Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Щелочное плавление -Электроны

    Механизм щелочного плавления впервые сформулирован Н. Н. Ворожцовым [525, 526]. Трактовка реакции как нуклеофильной атаки ионом гидроксила углеродного атома с наименьшей электронной плотностью позволила объяснить как побочные реакции, в результате которых получаются фенолы, содержащие оксигруппу в том же положении, которое занимала сульфогруппа, так и случаи образования оксигрупп в свободном от сульфогруппы месте, например образование резорцина при щелочном плавлении /г-дисульфокислоты бензола. [c.407]


    Простые вещества. Медь, серебро и золото представляют собой металлы (соответственно красного, белого и желтого цвета) с гранецентрированной кубической решеткой. Поскольку у меди и ее аналогов в образовании связи принимают участие как П5-, так и (п—1) -электроны, то теплоты возгонки и температуры плавления у них значительно выше, чем у щелочных металлов. Медь, серебро и золото характеризуются исключительной (особенно, золото) пластичностью они превосходят остальные металлы также по тепло-и электрической проводимости. Некоторые константы рассматриваемых металлов приведены ниже  [c.621]

    Нитриты устойчивее НЫОг (в молекуле кислоты ничтожно малый ион Н+, внедряясь в электронную оболочку атома О, ослабляет связь N—0), но только нитриты щелочных металлов плавятся без разложения. При термическом разложении нитритов образуется оксид металла,. N0 и ЫОг. Нитриты щелочных металлов разлагаются выше температуры их плавления, образуя оксиды пли пероксиды металлов, N0 и Оа (так как при высоких температурах N02 распадается на N0 и О2). Нитриты, так же как и НМОг, обладают окислительной и восстановительной активностью. В растворах они постепенно окисляются, переходя в нитраты. [c.409]

    Помимо рассмотренных типов связи, особо выделяют металлическую связь, которая проявляется при взаимодействии атомов элементов, имеющих избыток свободных валентных орбиталей по отношению к числу валентных электронов. При сближении таких атомов, например в результате конденсации пара, электроны приобретают способность свободно перемеш,аться между ядрами в пространстве именно благодаря относительно высокой концентрации свободных орбиталей. В результате этого в решетке металлов возникают свободные электроны (электронный газ), которые непрерывно перемещаются между положительными ионами, электростатически их притягивают и обеспечивают стабильность решетки металлов. Таков механизм образования металлической связи у непереходных металлов. У переходных металлов механизм ее образования несколько усложняется часть валентных электронов оказывается локализованной, осуществляя направленные ковалентные связи между соседними атомами. Поскольку ковалентная связь более прочная, чем металлическая, у переходных металлов температуры плавления и кипения выше, чем у щелочных и щелочноземельных металлов, а также у переходных металлов с электронными оболочками, близкими к завершению. Это наглядно видно при сопоставлении температур плавления и кипения металлов 6-го периода (табл. 10). [c.37]


    Подобие электронной конфигурации обусловливает сходство химических и физических свойств этих элементов (щелочных металлов). Все они сравнительно легко теряют единственный валентный электрон, имеют низкие температуры плавления и кипения, низкую, плотность, образуют однотипные соединения, к примеру МегО, МеОН и др. [c.52]

    Очень высокая химическая активность щелочных металлов обусловлена низким ПИ], низкой температурой плавления, рыхлой, легко разрушаемой кристаллической структурой, малой плотностью. Все эти, а также многие другие характеристики ЩЭ в металлическом состоянии взаимно связаны, и общей причиной уникальных свойств ЩМ, конечно, является их особая электронная структура — наличие только одного электрона на электронной оболочке с главным квантовым числом п и поэтому очень непрочной, легко разрушаемой. [c.12]

    I группы (щелочными) надо обратить внимание на то, что радиусы атомов металлов И группы меньше, а число внешних электронов (т. е. связывающих), наоборот, больше. Поэтому можно ожидать более высоких температур плавления и большей плотности для металлов II группы, что действительно и наблюдается. При переходе от I группы ко II увеличивается энергия гидратации, так как сравнительно небольшие, но имеющие двойной заряд ионы металлов II группы энергично взаимодействуют с диполями воды. Это явление объясняет, почему у металлов II группы электрохимические потенциалы высоки и близки к потенциалам щелочных металлов. Несмотря на прочность решетки металлов II группы, диполи воды все-таки разрушают ее и увлекают ионы металлов в раствор. Электрохимическое поведение щелочноземельных металлов показывает, что на основании химической активности и положения в периодической системе еще нельзя судить о положении металла в ряду напряжений. [c.155]

    Несомненно, что высокие температуры плавления и кипения связаны с большим, чем у щелочных металлов, числом валентных элект()онов. Плавление и в этом случае мало изменяет состояние электронов, и перекрывание валентной зоны с зоной проводимости сохраняется как в твердом, так п в жидком состоянии, хотя проводимость щелочноземельных металлов, а именно бериллия, магния и стронция, заметно ниже проводимости щелочных металлов. [c.238]

    Гидриды щелочных и щелочноземельных металлов являются кристаллическими веществами с довольно высокими температурами плавления. Как и галогениды, они проводят ток в расплавленном состоянии, причем водород выделяется на аноде, так как ион Н заряжен отрицательно. В воде гидриды гидролизуются. Реакция с водой заключается в том, что протон и гидрид-ион получают поровну электронов Н++Н- = 2Н и образуются в конечном счете молекула водорода и гидроксид металла формально мы можем рассматривать гидрид как соль слабой кислоты Н—Н, и тогда реакция с водой будет вполне аналогична обычным реакциям гидролиза. [c.290]

    Сильное различие в температурах плавления н кипения следует объяснить различием прочности химической связи между атомами в металлах. Исследования показали, что в чистом виде металлическая связь характерна лишь для щелочных и щелочноземельных металлов. Однако у других металлов, и особенно переходных, часть валентных электронов локализована, т. е. осуществляет ковалентные связи между соседними атомами. А поскольку ковалентная связь прочнее металлической, то у переходных металлов температуры плавления и кипения, как это видно из рис. 5.4, намного выше, чем у щелочных и щелочноземельных металлов. [c.153]

    Атомы кальция, стронция и бария, обладая электронной конфигурацией Зр 4 , 4р 55 и 5р 6 , имеют несколько меньший второй ионизационный потенциал по сравнению с Al,Mg,Be. При формировании кристалла оба валентных 5-электрона делокализуются. Возникшие ионы имеют заполненные р-оболочки, что способствует образованию объемно-центрированной решетки. Плавление кальция, стронция и бария не сопровождается изменением расположения ионов, тип их упаковки напоминает распределение атомов щелочных металлов. Свинец (конф. [c.176]

    Возвратитесь к рис. 7.6 и 7.16. Видно, что температура плавления и энтальпии сублимации изменяются параллельно и связаны с размером атома (см. рис. 7.3). Чем меньше радиус атома щелочного металла, тем. .. (слабее, сильнее) происходит перекрывание электронных оболочек, тем. .. (ниже, выше) электронная плотность в зоне перекрывания, тем. .. (слабее, сильнее) металлическая связь между атомами. [c.342]

    Радий (1Кп]75 ) является гомологом щелочно-земельных металлов и ближайшим аналогом бария. Металлический радий впервые был получен электролизом расплава КаСЬ. Его получают также разложением азида Ка (N3)2 в вакууме при 180—250 °С. В компактном виде радий — серебристо-белый металл с плотностью 6,0 г/см и с температурой плавления около 960 С. В отличие от диамагнитного бария радий слабо парамагнитен (более легкий переход 1р для валентного электрона). [c.431]


    Но при низких температурах у лития и натрия устойчивы более плотные упаковки. Некоторые свойства щелочных металлов приведены в табл. 11. Из этой таблицы следует, что плавление не сопровождается заметным изменением координационного числа г. Расхождения между величинами г в твердой и жидкой фазах не выходят за пределы ошибок опыта. Проводимость уменьшается на 30—40%. Постоянная Холла почти не меняется [17]. Следовательно, состояние почти свободных электронов при плавлении не претерпевает существенных изменений. Замечательны оптические свойства щелочных металлов. Обладая большим коэффициентом поглощения света в видимой области спектра, они прозрачны для ультрафиолетовых лучей. Показатель преломления Б ультрафиолетовом диапазоне меньше единицы. При увеличении атомного номера щелочного металла область длин волн, для которых металл прозрачен, расширяется в сторону видимого спектра. Эти свойства щелочных металлов полуколичественно объясняются теорией, основанной на представлении о почти свободных валентных электронах в металлах. [c.179]

    Металлическая связь не исключает некоторой доли ковалентности. Металлическая связь в чистом виде характерна только для щелочных и щелочно-земельных металлов. Ряд физических свойств других металлов, особенно переходных (температуры плавления и кипения, энергия атомизации, твердость, межатомные расстояния), свидетельствуют о несводимости химической связи в них то,пько к металлической. Современными физическими методами исследования установлено, что в переходных металлах лишь небольшая часть валентных электронов находится в состоянии обобществления. Число электронов, принадлежащих всему кристаллу, невелико--1 электрон/атом. Например, такой типичный переходный металл, как ниобий, имеет концетрацию обобществленных электронов всего лишь 1,2 на один атом Nb. Остальные же электроны осуществляют направлен- [c.95]

    Как видно из данных табл. 16, точки плавления металлов значительно различаются. Если не считать ртути и галлия, то наиболее низкими точками плавления обладают щелочные металлы, так как в них атомы отдают для связи только по одному электрону. Большая же часть металлов обладает высокими точками плавления — выше 800°С (в табл. 16 помещена лишь часть из них). [c.149]

    Чем меньше ионизационный потенциал элемента, поступаю-шего в дугу, тем ниже температура электронов. Ионизационный потенциал атомов щелочных металлов меньше, чем у других элементов, поэтому в их присутствии температура заметно снижается и больше не изменяется в зависимости от поступления в дугу других элементов. Соединения щелочных металлов отличаются низкой температурой плавления и испарения. С введением большого количества этих веществ в канал его температура снижается, уменьшается скорость испарения компонентов пробы и ее зависимость от свойств самой пробы. [c.250]

    Изохинолинсульфоновая-5 кислота щелочным плавлением может быть превращена в соответствующее гидроксисоединение, однако в силу обедненности изохинолинового цикла электронами сульфогруппа не удаляется при кислотном гидролизе. [c.276]

    При изучении щелочного плавления натриевой соли рицинолевой кислоты при разных температурах и исследовании модельных соединений, Харгривс (1947) нашел, что начальной стадией процесса является изомеризация р,у-ненасыщенного — гомоаллилового спирта I в а,р-ненасышенный аллиловый спирт П. Перемещение двойной связи, протекающее через стадию образования промежуточного карбаниона, дает продукт, стабилизованный сопряжением двойной связи с неподеленной парой электронов атома кислорода. Следующей стадией является расщепление двойной связи с образованием промежуточных фрагментов III и IV, содержащих двухвалентный атом углерода (карбены). Карбен III перегруппировывается в кетон V, а карбен IV присоединяет воду, образуя оксикислоту VI. Если при сплавлении поддерживать температуру 200 °С, то отгоняющийся продукт представляет собою главным образом метил-н-гексилкетон V. При более высокой температуре происходит диспропорционирование с миграцией водорода от гидроксила оксикислоты VI к кетону V и образуются вторичный (каприловый) спирт VII и соль альдегидокислоты VIII. Последняя реагируя со щелочью, образует с выделением водорода себа-цинат натрия IX  [c.313]

    Присутствие в ядре ЫОг-группы вызывает уменьщение электронной плотности в орто- и пара-положениях, достаточное для того, чтобы могло осуществляться нуклеофильное замещение. В достаточно жестких условиях (щелочное плавление) водороды в орто-положениях могут быть замещены на ОН . Изобутильная группа в пара-положении не может быть замещена на ОН, поскольку электрофильный характер углерода, несущего заместитель, будет заметно ослаблен вследствие донорного индуктивного эффекта группы (СНзЬСНСНг. Кроме того, положительный эффект сопряжения (-Ь/ ) этой группы создает нуклеофильные центры (повыщает электронную плотность) в орто- и пара-положениях. Таким образом, имеется аддитивность электронных эффектов (согласованная ориентация). [c.196]

    Щелочное плавление нитробензола будет осуществляться легче, поскольку донорный индуктивный эффект (СНз)2СНСН2-группы повышает электронную ллотность во всем цикле и, в частности, уменьшает электрофильность орто-положений по отношению к МОг-группе. [c.197]

    Водород, замещаемый при нуклеофильных реакциях, уходит в виде аниона Н . Подобно тому как щелочное плавление нитробензола в результате нуклеофильного замещения приводит к о-нитро-(>енолу, так и сульфокислота нуклеофильно замещается анионом ОН , кледствие сильного индуктивного эффекта группы SOf из ядра оттягиваются электроны, причем особенно сильно — от непосредствен- [c.501]

    Чистые щелочноземельные металлы имеют более высокие температуры плавления и кипения по сравнению с щелочными металлами, потому что для образования металлических связей в них имеется по два электрона на атом. По той же причине они обладают большей твердостью, хотя их тоже можно резать острым стальньгм ножом. Бериллий и магний-единственные элементы этой группы, широко используемые как конструкционные. металлы благодаря своей легкости они используются в чистом виде или в составе сплавов в авиастроительной и космической промышленности, где вес является очень важным фактором. [c.436]

    Энергия металлической связи возрастает с ростом числа валентных электронов и заряда ядра, что отражается на температурах плавления и кипения. Так, алюминий и метгллы дополнительных (побочных) подгрупп имеют более высокие температуры плавления и кипения, чем щелочные и щелочно-земельные металлы. [c.50]

    Все щелочные металлы серебристого цвета, за исключением цезия, который имеет золотисто-желтую окраску. Они очень мягки и легко режутся ножом самый твердый из них литий. СН лития к францию число электронных уровней в атоме возрастает от 2 до7, в связи с чем увеличиваются радиусы атомов и уменьшаются энергии ионизации, а следовательно, возрастает восстановительная активность. На внешнем уровне всех атомов находится по одному 3- электрону (пз ), который слабо связан с ядром, легко отторгается и всем этим элементам характерна степеш. окисления +1. Щелочные металлы имеют небольшую плотность (литий почти в два раза легче воды), низкие температуры плавления и высокую электропроводность. В ряду стандартных окислительно-восстановительных потенциалов щелочные металлы по своим значениям электродных потенциалов расположены в начале ряда. [c.6]

    Получение и свойства. Строение кристаллических решеток. Получают эти металлы обычно электролизом расплавленных хлоридов, магний — также восстановлением оксида MgO углем в электрических печах и другими способами. Барий чаще всего получают алюминотермическим способом. Бериллий, магний и при высокой температуре кальций образуют кристаллы с гексагональной плотной упаковкой, а стронций и при низкой температуре кальций имеют кубическую гранецентрированную решетку. Для бария характерна объемноцентриро-ванная упаковка. Это различие решеток играет некоторую роль в нарушении закономерности различий плотности, температур плавления и других физических свойств. Атомы их, кроме бериллия, теряют два электрона, превращаясь в ионыЭ . Но их восстановительная способность слабее, чем у щелочных металлов. [c.275]

    Гипотеза Григоровича. По мнению В. К. Григоровича, расположение атомов в твердых и жидких простых веществах определяется, в основном, их электронным строением [8]. В металлической решетке, где внешние электроны положительных ионов сильно возбуждены вследствие возмущающего действия соседних атомов, сравнительно небольшой прирост температуры может быть достаточным для наступления перекрытия и обменного взаимодействия внешних р оболочек ионов, не перекрывающихся при низких температурах ([8], стр. 202). Так, например, объемноцентрированная кубическая структура натрия, область существования которой простирается от 30 К до температуры плавления, по Григоровичу, может быть объяснена с помощью следующих соображений. Из экспериментальных данных (об оптических свойствах, эффекте Холла и т. д.) известно, что натрий в твердом и жидком состоянии имеет один электрон проводимости на атом. Это означает, что его валентный электрон с Зз уровня переходит в электронный газ. Атомы натрия в конденсированном состоянии имеют внешнюю 25 2р оболочку. Взаимодействие ионов с электронным газом приводит к сближению и перекрыванию р-орбиталей внешних р оболочек ионов, в результате чего возникают обменные / вухэлектронные о-связи, направленные по трем осям прямоугольных координат. Образование шести связей каждым атомом со своими соседями приводит к простой кубической ячейке со свободным объемом в центре, который может быть заполнен таким же ионом. Так, из двух простых кубических под-решеток, энергетически невыгодных, а потому редко реализующихся в металлах, образуется ОЦК структура, одна из трех типичных металлических структур. Гипотеза Григоровича иллюстрируется рис. 43. Точно так же обосновывается возникновение ОЦК структур и у других щелочных металлов. Для лития, ионы которого имеют 15 оболочку, возникновение ОЦК структуры связывается с предположением о переходе 8 электронов на р уровни. [c.175]

    Керамич. к л е и - композиции на основе высокоплавких оксидов Mg, Al, Si, Zr (т. пл. 2825, 2053, 1728 и 2700 °С соотв.) и оксидов щелочных металлов (т. пл. 350-400 °С) с добавками селитры, НВОз, а в нек-рых случаях, для повышения термостойкости,-порошков металлов (А1, Си, Ni, Si, Fe, Ti, Ва). В зависимости от количеств, соотношения высоко- и низкоплавких оксидов получают композиции с т.пл. 500-1Ю0°С, Готовят сплавлением компонентов, быстрым охлаждением сплава (фритты) в воде, сушкой, измельчением, смешением с наполнителями и др. модификаторами при добавлении воды. Представляют собой суспензии тонко-измельченных компонентов в воде или, напр., в среде 1%-ного р-ра нитроцеллюлозы в амилацетате. Примерная рецептура (в мае. ч.) фритта 60-70, коллоидный SiOj 1-2, порошок металла 5-20, вода 25-32 состав фритты (в мас.ч.) 23-28 SiO , 10-15 Al Oj, 10-20 Na O, 3-6 К О, 3-6 BajOj, 8-12 ZnO, 4-6 aO. Для повышения прочности клеевого соединения керамич. клеи армируют металлич. сетками. Клей наносят на соединяемые пов-сти, выдерживают на воздухе для удаления воды, после чего склеивают при небольшом давлении и т-ре, превышающей на 20-50 °С т-ру плавления композиции, в течение 15-20 мин с послед, плавным охлаждением. Клеевые соед. работоспособны до 3000 °С, но отличаются хрупкостью. Прочность соединений металлов при сдвиге 6-20 МПа. Применяют для склеивания керамики, металлов, кварца, графита и др. термостойких материалов в авиац., электронной пром-сти, приборостроении. [c.404]

    Нить характеризуется ее работой выхода, т. е. минимальным количеством энергии, необходимой для отрьша электрона от поверхности металла. В конфигурациях с одной нитью испарение и ионизация происходят с одной и той же поверхности. Используя две или три нити, можно разделить ступени испарения и ионизации, поскольку газообразная проба затем перемещается к другой нити и адсорбируется на ее поверхности. Это полезно для элементов, которые испаряются при низких температурах, но требуют высокой температуры для эффективной ионизации (например, Са). Нити изготавливают из тугоплавких элементов, таких, как Та, Ке или У, поскольку их температуры плавления равны 3000°, 3180° и 3400° С соответственно. Отметим, что их работа выхода составляет 4,30, 4,98 и 4,58 эВ соответственно. Работу выхода можно снизить добавлением, например, ТЬ к У. Работа выхода У с добавками ТЬ составляет уже 2,7 эВ. Элементы наносят обычно в ввде нитратов или хлоридов. Эффективность ионизации особенно высока для элементов, первый потенциал ионизации которых меньше 7эВ, таких, как щелочные элементы, щелочноземельные элементы, актинвды и лантаниды. Для элементов с потенциалом ионизации вьш1е 7эВ (например, Си, Рс1, 2п) может быть необходимо добавление реагентов, увеличивающих эффективность ионизации особенно распространен силикагель с добавками или без добавок. Преимуществом этого типа ионизации является то, что образуются только однозарядные ионы, приводящие в итоге к простому спектру. Следует заметить, что с помощью ТИМС наблюдаются не только положительно заряженные, но также и отрицательно заряженные ионы, особенно для неметаллов и при использовании нитей с низкой работой выхода. Примеры отрицательных ионов включают галогены, 8е,8 и Те. Теория положительной термической ионизации гласит, что отно- [c.133]

    При проверке чистоты вещества помимо элементного анализа пользуются определением физических постоянных, если соответствующие величины, а возможно, и их зависимость от температуры точно известны. Наибольшее распространение в лабораторной практике имеют определения температуры плавления, плотности, показателя преломления и давления пара. Если эти методы неприменимы, то можно в качестве испытания на однородность подвергнуть вещество операциям разделения. Для этой цели применяют прежде всего не требующие значительных затрат времени методы газовую, тонкослойную хроматографию нлн хроматографию на бумаге. Высокой чувствительностью по отношению к примесям обладают спектроскопические методы. При этом для характеристики жидкостей (например, растворителей, см. разд. 6) и растворенных веществ наиболее важны электронные спектры. Полезно иметь также инфракрасный и масс-спектр, которые в соответствующем аппаратурном оформлении могут быть сняты для образцов в твердом, жидком н газообразном состоянии. Оба метода дают возможность проводить качественное и полуколнчественное определение примесей, что очень облегчает принятие решения о целесообразности дальнейшей очистки. Например, содержание воды в твердом препарате легко определяется по широким полосам поглощения при 1630 н 3400 см в ИК-спектре. Разумеется, в этом случае следует иметь в виду, что галогениды щелочных металлов, используемые при приготовлении таблеток для ИК-спектроскопии, гигроскопичны. Их применение для съемки гигроскопичных объектов или для определения воды возможно только после нх тщательной осушки и лишь прн полном отсутствии воздуха (отмеривание, растирание с веществом, наполнение пресс-формы проводятся в сухой камере). Другой возможностью является съемка суспензии вещества в сухом нуйоле или в другой подходящей жидкости. Подобные жидкости должны обладать достаточно высокой вязкостью и по возможности малым собственным поглощением в соответствующей области спектра. В качестве материала для изготовления окон кювет для съемки ИК-спектров газов и жидкостей применяют вещества, перечисленные в табл. 26. Если нет необходимости вести съемку в области ниже 600 см , то следует пользоваться сравнительно дешевыми монокристаллами хлорида катрня. Конечно, вещество не должно реагировать с материалом окон (при необходимости предваритель- [c.142]

    В ионных гидридах связь между атомом металла и водородом ионная, причем водород образует здесь отрицательный ион H , принимая на ls-орбиталь дополнительный электрон, в результате чего он приобретает конфигурацию электронов инертного газа гелия. В этом отношении поведение атома водорода в гидридах щелочных и щелочноземельных металлов похоже на поведение атомов галогенов в галогенидах с теми же металлами. По физическим свойствам и по строению кристаллических решеток ионные гидриды также схожи с соответствующими галогенидами. Например, гидриды щелочных металлов кристаллизуются по типу каменной соли (Na l),, образуя типично ионную решетку, в которой каждый ион щелочного металла окружен шестью ионами водорода, а каждый ион водорода — шестью ионами щелочного металла. Как и вообще вещества с ионными решетками, ионные гидриды имеют сравнительно высокие температуры плавления. [c.178]

    Классический метод получения отрицательных ион-радикалов (анионы, образующиеся при восстановлении) состоит в воздействии щелочным металлом на исходное соединение. Так, в [23] описан способ приготовления отрицательных ионов перегонкой в вакууме тетрагидрофурана над окисью фосфора в ампулу с калием и исходным углеводородом. Отпаянные ампулы нагревали до температуры плавления калия. При этой температуре калий отдавал электроны углеводороду, в результате чего образовывались анион-радикалы. Отрицательные ион-радикалы получали также восстановлением с цинком [25, 26]. Все эти классические методы получения поло-нштельных и отрицательных ион-радикалов описаны Инграмом [12]. [c.278]


Смотреть страницы где упоминается термин Щелочное плавление -Электроны: [c.276]    [c.142]    [c.434]    [c.412]    [c.32]    [c.374]    [c.375]    [c.225]    [c.269]    [c.182]    [c.212]    [c.14]    [c.212]    [c.841]   
Основы синтеза промежуточных продуктов и красителей Издание 4 (1955) -- [ c.44 , c.48 ]




ПОИСК







© 2025 chem21.info Реклама на сайте