Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Суспензия компоненты

    Селективность действия мембран для обратного осмоса зависит от коэффициентов диффузии и растворимости компонентов раствора в материале мембраны, а также от электрических сил, формы и размера молекул, концентрации, температуры. Для перегородок селективность действия не имеет значения к ним предъявляется требование полного разделения суспензии с получением чистого фильтрата. [c.83]


    Методом получения перспективных топлив с высокой теплотой сгорания и топлив, при сгорании которых происходит значительное повышение температуры в зоне горения, может быть использование металлов в качестве компонентов нефтяных или синтетических топлив. Одним из способов получения таких топлив является создание суспензий или коллоидных растворов металлов в углеводородных средах. Для получения коллоидных растворов в углеводородной среде должны быть диспергированы твердые частицы размером [c.93]

    Механические смеси получают смешением сухих компоненто в мешалках, смесильных барабанах или одновременным пропусканием всех компонентов через дезинтегратор. Лучший результат получается при смешивании водных суспензий компонентов. Особенно хорошие результаты достигаются в том случае, когда два компонента обладают разными зарядами. [c.169]

    Классификация катализаторов по агрегатному состоянию (дисперсности) компонентов и по способу придания формы катализатору представлена на рис. 2. Катализаторы, получаемые из монолитных твердых тел, делятся на контакты дробленные, разрезанные (распиленные) и проволочные. Последний тип катализаторов применяется обычно в виде сеток. Катализаторы из пастообразных масс подразделяются на контакты экструдированные, прессованные и формованные. Катализаторы, изготовляемые на основе суспензий (растворов), золей и расплавов включают в себя по одному типу контактов соответственно распыленные, коагулированные в капле и застывшие в ней катализаторы. [c.10]

    Основные составляющие расхода энергии в шнековых центрифугах можно выяснить из рассмотрения схемы на рис. 12. Ротор 5 машины, вращающийся в коренных опорах 3 и 8, вращает поступающую в него по питающей трубе 9 суспензию. Компоненты разделенной суспензии — твердая и жидкая фаза— приобретают, покидая ротор, определенную кинетическую энергию, обусловленную скоростью выхода из ротора и секундной производительностью (массовым расходом). Полагая, что оба компонента покидают ротор при радиусе слива Го, и пренебрегая начальной скоростью ввода суспензии, найдем мощность, необходимую для передачи ей кинетической энергии  [c.54]

    Приготовление и термо-механическое диспергирование загустителя. С омыления жиров или нейтрализации жирных кислот начинается процесс получения смазок. После окончания омыления из мыльно-масляной суспензии полностью (для гидратированных кальциевых и кальциево-натриевых смазок до определенного предела) удаляют влагу. При производстве смазок на сухих мылах мыльно-масляную суспензию получают непосредственным смешением компонентов в заданных соотношениях. Затем суспензию нагревают до получения однородного расплава. Известны способы получения смазок, когда мыльномасляную суспензию нагревают при сравнительно невысокой температуре — проводят лишь набухание мыла в масле. Такой способ получил название холодной варки или низкотемпературного процесса производства. [c.97]


    На рис. 8 приведена технологическая схема промышленной установки для производства мыльных смазок непрерывным способом, построенная в г. Бранденбурге (ГДР). Производительность установки 5—10 тыс. т]год. Технологическая схема и оборудование позволяют получать три основные вида смазок —гидратированные кальциевые (солидолы), натриевые (консталины) и литиевые, Можно получать и комплексные кальциевые смазки. Принципиальным отличием данной схемы от периодических и полунепрерывных является приготовление загустителя непосредственно в процессе производства при непрерывном испарении влаги в колонне-испарителе. Основными секциями установки являются блок приготовления суспензии компонентов смазки в исходном масле, узел приготовления расплава смазки (нагревательные устройства, контактор-смеситель и испарительная колонна), комплекс для проведения стандартных отделочных операций. [c.70]

Фиг. 47. Миграция энергии в направлении градиента концентрации в микрокристаллической суспензии компонента В ( ) в растворе более растворимого компонента А (О). Фиг. 47. <a href="/info/431365">Миграция энергии</a> в <a href="/info/642060">направлении градиента</a> концентрации в микрокристаллической суспензии компонента В ( ) в растворе <a href="/info/99568">более растворимого</a> компонента А (О).
    Подготовка материала к выделению концентрата каучука и заключается в получении суспензии, компоненты которой могут быть легко отделены друг от друга одним из указанных выше способов. [c.110]

    Сополимеризация проводится в реакторе 14 при температуре —20°- +20°С и давлении, определяемом концентрацией мономеров в зоне реакции и температурой. В реактор вводят компоненты каталитического комплекса, этилен, пропилен и третий мономер. Газовая фаза, состоящая в основном из пропилена (около 80%), этилена и водорода, забирается компрессором 15, сжимается и подается в конденсатор 16. Суспензия каучука в пропилене непрерывно выводится на дальнейшие стадии переработки. [c.308]

    В настоящее время в качестве компонентов металло-топливных суспензий исследованы бериллий, алюминий, магний, литий, бор и др. [c.94]

    Рассмотренный выше механизм отделения суспензий относится к центрифугам так называемого отстойного типа , в которых разделение твердых и жидких компонентов проходит по принципу отстоя под действием разности плотностей твердой взвеси и жидкой среды. [c.131]

    Способ отделения застывающих компонентов. Застывающие компоненты в данной группе процессов выделяют из охлажденного депарафинируемого раствора методом центрифугирования на центрифугах непрерывного действия с выводом суспензии петролатума с периферии центрифуги. [c.175]

    Сырьевые компоненты смазок (расплавленные жиры, водный раствор — суспензия — гидроксида металла дисперсионная среда) дозировочными насосами 2 в требуемых соотношениях подаются в контактор 1, работающий при избыточном давлении до [c.101]

    Известно, что более однородную композицию можно получить при использовании так называемого мокрого способа смешения компонентов. Особенность его состоит в том, что они смешиваются в виде суспензий или водных растворов с последующим удалением избыточной влаги. При использовании этого способа смесь закиси никеля, окиси магния и гидрата окиси алюминия гомогенизируют с добавлением воды, после чего осадок отжимают на прессах и затем просушивают при температуре до 300 С. В другом примере приготовления катализатора готовится водная суспензия карбоната никеля, гидравлического цемента (весовое соотношение вода цемент равно 3 1). Смесь выдерживают до созревания и направляют на формовку. В раствор нитратов никеля, хрома, алюминия вводят карбонат калия, что сопровождается выпадением осадка, который отфильтровывают, промывают, сушат, прокаливают, размалывают, смешивают со связующим (цементом) и направляют на формование. [c.22]

    Пропитку дробленого носителя (170 вес. ч.) проводят при перемешивании данной суспензии в течение 10 мин при температуре 70—80° С. Соотношение вводимых в носитель активных компонентов составляет 10 1. Продолжительность пропитки катализаторов растворами обычно равна 5—10, реже 20—30 мин. Иногда раствор подогревают или даже доводят до кипения. Избыток пропиточного раствора сливают и используют для повторной пропитки катализатора. [c.27]

    Когда активный компонент вводят в носитель в виде суспензии, следует указать на то, что они соединены смешением . Возможны варианты соединения компонентов катализатора по способу химического осаждения и разнообразные сочетания способов соединения активных компонентов. В качестве примера такого сочетания можно привести способ пропитки цеолитного носителя, в который одна часть никеля вводится ионным обменом (т. е. способом химического осаждения), а другая — обычной пропиткой гранул (т. е. способом физического осаждения). [c.28]


    Структура второго типа представляет собой стабилизованную разбавленную суспензию асфальтенов в сильно структурированной смолами дисперсионной среде. Подобная структура характерна для битумов, содержащих менее 18% асфальтенов, более 36% смол и менее 48% углеводородов. Доля асфальтенов общей сумме смолисто-асфальтеновых веществ составляет менее 0,34, а по отношению к сумме углеводородов и смол — менее 0,22. При промежуточном групповом химическом составе битума строение последнего характеризуется наличием элементов структуры обоих типов. Отдельные компоненты битумов одного и того же типа, но полученных из разных нефтей, могут различаться химическим составом. Это оказывает некоторое дополнительное влияние на структуры. Так, в случае битумов, полученных из крекинг-остатков и имеющих лиофобные плохо набухающие асфальтены, для создания коагуляционного каркаса требуется большее число структурообразующих частиц в единице объема и, следовательно, более высокое содержание асфальтенов. [c.15]

    Успех фильтрования определяется прежде всего правильным выбором фильтрующего материала. Последний должен удовлетворять двум основным требованиям быть химически инертным по отношению к компонентам суспензии и обеспечивать полное н быстрое отделение твердых частиц от жидкой фазы. [c.98]

    Для катализаторов, работающих в кипящем и движущемся слоях, особую роль играет прочность к абразивному воздействию соседних частиц. В связи с этим структура, а также форма таких катализаторов в значительной степени определяются требованиями прочности. Широко распространен метод приготовления прочных к истиранию катализаторов путем коагуляции в капле, описанный подробно выше. В этом случае гранулы катализатора приобретают сферическую форму, гладкую поверхность и мало поддаются истиранию. Имеются сведения о производстве катализаторов для кипящего слоя сушкой гелевых суспензий или специальных масс в распылительных сушилках с получением микросферических частиц [45]. Наконец, при производстве катализаторов для кипящего слоя применяют высокопрочные носители типа корунда, алюмосиликагеля. Заполняя поры носителя активными компонентами путем пропитки раствором, расплавом или высокодисперсной суспензией, получают армированные катализаторы , роль носителя в которых сводится только к роли скелета, препятствующего разрушению собственно контактной массы. [c.198]

    Условия смешения двух потоков (питания и маточного раствора) в процессе кристаллизации могут быть охарактеризованы критерием смешения, т. е. соотношением энтальпий и расходов этих потоков. При определенных значениях указанных параметров смещение не приводит к образованию новой фазы. Схема DTB-кристаллизатора представлена на рис. 2.11. Работа рассматриваемого вакуум-кристаллизатора сопряжена с адиабатическим смешением двух потоков (питания и рецикла), насыщенных или ненасыщенных по целевому компоненту и различающихся по температуре и концентрации. При этом поток рецикла должен быть настолько большим, чтобы упругость пара потока смеси (зона /) была меньше суммы гидростатического давления столба жидкости от точки ввода потока питания до зеркала испарения и давления паров в сепараторе кристаллизатора. В зоне 2 с помощью мешалки происходит вторичное смешение поднимающегося по циркуляционному контуру потока с суспензией. При этом температура вторичного потока смеси на 0,1—0,2° С выше температуры кипения раствора при данном вакууме в аппарате. Таким образом, съем пересыщения происходит в зоне 3, ограниченной зеркалом испарения и слоем жидкости в несколько сантиметров. [c.208]

    В связи с тем, что в большинстве своем питательные среды имеют жидкую и твердую фазы, возникает необходимость тонкого измельчения твердых компонентов — отрубей, муки грубого помола, рыбно-костной муки, соевого жмыха В этих целях с большой эффективностью используют роторно-пульсационный аппарат, или РПА, через который пропускают суспензию компонента перед завариванием или после него Благодаря этой процедуре не только избавляются от комков, образовавшихся при заваривании, но и повышают степень использования сырья, равно как и получают возможность применять отдельные виды сырья (например, среды с рыбно-костной мукой, плохо пoA aюIциe я стерилизации из-за большого количества рыбьих глаз) [c.313]

    Волокно с навоя 1 поступает в резательную машину 3, а затем в бак 4, где готовят водную суспензию волокна заданной концентрации. В этот же бак для повышения устойчивости суспензий химических волокон вводят различные добавки. Суспензию ВПС и вымываемого наполнителя готовят в отдельных баках 7 н 9. Если необходимо изменить степень дисперсности (помола) ВПС, суспензию пропускают через коническую или дисковую мельницу 8. Далее полученные суспензии компонентов передают в смеситель 5, откуда она поступает в напорный бак 10 и передается на сетку машины 11. Сформованное на сетке полотно подвергается прессованию на вальцах 13, сушке на барабанах 14 и термокаландрованию на каландре 15. При отсутствии вымываемого компонента в композиции материал принимают на навой 17. При необходимостп удаления одного из компонентов композиции полотно дополнительно подают на обработку в машину для промывки 16. Если применяют легколетучий органический растворитель, то его можно удалять на стадии сушки без дополнительной промывки материала. [c.159]

    Наиболее существенное значение в сочетании указанных выще факторов имеет концентрация твердой фазы в воде. По мере увеличения концентрации твердой фазы достигается ее критический уровень, который соответствует началу образования пространственной структурной сетки. На рис. V. показана зависймость предельного напряжения сдвига для композиции СМС и водных суспензий компонентов ее дисперсной твердой фазы от содержания твердой фазы в воде. Для композиции СМС концентрация твердой фазы, равная 50—55%, может быть названа первой критической концентрацией структурообразова- [c.186]

    Необходимо различать растворы от химических соединений и смесей. Химические соединения состоят из молекул только одного вида и с точки зрения правила фаз являются однокомпонентной системой. В случае же раствора, число составляющих компонентов может быть любым, ибо м мекулы их в растворе сохраняются химически неизменными От простых смесей растворы отличаются совершенно равноме рным распределением молекул компонентов по всему объему фазы, тогда как жидкие смеси, называемые суспензиями, эмульсиями или коллоидными растворами, являются системами из двух или большего числа фаз, перемешанных с различной степенью дисперсности. [c.9]

    VII — суспензия комплекса VIII — промывочный растворитель (бензин) IX — смесь, суспензии комплекса с промывочным растворителем X — промывочный раствор на регенерацию растворителя XI — промытая суспензия комплекса XII — раствор застывающего компонента на регенерацию растворителя XIII — регенерированный раствор карбамида XIV — регенерированный промывочный растворитель (бензин). [c.216]

    Отстоявшаяся в вибрационном отстойнике 12 суспензия комплекса в смеси растворителей поступает в нагреватель 13, где-ее подогревают до температуры разложения комплекса и направляют в отстойник-разделитель 14. Перед подачей суспензии комплекса в подогреватель к ней можно добавлять бензиновую фракцию в качестве промывочного растворителя. Из разделителя 14 отстоявшийся верхний раствор застывающих компонентов нанрз вляют на регенерацию растворителя, а раствор регенерированного карбамида откачивают в емкость 2 для повторного использования. [c.217]

    Подготовленные сырьевые компоненты подаются из приемников дозировочным насосом 6 в реакторы 1 с высокооборотньши мешалками, позволяющими создать интенсивное перемешивание маловязкой суспензии. Омыленную реакционную смесь, которую готовят попеременно в одном из параллельно действующих реакторов /, подают дозировочным насосом 6 в выпарной аппарат 9. Здесь в вакууме смесь обезвоживается полностью (если это необходимо) за счет многократной циркуляции смеси через теплообменник Н. Содержание влаги контролируют влагомером 12. Из циркуляционного контура обезвоженную смесь насосом Б через скребковый (из-за высокой вязкости обезвоженного продукта) нагреватель 14 перекачивают на термообработку в реактор 15. [c.102]

    В последнее время интенсивно развиваются методы, основанные на идеях, заимствованных из статистической физики, которые позволяют учесть хаотичный характер расположения частиц. Начало использованию статистических методов в механике суспензий было положено Бюр-герсом [96]. Далее методы статистического осреднения были развиты в работах Тэма [113] и Бэтчелора [114-116]. На наш взгляд, наиболее законченную фюрму эти методы приобрели в работах Буевича с сотрудниками [ 96, 117-119] и Хинча [120]. Главная идея, лежащая в основе указанных методов, состоит в том, что законы сохранения и реологические соотношения, описывающие некоторое произвольное состояние системы частиц (конфигурацию расположения центров частиц), должны усредняться по ансамблю возможных состояний системы. Такой ансамбль полностью описьгаается функцией распределения P t, Сдг), которая представляет собой плотность вероятности конфигурации N частиц в ЗЖ-мерном фазовом пространстве, образованном компонентами радиус-векторов Р центров частиц jv = . При этом среднее значение локальной физической величины 0(t, r ), которая связана с точкой г дисперсной системы и определяется конфигурацией jV, дается выражением [c.69]

    Асфальтены. Они являются наиболее важными компонентами обычных асфальтов и определяются как вещества, выса-ждающиеся из суспензии асфальта в большом количестве, скажем, в 20 объемах стандартного лигроина [21]. В качестве осадителя применяют химически чистый нормальный пентан. Данное определение не является строгим, так как необходимо указать, что осадок асфальтена, полученный таким образом, может содержать другие компоненты, отделяемые еще другими растворителями. Асфальтены плавятся с вспучиванием и разложением в районе 180—280° С они растворимы в бензине, сероуглероде и хлороформе, но в то же время они почти не растворимы в спирте и парафинах с низким молекулярным весом и лишь слабо — в эфире в ацетоне. [c.538]

    Экстракционная кристаллизация с использованием мочевины или тиомочевины включает один важный этап, на котором изменяется агрегатное состояние мочевины (компонента-носителя), переходящей из твердой в жидкую (растворенную) фазу, что необходимо для обеспечения рециркуляции. Это предусматривает процессы разделения (фильтрование, центрифугирование) и транспортирование твердых аддуктов. В процессах с цеолитами или аминотиоцианидом никеля компоненты-носители не изменяются и могут быть использованы в неподвижном слое или рециркулированы (в псевдоожиженном состоянии или в виде суспензии). [c.92]

    Режим работы фильтра, физико-мехап1[ческие свойства компонентов суспензии и филь1рующей среды определяют параметры фильтра. [c.286]

    Удельная поверхность и порисая структура катализатора сильно зависят от способа удаления раствор птеляпз осадка, геля, суспензии или из пропитанного носителя. Этот способ выбирают с учетом того, в какой форме катализатор будет в дальнейшем использован. Часто применяют непосредственное выпаривание, но оно может привести к сегрегации компонентов. На микроструктуру также влпя- [c.123]

    Решение. 1. Общую концентрацию частиц карбоната кальция и нелетучих солей в суспензпн находим, относя общее количество указанных компонентов к 1 кг суспензии  [c.170]

    Интересные данные о концентрации кетона в растворителе, соответствующей критическим условиям смешиваемости, получены 1[28] при использовании метода [26]. При увеличении содержания кетона в смеси с ароматическим растворителем повышается ТЭД, образуются крупные разобщенные кристаллообразования твердых углеводородов, способствующие увеличению скорости фильтрования суспензии и улучшению промывки отфильтрованного осадка. В то же время в результате непрерывного снижения растворяющей способности растворителя при определенном содержании кетона из раствора начинает выделяться вторая масляная фаза, состоящая из наименее растворимых в данном растворителе компонентов. Начало выделения этой фазы свидетельствует о критической концентрации кетона в растворителе. Результаты исследования (рис. 49) показали, ЧТО при депарафинизации автолового рафината критическая концентрация МЭК в смеси с толуолом составляет 66% (об.), причем при повышении кратности разбавления рафината растворителем с 1 3,75 до 1 5 она возрастает до737о. [c.144]

    В первый период освоения процесса депарафинизации выделение твердых углеводородов из рафинатов проводили в одну ступень. На таких установках твердые углеводороды, являющиеся сложной смесью компонентов, различающихся по структуре молекул, но содержащих парафиновые цепи нормального или сла-боразветвленного строения, кристаллизовались совместно, образуя мелкие смешанные кристаллы, а при депарафинизации сырья широкого фракционного состава — эвтектические смеси. Такой способ кристаллизации приводил к образованию труднофильтруемых осадков, в результате чего выход масла и скорость отделения твердой фазы были недостаточно высоки, а повышенное содержание масла в гаче усложняло процесс получения парафинов. В связи с этим встал вопрос о раздельной кристаллизации высоко-и низкоплавких углеводородов, который был решен внедрением в промышленность двухступенчатой депарафинизации. Этот процесс позволил увеличить выход депарафинированного масла, значительно повысить скорость фильтрования суспензии и снизить содержание масла в гаче, так как твердые ароматические углеводороды, уменьшающие размер кристаллов парафиновых и нафтеновых углеводородов, концентрируются в низкоплавких компонентах, кристаллизующихся во второй ступени процесса. [c.159]

    В настоящее время на большинстве нефтеперерабатывающих заводов производство масел и парафинов (церезинов) осуществляется на совмещенных установках депарафинизации и обезмасли-вания, причем обезмасливание петролатумов протекает при меньших скоростях фильтрования и с меньшей четкостью отделения твердой фазы от жидкой, чем обезмасливание гача. Это связано с тем, что высокомолекулярные углеводороды, входящие в состав петролатума, содержат в молекулах наряду с длинными парафиновыми цепями нафтеновые и ароматические кольца. Такие углеводороды обладают резко выраженной склонностью к образованию мелкодисперсных структур в условиях процесса обезмас-ливания, что снижает скорость фильтрования суспензий твердых углеводородов и производительность установки по сырью. Кроме того, повышенное содержание масла в церезине ограничивает области его применения. В связи с этим на многих заводах церезины не вырабатывают, а петролатум используют как компонент мазута. [c.176]

    Большой практический интерес представляет выбор в качестве модификаторов структуры твердых углеводородов веществ, не ухудшающих эксплуатационные свойства церезинов. Из теории кристаллизации расплавов известно, что при наличии в них примесей или специально введенного компонента, обладающих кристаллографическим сродством к кристаллизующейся фазе, эти вещества могут являться зародышами кристаллизации твердой фазы. В производственной практике подобные вещества имеют большое значение, так как с их помощью можно управлять процессами кристаллизации. Для интенсификации обезмасливаиия в качестве таких веществ [109] исследованы индивидуальные н-алка-ны с числом атомов углерода 20—24. При выборе условий введения этих углеводородов в суспензию петролатума, полученного при переработке западно-сибирских нефтей, показано, что в отличие от депрессорных присадок более эффективно вводить их сразу после термообработки раствора петролатума. Следовательно, н-алканы принимают участие в образовании зародышей кристаллов. Эффективность н-алканов как модификаторов структуры твердых углеводородов оценивают по тем же показателям, что и в случае применения депрессорных присадок при обезмасливании петролатума. [c.182]

    Электрокинетические явления, происходящие в неводных дисперсных системах, в частности влияние постоянного однородного электрического поля на суспензии твердых углеводородов нефти в органических растворителях, описано в работах [104, 114]. В качестве дисперсионной среды были взяты органические растворители разной природы, многие из которых широко применяются в процессах производства масел, парафинов и церезинов (н-гексан, н-гептан, изооктан, бензол, толуол, метилэтилкетон, ацетон и др.). Поведение суспензий в электрическом поле исследовали при 20 °С в стеклянной ячейке с плоскими параллельными никелевыми электродами в интервале напряженностей до 12,5 кВ/см. Установлено, что в алифатических растворителях происходит перемещение частиц дисперсной фазы (твердых углеводородов) в сторону катода, в то время как в ароматических растворителях эти же частицы перемещаются к аноду. Для твердых углеводородов, очищенных от ароматических компонентов и смол, в дисперсных системах с той же дисперсионной средой наблюдается явление двойного электрофореза, т. е. частицы дисперсной фазы перемещаются в сторону как положительного, так и отрицательного электрода. В суспензиях твердых углеводородов, где дисперсионной средой являются полярные растворители (МЭК, ацетон), явление электрофореза выражено слабо. Для таких систем характерна можэлектродная циркуляция, сопровождаемая агрегацией частиц. Эти электрокинетические явления в суспензиях твердых углеводородов объясняются существованием двойного электрического слоя на границе раздела фаз. Двойной электрофорез и меж-электродная циркуляция объясняются [115] поляризацией частиц твердой фазы и свойственны частицам, не имеющим заряда или находящимся в изоэлектрическом состоянии с мозаичным распределением участков с различным знаком заряда. Таким образом, у частиц дисперсной фазы как в полярной, так и в неполярной среде, отсутствует электрический заряд, а если он и есть, то весьма неустойчив. [c.187]


Смотреть страницы где упоминается термин Суспензия компоненты: [c.52]    [c.28]    [c.216]    [c.94]    [c.75]    [c.125]    [c.186]    [c.146]    [c.153]    [c.166]    [c.28]    [c.88]   
Производство каучука из кок-сагыза (1948) -- [ c.140 ]




ПОИСК





Смотрите так же термины и статьи:

Суспензии



© 2025 chem21.info Реклама на сайте