почти не учитывать требования симметрии (локализованные системы, разреженный идеальный газ). При изучении более сложных систем, например газов при очень низких температурах, электронного газа, жидкого Не и ряда других систем, оказалось, что игнорировать требования симметрии уже нельзя. Здесь следует учитывать полную волновую функцию, характеризующую всю систему в целом, которая должна быть по отношению к обмену частиц (см. 5) или антисимметричной (фермионы), или симметричной (бозоны). [c.309]

    Несколько расчетов простых систем показали, что теория возмущений второго порядка при правильно выбранных симметричных волновых функциях дает достаточно точные значения энергии [76, 93]. Однако из-за математических трудностей такие расчеты никогда не проводились для систем, которые были бы сложнее атомов гелия. С помощью метода, дающего почти такие же хорошие результаты, в исследуемую волновую функцию включали несколько корректирующих членов, выбранных с тем, чтобы удовлетворить Г дисперсионной энергии при предельно больших г, и после этого проводили вариационные расчеты [94]. Этот метод, обеспечивающий совместимые расчеты во всем интервале г, применялся к водороду [94] и гелию [92, 95], но распространить его на более сложные атомы, по-видимому, трудно. [c.209]

    Найдем вероятность нахождения электронов для молекулы водорода (для чего возведем в квадрат волновые функции как симметричного, так и антисимметричного состояний)  [c.84]

    Определите межъядерное расстояние (м) в линейной симметричной молекуле ХУг, если вращательная постоянная (выраженная в волновых числах) этой моле-< кулы равна 11,2 м-, а атомная масса V равна 32. [c.10]

    Из вышеизложенного очевидно, что периодичность заполнения электронных оболочек можно довольно хорошо представить себе, не рассматривая взаимодействия электронов между собой. Правда, не удается объяснить некоторые важные явления, которые лежат в основе, например, правила Хунда кроме того, нельзя определить строение даже такого простого атома, как гелий, в возбужденном состоянии. При изучении электронного взаимодействия прежде всего следует учитывать некоторые особенности рассмотренной в разд. 3.6 симметричной и антисимметричной волновой г1)-функции. Однако сначала рассмотрим эти чрезвычайно важные особенности (хотя они проявляются и в атоме гелия) взаимодействия на примере молекулы водорода —системы с двумя электронами. В следующей главе рассмотрены некоторые теоретические представления по проблеме образования химической связи. Следует лишь принять во внимание, что причины образования такого прочного атома, как гелий, те же, что и для молекулы водорода, как стабильной си- [c.59]

    Их называют симметричной и антисимметричной собственными волновыми функциями (разд. 3,6). [c.83]

    Если учесть межатомное взаимодействие, возрастающее по мере сближения атомов, то вырождение двух возможных состояний системы Tps и грА снимается. Расчет изменения энергии за счет возмущающего воздействия здесь опущен остановимся только на конечных результатах такого расчета и дадим качественное описание поведения системы. Устойчивое состояние в противоположность невозмущенному состоянию имеет более низкую энергию и соответствует симметричной волновой функ  [c.84]

    Следует лишь еще раз отметить, что именно характер изменения потенциала вблизи ядра —причина наибольшей предпочтительности в энергетическом отношении той или иной (симметричной или антисимметричной) многоэлектронной волновой функции. Для двухъядерной системы (молекулы водорода Нг) — это симметричная волновая функция. Однако если обратиться к системе с электронами, имеющими различные волновые функции и одинаковую энергию (например, р- или -электроны атома), то наиболее выгодна в энергетическом отношении антисимметричная функция электроны при такой геометрии потенциала как бы избегают друг друга. Это и послужило причиной введения правила Хунда (разд. 5.5). Так как функция [c.86]

    Однако этому состоянию, как мы видели, соответствует антисимметричная функция, т. е. состояние является неустойчивым, я ядра атомов отталкиваются друг от друга. При перестановке электронов с симметричным спином 1- - 3 также получается антисимметричная волновая функция [c.89]

    Молекулярные орбитали обозначают соответствующими символами, исходя из их поведения при операциях симметрии. Так, если орбитали ст-типа рис. 23, 27) мысленно повернуть вокруг межъядерной оси молекулы на 180°, го полученная форма орбиталей будет неотличима от первоначальной. При ювороте знак волновой функции этих орбиталей не изменяется орбиталь сим-мвтрична относительно этой операции. Аналогично ведет себя атомная s-орби-галь. Поэтому молекулярные орбитали, симметричные относительно вращения кжруг межъядерной оси, обозначают греческой буквой ст (аналог латинского s). [c.54]


    Определять из справочника волновое число симметричного палентного колебания метана. [c.64]

    Волновое уравнение Шредингера (2.23) имеет две особенности во-первых, оно лппейно относительно волновой функции и, во-вторых, симметрично относительно обраш,ения времени. Второе свойство позволяет установить соотношения между сечениями и коэффициентанш скорости прямой и обратной реакций в процессах типа (2.3) или (2.9). Статистическое соотношение менэду сечениями называется принципом микроскопической обратимости, а статистическое соотношение между коэффициентами скорости — принципом детального равновесия. [c.60]

    Не вдаваясь в обсуждение математической стороны дела, отметим лишь наиболее суш,ественные качественные аспекты проблемы Хунда. Самой важной чертой энергетического спектра, получаемого при рас-стуютрении этой проблемы, является его парный (дублетный) характер, поскольку соответствующие волновые функции могут быть как симметричны, так и антисимметричны относительно плоскости, проходящей через начало координат и перпендикулярной оси R (рис. 25а). Иными словами, спектр энергии включает пары колебательных энергетических уровней И — колебательное квантовое число), рас- [c.116]

    Применение вариационного метода дает два решения системы уравнений (1.44), в одном случае i = Сг, в другом i 2 = — i. Таким образом, возможны два варианта волновой функции (1.48) ijis и (индексы 5 и А обозиа чают симметричная и антисимметричная)  [c.77]

    Чтобы понять физический смысл симметричной и антисимметричной функций, вспомним принцип Паули. Согласно этому принципу в атомной или молекулярной системе не может быть двух электронов, у которых все четыре квантовых числа были бы одинаковыми. Квантовые числа определяют вид волновой функции, характеризующей состояние электрона. Таким образом, согласно принципу Паули в одной системе не может быть двух электронов в одинаковом состоянии. Поскольку прн перестановке электронов симметричная функция не изменяется, то может показаться, что эти электроны находятся в одном и том же состоянии, а это противоречит принципу Паули. Однако получаемые решением уравнения Шредингера волновые функции атома водорода (1.45), из которых составлена функция (1.48), не учитывают спин электрона. Чтобы электроны в молекуле, состояние которых выражается симметричной (-функцией, отличались по состоянию, они должны иметь различные спиновые квантовые числа, т. е. эти электроны будут иметь противоположно направленные, или антипараллель-ные спины. [c.78]

    Как показали Гейтлер и Лондон, электронная плотность в области между ядрами в молекуле Нг оказывается выше, чем простое наложение электронной плотности атомов. Эта повышенная плотность электронного заряда между ядрами удерживает их вместе, поскольку пребывание двух электронов в поле двух ядер энергетически выгоднее нахождения каждого из них в поле одного ядра. Пара электронов, ставшая общей двум ядрам, обусловливает химическую связь в молекуле. Так как функция (18.1) симметричная, то из принципа Паули следует, что образование молекулы На с такой функцией возможно только, если спины электронов антипараллельны. Полная волновая функция Фмол будет при этом антисимметричной по отношению к перестановке координат электронов. [c.55]

    Во-вторых, при применении микросостояний для характеристики изучаемой системы нужно учесть неразличимость частиц, выражающуюся в виде требований перестановочной симметрии, накладываемых на волновые функции (см. 1 и 5). В природе существуют по отношению к обмену частиц только двоякого рода частицы — бозоны и фермионы (см. 5). Состояния систем, построенных из бозонов, описываются полными симметричными функциями, а состояния систем, построенных из фермионов, — полными антисимметричными функциями. Естественно, что из-за указанных требований симметрии в системах, построенных из нелокализованных бозонов или фермионов (такие частицы будут неразличимы из-за отсутствия локализации ), будет реализоваться меньшее число микросостояний, чем при отсутствии требований симметрии. Это меньшее число реализующихся микросостояний будет различным для систем, построенных из бозонов, и систем, построенных из фермионов, и это обстоятельство существенным образом скажется при вычислении средних, в частности, при вычислении термодинамических свойств. Так, термодинамические свойства Бозе-газа (газ является примером нелокализован-ной системы) будут отличаться от термодинамических свойств Ферми-газа. [c.287]

    Пространственная разделенность электронных состояний заключается в том, что электронные облака различных оболочек локализованы в разных областях пространства и сравнительно мало перекрываются. Пространственное разделение обусловлено двумя причинами. 1) принципом Паули, согласно которому на одной пространственной орбитали может находиться не более двух электронов с противоположными спинами, а следовательно, при последовательном заселении уровней электроны должны располагаться на все новых орбиталях 2) конкретным видом самосогласованного потенциала, который определяет вид пространственной орбитали. Действительно, сравним трт сферически симметричных потенциала - потенциал сферически симметричной прямоугольной потенщ1альной ямы с бесконечными стенками, кулоновский потенциал и хартри-фоковский потенциал какого-нибудь атома, например атома натрия. 1 адраты радиальных волновых функций, соответствующих нескольким первым связанным -состояниям в этих потенциалах, изображены на рис. 19, а, б, в. Видно, что в случае постоянного потенциала, который имеет место внутри прямоугольной потенциальной ямы, нельзя вьщелить такую область пространства, в которой было бы локализовано только одно состояние — в любой области пространства примерно одинаковую плотность будут иметь много разных состояний. В случае куло- [c.277]

    Элементарным решением этого уравнения является е , где собственное значение В вычисляется пз соотпошепия (7.224). Было также показано, что это решение удоплетворяет стационарному волновому (диффузионному) уравнению (см. 7.4,ж). Далее, единственным решением диффузионного уравнения (5.134), которое сферически симметрично и всюду ограничено, является [ср. с уравнением (5. 139)] [c.273]

    Как уже тмечалось, дальнодействующие силы появляются в расчетах второго порядка с антисимметричными (простое произведение) волновыми функциями, а короткодействующие силы— в расчетах первого порядка с симметричными волновыми функциями. На некоторых промежуточных расстояниях два вычисленных значения энергии могут быть сравнимы по величине, но вряд ли их можно просто сложить вместе, так как они были получены в результате несовместимых расчетов. Совместимый расчет должен использовать достаточно симметричную волновую функцию и продолжаться по крайней мере до второго порядка. Он даст новый ряд членов энергии, которые обычно называются обменными членами второго порядка. Эти члены не имеют существенного значения при небольших расстояниях по сравнению с обменом первого порядка и достаточно быстро уменьшаются с увеличением расстояния по сравнению с дисперсионной энергией. Однако при промежуточных расстояниях обменные силы второго порядка не являются пренебрежимо малыми. Существование таких членов впервые было отмечено Эйзеншитцем и Лондоном и затем рассматривалось в работе Маргенау [90]. Маргенау отметил также, что основной причиной неудачи ряда для дисперсионной энергии (4.77) при промежуточных расстояниях г является отрицание симметрии в рассматриваемых волновых функциях. Мультипольное разложение гамильтониана также становится неудовлетворительным при промежуточных г, однако вместо полного гамильтониана можно использовать однопольное приближение [69, 91]. Если обменные члены второго порядка рассматривать отдельно, то, как и в случае членов первого порядка, они часто аппроксимируются одной экспонентой [90, 92. Тем не менее расчет их исключительно сложен, и поэтому [c.208]

    Экспериментально обнаружено, что одноатомные газы, такие, как Не, Ne, Аг, поглощают излучение с длинами волн существенно короче 1 мкм в линиях, аналогичных наблюдаемым в солнечном спектре. Большая часть сказанного относится и к симметричным двухатомным молекулам типа N2 и 0.2, за исключением области очень высоких давлений, когда вследствие молекулярных соударений возникает наведенный дипольный момент. Асимметричные двухатомЕ1ые молекулы типа СО, N0 и многоатомные молекулы типа СО ,, Н. О сильно поглощают в определенных интервалах волновых чисел (или длин волн), которые называются полосами поглощения (рис. 4). Из рисунка видно, что Oj имеет полосы 15 4,3 и 2,7 мкм. Как следует из рис. 4, полосы 9,4 и 10,4 мкм в окрестности 1000 см" (напомним,, что v, см )—IOVX (мкм) сильно поглощают при температурах существенно выше 300 К, однако при 300 К поглощение отсутствует. Такие полосы называют горячими. При высоких давлениях (Р>0,5 МПа) в СО появляется индуцируемая давлением полоса 7,5 мкм. [c.486]

    Из равенства (I, 29) видно, что 5-орбиталн не зависят от углов т и ф и поэтому сферически симметричны (рис. 4). Пространственная ориеитация угловых волновых функций для р-орбиталей зависит от углов тЭ и ф и определяется максимумом соответствующих трнгогю-метрических функций синуса или косинуса. Как видно из табл. 1, Ур имеет максимальное значение при = 0, т. е. направление, задаваемое этим значением угла, есть направление преимущественной ориентации этой орбитали. Максимальное значение грр соответ- [c.20]

    Согласно уравнениям (1,61) и (1,62) величина l3i в (1,76) представляет собой симметричную волновую функцию или связующую орбиталь, а xfig в (1,77) — антисимметричную волновую функцию, или разрыхляющую орбиталь. Молекула этилена имеет два я-элек-трона. В основном состоянии молекулы эти электроны должны занимать самую низкую по энергии молекулярную орбиталь, т. е. i ii. Полная энергия этого состояния может быть найдена по уравнениям (1,39) и (1,73)  [c.34]

    Не считая выясненным вопрос об энергии связи, кратко рассмотрим смысл термина прочность связи . В квантовой химии термин прочность связи или, более точно, прочность связи атомных орбиталей связана с эксцентриситетом (гибридной или негибридной атомной орбитали). Прочность связи оценивается по максимуму углового распределения интенсивности волновой функции по сравнению со сферически-симметричной 5-орбиталью [1]. Таким образом, прочность хр -гибрида равна 4 1 (0 = 54°44, ф = 45°)/(1/4я) /2 = 2. Другие представляющие интерес гибриды имеют следующие прочности связи прочность связи р -гибрида (пирамидального) равна 1,732 хр-гибрида (плоского треугольного) 1,991 и хр-гибрида (линейнего) 1,932. [c.107]

    Если в системе содержится два или несколько видов тождественных частиц, то свойства симметричности или антисимметричности волновой функции относятся лишь к перестановкам переменных тождественных частац одного вида. В химических приложениях этот тип симметрии рассматривается при изучении вращательных спектров молекул, содержащих тождественные ядра. [c.54]

    При формировании качественных представлений об электронном строении атомов важная роль принадлежит приближению центральносимметричного потенциала, на основе которого атомную орбиталь записывают в виде произведений радиальной и сферической функций. Принцип Паули и приближение центрально-симметричного поля позволяют понять оболочечное строение атома и установить конфигурацию основного состояния. В тех случаях, когда можно ожидать несколько конкурирующих конфигураций, вопрос их выбора рещается либо экспериментально, либо численными расчетами в приближении Хартри — Фока. Лишь в исключительных случаях для установления терма основного состояния (см. гл. 3, 7) требуется построение более сложной, по сравнению с методом Хартри — Фока, волновой функции в форме наложения конфигураций. Эту логику рассуждений переносят и на теорию злектрон-ного строения молекул, однако здесь возникают новые вопросы. [c.187]

    В случае свободного атома водорода волновые функции известны точно. Тем не менее для улучшения качества МО следует ввести ряд дополнительных функций с точкой центрирования на протоне. Известным обоснованием тому являются следующие соображения. Локальное поле, в котором движется электрон вблизи какого-либо из ядер в молекуле, не обладает сферической симметрией. Из этого потенциала можно выделить главную, сферически-симметричную часть и дополнительное слагаемое, присутствие которого вызывает деформацию (поляризацию) волновых функций, вычисленных для сферически<имметричного потенциала. формация волновых функций атома лития при образовании химической связи уже была учтена ранее при введении 2ро-функции. Аналогичным же образом можно добавить 2ра-поляризующую функцию и на атоме водорода. Добавление поляризующих функций на одном центре сопровождается, как правило, в практике расчета изменением числа базисных функций на другом центре. В примере молекулы LiH введения 2р(Н)-функций целесообразно сочетать с добавлением Зс -функций, центрированных на атоме Li. Проблема нахождения сбалансированного базиса представляет самостоятельную задачу. [c.223]

    Если координаты частиц совпадают, т. е. Х = Х2, после подстановки в вышеприведенные уравнения получим, что 11за=0, а ф5 имеет некоторое конечное значение. Напрашивается один из вариантов трактовки несмотря на принятое допущение об исключении взаимодействия, между частицами действует какая-то сила , которую можно было бы назвать обменной силой . В природе известен другой пример того, что в системе, состоящей из большого числа частиц, некоторое состояние предпочтительнее по сравнению с другими возможными состояниями системы. При этом оказывается ненужным привлекать к рассмотрению никакие силы для объяснений достаточно понятие энтропии, введенного термодинамикой. Таким образом, легко видеть, что если учесть взаимодействие частиц, т. е. их электростатическое притяжение или отталкивание, то из-за различий в характере движения электронов в состояниях т15а и ips вырождение снимается. Оба состояния характеризуются различными энергиями. Какое состояние при этом устойчиво — симметричное или антисимметричное,— зависит от значения потенциала, под действием которого находятся частицы. Если последний равен нулю, то принимается во внимание только электростатическое взаимодействие электронов между собой и состояние, характеризующееся волновой функцией трА, устойчивее , чем для функции фз. Как было показано в разд. 3.6, функция фл описывает состояние электронов с одинаковым спином. В этом случае обменное взаимодействие коррелирует с кулоновским взаимодействием. Такое обменное взаимодействие для антисимметричной функции ifiA называют также корреляцией по Ферми . В -фз-состоянии такой корреляции с кулоновским взаимодействием не существует. [c.83]


Смотреть страницы где упоминается термин Волновые симметричные: [c.54]    [c.63]    [c.72]    [c.73]    [c.77]    [c.77]    [c.26]    [c.28]    [c.28]    [c.37]    [c.64]    [c.89]    [c.89]    [c.134]   
Введение в курс спектроскопии ЯМР (1984) -- [ c.158 ]




ПОИСК





Смотрите так же термины и статьи:

Антисимметричные волновые функции и запрет Паули также Волновые функции, симметричные

Волновые функции антисимметричные и симметричные

Оси симметричности

Симметричная волновая функция

Симметричные по отношению к ядрам волновые

Симметричные свойства волновых функций

также Волновое уравнение антисимметричная симметричная

также Волновые функции, симметричные



© 2025 chem21.info Реклама на сайте