Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Классификация возможных состояний системы

    Дальнейшее развитие теории катализа тесно связано с исследованием состояния катализатора во время реакции. Принципы структурного и энергетического соответствия, оставаясь решающими, должны относиться к системе катализатор — реагирующее вещество, сложившейся ко времени достижения стационарного состояния катализатора. Степень окисления поверхностных атомов катализатора, природа лигандов и состав промежуточного координационного комплекса определяют направление реакции и лимитирующие стадии. Решающую роль играют методы определения состояния катализатора и всей системы во время реакции. Одним из таких методов является измерение потенциала (или электропроводности) катализатора во время реакции. Легче всего это сделать в проводящих средах как в жидкой, так и в газовой фазе для гетерогенных и гомогенных катализаторов. В окислительно-восстановительных процессах структурным фактором являются не только размеры кристаллов и параметры решеток, но и кислотно-основные характеристики процессов. Всякая поверхность или комплексное соединение представляют собой кислоту или основание по отношению к реагирующему веществу, а это определяет направленность (ориентацию) и энергию взаимодействия вещества с катализатором. Для реакции каталитической гидрогенизации предложена классификация основных механизмов, основанная на степени воздействия реагирующего вещества на поверхность катализатора, заполненную водородом. В зависимости от природы гидрируемого вещества в реакции участвуют различные формы водорода. При этом поверхность во время реакции псевдооднородна, а энергия активации— величина постоянная и зависящая от потенциала поверхности (или раствора). Несмотря на локальный характер взаимодействия, поверхность в реакционном отношении однородна и скорость реакции подчиняется уравнению Лэнгмюра — Хиншельвуда, причем возможно как взаимное вытеснение адсорбирующихся веществ, так и синергизм, т. е. увеличение адсорбции БОДОрОДЗ ПрИ адсорбции непредельного вещества. Таким образом, созданы основы теории каталитической гидрогенизации и возможность оптимизации катализаторов по объективным признакам. Эта теория является продолжением и развитием теории Баландина. [c.144]


    Что же касается общетеоретических вопросов, то при описании многих тем школьного курса химии учение о периодичности позволяет глубже раскрыть их содержание. Так, при изучении водных растворов следует обратить внимание на свойства растворителя (вода) и свойства растворяемых веществ (типы связи, строение молекулы, степени окисления), которые определяют такое свойство веществ, как их растворимость, поведение в воде (электролитическая диссоциация, гидролиз, окисление—восстановление). При описании состава химических соединений следует обратить внимание на взаимосвязь классификации соединений по составу с положением элементов в системе (совокупность свободных атомов, номер группы и периода). Это дает возможность устанавливать связи между разными классами соединений (оксиды, фториды, хлориды, гидриды, интерметаллиды) и видеть особенности каждого из них по составу (насыщенные или ненасыщенные молекулы), по агрегатному состоянию и строению (водородные соединения неметаллов, как правило, газообразны при обычных условиях, гидриды типичных металлов — ионные кристаллы) и т. п. [c.71]

    Наиболее распространена классификация дисперсных систем по агрегатному состоянию дисперсной фазы и дисперсионной среды. Каждая из этих фаз может быть в трех агрегатных состояниях газообразном, жидком и твердом. Поэтому возможно существование восьми типов коллоидных систем (табл. 22.2). Система газ в газе не входит в это число, так как является гомогенной молекулярной, в ней отсутствуют границы раздела. [c.368]

    В этой главе под диаграммой состояния системы мы будем подразумевать диаграмму, по координатным осям которой отложены два из интенсивных факторов равновесия системы, например — температура и давление, или же концентрации, или химические потенциалы двух из ее компонентов. Под названием с и стемы понимаете я, как обычно, совокупность определенных фаз, обладающая, согласно правилу фаз, определенным числом степеней свобод, в зависимости от числа рассматриваемых фаз, числа слагающих компонентов и характера наложенных на систему условий. Так, например, моновариантная система обладает одной степенью свободы, в соответствии с чем условия ее равновесия на диаграмме состояния изображаются линией. Нонвариантной системе (число степеней свобод п = 0) на диаграмме состояния соответствует определенная точка. Условия равновесия нонвариантной системы вместе с входящими в нее частными моновариантными и дивариантными системами изображаются на диаграмме состояния пучком линий, разграничивающих поля устойчивости дивариантных ассоциаций фаз системы. Эту классификацию систем по числу степеней свобод можно распространить и на системы, представляющие совокупности нескольких нонвариантных систем, т. е. системы, в которых общее число фаз превышает то, которое возможно в нонвариантной системе. Приложение правила фаз Гиббса к таким системам дает для них отрицательное число степеней свобод. Одновременное равновесное сосуществование всех фаз такой системы невозможно. Такие системы с отрицательным числом степеней свобод мы будем условно называть в этой главе мультисистемами. Фиг 81 представляет пример диаграммы состояния мультисистемы с п = —1, на чем мы остановимся далее. [c.162]


    Дальнейшее упрощение вычислений возможно при учете свойств симметрии системы. При этом, кроме упрощения решения, мы получим возможность классификации вращательных состояний по неприводимым представлениям соответствующей группы симметрии 19). [c.207]

    КЛАССИФИКАЦИЯ возможных СОСТОЯНИЙ СИСТЕМЫ [c.36]

    В связи с открытием и изучением КЗ ДНК приобрела значительную актуальность так называемая теория узлов и зацеплений (ТУЗ). В ТУЗ разработаны методы расчета статистических интегралов для замкнутых цепей. В этих случаях область интегрирования должна ограничиваться лишь той частью фазового пространства, которая отвечает топологически эквивалентным состояниям системы. Для этой цели были развиты численные, машинные методы, использующие классификацию возможных узлов и зацеплений. [c.255]

    Очевидно, что ферментативная активность должна существенно зависеть от pH среды. Макромолекулы белка содержат ионизуемые группы. То же относится к большинству субстратов, модификаторов и коферментов. Подробная классификация возможных влияний pH на ферменты дана Уэббом [16] (см. также [68]). Изменение pH может изменить состояние ионизуемых групп в активном центре или соседствующих с ним оно может также влиять на состояние неферментных компонент системы и на структуру глобулы локально или в целом. [c.394]

    Классификация проводится с использованием топологических особенностей диаграмм состояния, которые сводятся к взаимному расположению областей аморфного расслоения и кривых кристаллизации (плавления) и текучести полимера. В зависимости от топологии областей однофазного и двухфазного состояния системы и от вида равновесия получается ряд типов систем, объединяющих различные возможные слу чаи физического состояния систем, а также внешних форм их. [c.118]

    Рассмотренная классификация основана на уровнях и видах радиации, определяемых той или иной системой. В основу классификации возможно также положить агрегатное состояние дозиметрической системы. Описаны дозиметрические системы на основе газов, жидкостей и твердых соединений. К первому типу относятся ацетиленовая дозиметрическая система и система, состоящая из газообразной закиси азота ко второму — водные растворы, гели, индивидуальные жидкие соединения и смеси жидкостей и, наконец, к третьему — пластмассы, разнообразные стекла, щелочно-галоидные кристаллы. [c.332]

    Исходя из этого, Зигмонди упростил классификацию Во. Оствальда, приняв в качестве классификационного признака лишь агрегатное состояние дисперсионной среды. Тогда восемь возможных классов Во. Оствальда сводятся всего к трем, а именно к системам с газовой, жидкой и твердой дисперсионной средой. [c.25]

    Если классификацию проводить по агрегатному состоянию -фаз, то в зависимости от комбинации подвижной и неподвижной фазы соответственно возможны следующие системы  [c.46]

    Рассмотрим системы, в которых ряд твердых растворов ненрерывен, т. е. компоненты в твердом состоянии неограниченно растворимы один в другом. Изотермы удельных изобарных потенциалов таких систем в твердом и в жидком состояниях аналогичны — та и другая обращены вверх вогнутостями. Возможны три варианта хода изотерм, приводящие к трем первым типам по классификации Розебома. [c.112]

    Классификация восстановительных работ, которые возможны в системе, проведена по трем признакам состояние системы (элемента) в момент начала восстановительной работы состояние системы (элемента) в момент окончания восстановительной работы признак предварительной подготовки к началу восстановительной работы (известен или неизвестен заранее момент начала восстановительной работы). [c.286]

    Такое деление достаточно условное, т.к. фундаментальной причиной, определяющей в целом состояние нефти как системы, в том числе и вероятность выделения твердой макрофазы, безусловно является компонентный состав самой нефти. Однако такая вероятностная зависимость возможности образования новой твердой макрофазы от химсостава нефти не означает однозначную реализацию ее в любых условиях. Она может быть реализована лишь через вторую группу причин, определяющих состояние нефти (выделение кристаллов и формирование оптимальных дисперсных частиц), при определенном сочетании третьей фуппы причин (оптимальные температура, скорость потока, наличие диспергента и др.). Предлагаемая классификация причин, влияющих на процесс формирования новой твердой макрофазы, позволяет широкий спектр случаев выделения твердых нефтяных отложений рассматривать более обобщенно с единых позиций. [c.10]

    Многообразие физических форм и свойств систем полимер— растворитель, обусловленное как различием в свойствах самих компонентов, так и положением системы на диаграмме состояния, делает целесообразной классификацию этих систем. Для такой классификации единственной возможностью является использование геометрических приемов анализа, которые были описаны применительно к этим системам в предыдущей главе и которые заключаются в использовании соотношения положений, а не соотношения величин. Основные принципы такого анализа сводятся к определению общей конфигурации областей распада системы на равновесные фазы, к установлению тенденции в смещении кривых фазового равновесия при переходе от низкомолекулярного компонента к полимеру, к оценке взаимного положения кривых аморфного и кристаллического равновесий и т. п. Уже отмечалось, что в настоящее время нельзя решить задачу аналитического (функционального) описания всех этих соотношений из-за отсутствия уравнения состояния конденсированных систем, и тем более систем с участием полимерного компонента. Именно поэтому в основу классификации систем полимер — растворитель положено исследование диаграмм состояния. [c.84]


    Интенсификации процессов переноса в промышленных аппаратах для обработки дисперсных материалов во взвешенном состоянии методом параллельно-струйного секционирования реакционного объема посвящены работы Минаева, Буевича и других авторов [381. В этих работах обсуждаются модели струйного течения газа в слое, основные характеристики структуры слоя и способы организации межфазного взаимодействия, классификация существующих режимов, возможность управления движением системы газ — твердое тело в аппаратах большой единичной мощности. Таким образом, развивается новое направление использования взвешенного слоя, для которого характерно параллельно- [c.254]

    В приведенной ниже схеме молекулы СдН ,, все атомы углерода которых находятся в 5р2-гибридных состояниях, классифицируются согласно их топологии. Далее мы ограничимся рассмотрением конденсированных систем с боковыми цепями или без таковых. Системы с топологией типа дифенила исключаются. Все эти ограничения способствуют только упрощению необходимой в этой работе классификации, вообще же следует отметить, что, согласно тем же принципам, возможно провести классификацию систем, содержащих гетероатомы, атомы в различных состояниях гибридизации и систем, в топологическом отношении отличных от избранных нами. И можно показать, что в первом приближении поведение членов каждого ряда прямо связано с их топологией. [c.187]

    Даже в системах, содержащих до четырех компонентов, оказывается довольно много различных типов особых точек, еще большего разнообразия следует ожидать с увеличением числа компонентов. В связи с этим целесообразно построить определенную систему классификации особых точек, которая описывала бы в сжатой форме возможные варианты и позволяла просто определять тип особой точки при анализе диаграмм состояния и разработке схем дистилляции и ректификации. [c.48]

    Чтобы найти результаты процесса при больщом изменении состояния системы, т. е. для реактора в целом, требуется- решение дифференциальных уравнений скорости от начального до конечного состояния системы. Это решение различно для разных типов химических реакторов. Каждый реактор характеризуется своим математическим уравнением, совместное решение которого с дифференциальными уравнениями скорости и теплопередачи дает возможность решить поставленную задачу. Это наиболее просто достигается для идеальных химических реакторов. Существует три типа идеальных реакторов их классификация основана на структуре потока реакционной массы. Один из них — периодический, а два других — непрерывного действия идеального вытеснения и полного смешения. [c.220]

    Между состояниями веществ, четко определяющими их положение в каждой из групп, существуют еще и промежуточные состояния, обусловленные динамической связью между описанными системами. Так, молекулярные растворы могут быть частично диссоциированы (слабые электролиты), а при ассоциации частиц они приближаются к коллоидным растворам. Промежуточное положение между коллоидными и молекулярными растворами занимают и высокомолекулярные соединения. Последние могут также содержать ионогенные группы, способные (в определенных условиях) обменивать подвижные ионы на ионы, находящиеся в растворе. Учитывая взаимосвязь подобных систем, в разработанной классификации предусмотрена возможность перевода загрязняющих веществ из одного [c.55]

    Решение задач с помощью ЭВМ возможно только при наличии единого цифрового языка, обеспечивающего сопоставимость поступающей информации и ее однозначное понимание сверху донизу. Отсюда вытекает необходимость стандартизации, базирующейся на единой системе классификации и кодирования всей необходимой технико-экономической информации. Как уже говорилось, классификация примесей воды по фазово-дисперсному состоянию может послужить плодотворной основой для такой стандартизации. [c.528]

    Близость и частичное совпадение реакций, рассматриваемых как реакции разного типа в различных классификациях химических соединений и химических реакций, не удивительна ведь по существу все химические изменения (т. е. реакции) обусловлены изменениями в состоянии внешних электронных оболочек атомов, ионов, молекул. А такие изменения с точки зрения пространственной могут состоять либо в переходе электронов от одних атомов к другим (окислительно-восстановительная реакция), либо в нх обобществлении взаимодействующими атомами (образование химических связей — все остальные виды реакций). С позиций термодинамики все реакции сопровождаются изменениями энтальпии и энтропии, и то или иное пространственное перераспределение электронов при прохождении химических реакций определяется такими возможными изменениями энтальпии и энтропии в системе, при которых суммирующее их изменение термодинамического потенциала (энергии Гиббса или Гельмгольца) будет отрицательным, т. е. термодинамический потенциал будет уменьшаться. [c.22]

    Диагностирование неполадок облегчается в том случае, когда измерения делаются по нескольким переменным одновременно (или почти одновременно), возможно, через последовательные промежутки времени. На основе системы выборочных измерений инженер может отнести выборку к конкретному классу и начать, если необходимо, действия по исправлению неполадки. Словарь неполадок (известный также как таблица состояний, таблица решений или матрица распознавания) может помочь в классификации, однако, к сожалению, его сложность резко увеличивается с ростом числа измеряемых переменных, и поэтому такой вспомогательный инструмент имеет ограничения, даже в случае его перевода на машинный язык. [c.227]

    Указание размеров частиц или числа составляющих их атомов недостаточно для полной характеристики системы, так как при этом не учитываются свойства дисперсной фазы и свойства дисперсионной среды. В наиболее распространенной классификации в основу положено агрегатное состояние фаз, образующих дисперсную систему. Возможны следующие сочетания агрегатных состояний дисперсионной среды и агрегатных состояний дисперсной фазы (вначале указано состояние дисперсионной среды) Г/Ж, Г/Г, Ж/Г, Ж/Ж, Ж/Г, Г/Г, Г/Ж, Г/Г. Буквами Г, Ж и Г обозначены соответственно газообразное, жидкое и твердое состояния. Используя эти обозначения, приведем классификацию по агрегатному состоянию фаз. [c.10]

    Термодинамические способы расчета идеальных моделей горных пород можно выполнить с помощью классической, равновесной термодинамики, квазитермодинамики и неравновесной термодинамики. Способы равновесной термодинамики позволяют получить общие представления о физических первопричинах равновесия, провести классификацию моделей. Квазитермодинамика дает возможность рассматривать мгновенное состояние системы, близкое к состоянию равновесия, позволяет изучать только изотермические процессы без учета потока частиц. С помощью квазитермодинамики можно получить более точные характеристики горных пород. Наиболее полно количественно описать петрофизические модели можно при использовании для расчетов метода, базирующегося на законах термодинамики необратимых процессов, которые описывают открытые системы. Так или иначе все горные породы на протяжении своего существования являются системами открытыми, т. е. способными обмениваться с окружающей средой различными видами энергии. Этот обмен осуществляется в виде потока. Потоки электричества, тепла, радиоактивных частиц и т. п. вызываются соответствующими движущими силами — градиентами потенциала, температуры, концентрации и пр. При использовании термодинамики необратимых процессов в обычные формальные построения в явном виде вводится новый фактор — время. [c.35]

    Разделение и концентрирование имеют много общего как в теоретическом аспекте, так и в технике исполнения. Методы дпя решения задач одни и те же, но в каждом конкретном случае возможны модификации, связанные с относительными количествами веществ, способом получения и измерения аналитического сигнала. Например, дпя разделения и концентрирования применяют методы экстракции, соосаждения, хроматографии и др. Хроматографию используют главным образом при разделении сложных смесей на составляющие, соосаждение — при концентрировании (например, изоморфное соосаждение радия с сульфатом бария). Можно рассмотреть классификацию методов на основе числа фаз, их агрегатного состояния и переноса вещества из одной фазы в другую. Предпочтительны методы, основанные на распределении вещества между двумя фазами такими, как жидкость— жидкость, жидкость— твердое тело, жидкость—газ и твердое тело—газ. При этом однородная система может цревращаться в двухфазную путем какой-либо вспомогательной операции (осаждение и соосаждение, кристаллизация, дистилляция, испарение и др.), либо введением вспомогательной фазы — жидкой, твердой, газообразной (таковы методы хроматографии, экстракции, сорбции). [c.210]

    Остановимся теперь на некоторых применениях формулы (П.40) для исследования структурных закономерностей диаграмм состояния в тройных системах. При этом обратим внимание на вопрос об определении и классификации всех возможных типов диаграмм в тройных системах, а также на вопрос об определении допустимых типов диаграмм в тройной системе при заданных диаграммах двойных систем. Рассмотрим систему уравнений  [c.47]

    По числу компонентов системы делят на одно-, двух-, трехкомпонентные и т. д., а по числу степеней свободы различают системы инвариантные, моновариантные и т. д. Такая классификация систем показана в табл. 5.3. Как следует из таблицы фазовых состояний, в трехкомпонентной системе при определенных температуре, давлении и составе, т. е. при Р = О, возможно наличие пяти фаз. Однако на треугольных диаграммах состояния трехкомпонентных систем при фиксированных значениях Р и Г могут быть показаны максимум три фазы. На пространственных диаграммах (типа приведенной на рис. 5.7) возможное сосушествование четырех фаз (трех фаз твердых и одной жидкой) идентифицируется как тройная эвтектика 4. Согласно правилу фаз, [c.259]

    В классификации процессов по агрегатному (фазовому) состоянию реагентов исходят из сочетания в системе трех возможных агрегатных состояний (газообразного, жидкого и твердого). В зависимости от этого выделяют следующие типы процессов (реакций). [c.448]

    Если возможен более чем один источник неполадки, диагностирование сводится к определению (после обнаружения случившейся неполадки) того оборудования или той его части, которые послужили причиной неполадки. Таким образом, диагностика неполадок — это определение того, в какой из подсистем или материальной среде нарушены предписанные им условия, необходимые для обеспечения нормальных эксплуатационных качеств процесса. Из-за взаимодействия частей технологического процесса очень трудно идентифицировать причину неполадки в сложных системах. Инженер стремится добиться максимально возможной степени различения причин неполадок, используя данные специальных контрольных опытов с наименьшим количеством вычислений. Однако если параметры, применяемые для классификации состояния оборудования с возможными неполадками, не являются однозначными, то очень мало надежды на то, что можно установить, какой элемент из нескольких служит источником неудовлетворительной работы. [c.12]

    Так, например, ГТ—Т означает тип реакций, в котором среди исходных веществ имеются газообразные и твердые, а среди продуктов реакции — только твердые вещества. Указанный шифр не дает, однако, числа реагирующих веществ и числа продуктов, а только их агрегатные состояния. Более совершенную классификацию этого рода разработал Хюттиг [3]. Его классификация типов химических реакций основана на принципе учета агрегатных состояний каждого реагирующего вещества и продукта реакции. Кроме реакции между объемными или трехмерными агрегатцыми состояниями Хюттиг учитывает также возможность протекания процессов на двухмерных фазовых границах или даже на практически одномерных образованиях, к которым могут быть отнесены ребра кристаллов, трещины на их гранях и нитевидные структуры. Такое расширенное представление об агрегатном состоянии является весь-м а важным для включения в общую систему также поверхностных реакций, в том числе гетерогенных каталитических процессов. Классификация Хюттига построена на учете начального и конечного фазовых состояний системы. Промежуточные состояния, лежащие между началом и концом реакции, учитываются в этой классификации лишь в том случае, если они отличаются от начального и конечного по своему фазовому составу. Так, если превращение исходного твердого вещества в твердый продукт реакции происходит через состояния твердого раствора, то, по Хюттигу, такая реакция представляет особый подвид более общего вида Т—Т. [c.182]

    Кроме того, опыт показывает, что различие в агрегатном состоянии диспергированного вещества (при неизменном агрегатном состоянии дисперсионной среды) не влечет за собой существенных изменений в свойствах коллоидной системы. В связи с этим классификация упрощается, и возможные девять типов дисперсных систем можно свес- [c.216]

    В классификации по фазовому принципу исходят из сочетания в системе трех возможных агрегатных состояний реагентов (газообразное, жидкое и твердое). Такое сочетание дает следующие типы реакций гомогенные и гетерогенные. [c.7]

    I. Все возможные состояния ХТС делятся на несколько классов (классификация состояний системы). Это разделение производится с целью определения таких т1ас-сов. чтобы для каждого из них применялись свои структуры или свои параметры алгоритма управления. Тем самым удается сильно сократить вычислительное время, необходимое для определения оптимальных управляющих воздействий. Эти различные классы могут характеризоваться разными функциями цели, различными математическими моделями объекта или различными возмущающими воздействиями  [c.374]

    Значение теории групп для квантовомеханического исследования молекул и кристаллов состоит в следующем во-первых, теория групп позволяет, исходя только из свойств симметрии системы, провести классификацию электронных и колебательных состояний молекулы и кристалла и указать кратность вырождения энергетических уровней системы во-вторых, на основе теории групп удается установить некоторые правила отбора для матричных элементов, существенные при расчете вероятностей переходов и других характеристик в-третьих, на основе теории групп можно провести качественное рассмотрение возможного расщепления вырожденного уровня энергии при изменении симметрии системы (например, появлении внешнего поля). Наконец теория групп позволяет существенно понизить порядок решаемых уравнений при использовании симметризованных (преобразующихся по неприводимым представлениям группы симметрии системы) функций благодаря тому, что матричные элементы операторов, вычисленные с такими функциями, удовлетворяют некоторым соотношениям общего характера. [c.6]

    Ближайшая задача заключается в обобщении результатов конфформа-ционного анализа рассмотренных и представленных в табл. 111.32 природных олигопептидов. Для достижения этой цели нельзя было привлечь по соображениям исключительно объективного характера все имеющиеся литературные данные (см. ниже), и мы были вынуждены ограничиться выбором в качестве базовых отмеченных соединений. Это обусловлено рядом причин. Во-первых, расчет пространственного строения перечисленных в таблице пептидов во всех случаях строился на основе единой теории. Во-вторых, в их конформационном анализе использовался один и тот же расчетный метод, который исходит из естественной классификации пептидных структур и охватывает все возможные состояния любой аминокислотной последовательности. В-третьих, в расчете соединений, перечисленных в табл. 111.32, использовались одни и те же потенциальные функции ван-дер-ваальсовых, электростатических и торсионных взаимодействий и водородных связей, одинаковая система их параметризации и единая валентная геометрия основных и боковых цепей аминокислотных остатков. Таким образом, выводы о характерных особенностях структурной организации молекул олигопептидов в этом случае можно формулировать, опираясь на унифицированный во всех своих деталях подход и на результаты исследования представительного набора объектов. При полуэмпири-ческом характере расчетной процедуры и потенциальных функций такое теоретическое и методическое единство является необходимым условием для корректного обобщения результатов, выявления общих закономернос- [c.388]

    Естественно, что состояние теории жидкостей и отсутствие необходимых методов их экспериментального исследования в первые два десятилетия нашего века привели к тому, что роль растворителя учитывалась либо с чисто химической точки зрения, либо с помощью привлечения таких его макроскопических характеристик, как диэлектрическая проницаемость и вязкость. В этом смысле интересно отметить, что в опубликованной в оригинале в 1953 г. обширной монографии Одрит и Клейнберга Неводные растворители [58] рассматривается их использование в качестве среды для проведения химических реакций, и весь материал изложен в этом свете. Отмечая специфические особенности воды как растворителя, авторы, подробно останавливаясь на таких ее свойствах, как малая электропроводность, амфотерность, легкость протекания в ней реакций нейтрализации, гидролиза и т. п., ограничивают характеристику причин своеобразия воды цитатой из монографии Яндера [59] Замечательное поведение воды объясняется главным образом строением ее молекулы, ее дипольным характером, ее малым объемом и свойствами, обусловленными этими факторами . Такой подход, оказавшийся весьма продуктивным для практики и приведший к возможности классифицировать растворители на химической основе, естественно, недостаточен для понимания внутреннего механизма сложных явлений, сопровождающих образование раствора и изменения его свойств с концентрацией и температурой. Тем не менее следует отметить успехи в классификации растворителей по их прото-фильности, по характерным группам, содержащимся в их молекулах, по их дифференцирующей и нивелирующей способности. Последняя система классификации достигла особенного совершенства в работах школы Н. А. Измайлова [6]. [c.21]

    Согласно классификации дисперсных систем по агрегатному состоянию возможно существование дисперсных систем с твердой дисперсионной средой. В зависимости от размеров частиц они могут быть коллоидными, микрогетерогенными и даже грубодис- персными системами с газовой, жидкой или твердой дисперрой фазой. В природе и технике эти системы широко распространены, [c.237]


Смотреть страницы где упоминается термин Классификация возможных состояний системы: [c.291]    [c.388]    [c.344]    [c.50]    [c.223]    [c.6]    [c.359]    [c.129]    [c.40]   
Смотреть главы в:

Термодинамика необратимых физико-химических процессов -> Классификация возможных состояний системы




ПОИСК





Смотрите так же термины и статьи:

Системы классификация

Системы состояние



© 2025 chem21.info Реклама на сайте