Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Транспорт в катализируемый белками

    Общим фундаментальным механизмом, посредством которого реализуются биологические эффекты вторичных мессенджеров внутри клетки, является процесс фосфорилирования — дефосфорилирования белков при участии широкого разнообразия протеинкиназ, катализирующих транспорт концевой группы от АТФ на ОН-группы серина и треонина, а в ряде случаев—тирозина белков-мишеней. Процесс фосфорилирования представляет собой важнейшую посттрансляционную химическую модификацию белковых молекул, коренным образом изменяющую как их структуру, так и функции. В частности, он вызывает изменение структурных свойств (ассоциацию или диссоциацию составляющих субъединиц), активирование или ингибирование их каталитических свойств, в конечном итоге определяя скорость химических реакций и в целом функциональную активность клеток. [c.290]


    Существование клетки как целостной системы, существование функциональных клеточных органоидов требует компартмента-лизации, пространственного разграничения этих систем мембранами, характеризуемыми регулируемой проницаемостью. Белки-ферменты, входящие в состав мембран в комплексах с липидами, обеспечивают активный транспорт метаболитов в клетку и из нее, идущий в направлении, противоположном градиенту концентрации. Эта функция белков тесно связана с механохимиче-ской. Кроме того, белки катализируют метаболические биоэнергетические процессы, протекающие в мембранах. Так, ферменты митохондрий, локализованные в мембранах, ответственны за биохимические процессы, связанные с дыханием, за механические движения митохондрий, за активный транспорт. [c.176]

    К Ре8-белкам относится группа белков, участвующих в процессах электронного транспорта (ферредоксины), и ряд ферментов, катализирующих окислительно-восстановительные реакции. Установлено, что Ре8-белки являются ключевыми в таких важных клеточных процессах, как фотосинтез, дыхание, азотфиксация, фиксация СО2. [c.232]

    Активный (т. е. энергозависимый) транспорт молекул через мембрану против градиента концентрации осуществляется при участии мембранных белков, использующих для процесса транслокации энергию гидролиза АТФ. В отличие от пассивного транспорта, который идет самопроизвольно, белки-переносчики должны не только транспортировать молекулу через мембрану, но и обладать АТФ-азным действием, т. е. катализировать гидролиз АТФ, который является основным источником энергии для активного транспорта. В зависимости от способа использования энергии для транспорта молекул выделяют первично- и вторично-активный транспорт. [c.310]

    Каждый из этих белков имеет совершенно определенную функцию. Есть, например, белок, катализирующий одновременный и однонаправленный перенос одного протона и одной молекулы сахара (лактозы, мелибиозы, глюкозы). В таких случаях говорят о симпорте двух (или нескольких) веществ. Другие транспортные белки катализируют одновременный встречный перенос двух частиц, например одного протона и какого-то другого иона (Ма или аниона органической кислоты) в этих случаях говорят об антипорте. При переносе сахаров, сопряженном с транспортом ионов, вероятно, всегда используются ионы или Ка . У прокариот преобладает симпорт с ионами Н , у эукариот— симпорт с Ка" (рис. 7.20). [c.259]

    Белки играют важнейшую роль в жизнедеятельности любых организмов. Многообразие и сложность живой материи, по сути дела, отражают многообразие и сложность самих белков. Каждый белок имеет свою уникальную функцию, которая определяется присущими ему структурой и химическими свойствами. Некоторые белки являются ферментами, то есть катализаторами биохимических реакций в живых организмах. Каждая химическая реакция катализируется определенным ферментом. Без участия ферментов подобные реакции не происходят вовсе или протекают слишком медленно, чтобы обеспечить саму возможность существования живых организмов. Другие белки (структурные) выполняют в организме роль строительных белков-или сами по себе (например, коллаген), или в комплексе с нуклеиновыми кислотами (нуклеопротеины), углеводами (гликопротеины) или липидами (липо-протеины). Некоторые белки, такие, как, например, миоглобин и гемоглобин, вовлеченные в систему запасания и транспорта кислорода, связываются с функционально важными металлсодержащими органическими молекулами. Так, миоглобин и гемоглобин специфически связывают железосодержащую группировку, называемую гемом. [c.20]


    Все биологические мембраны, включая плазматическую мембран и внутренние мембраны эукариотических клеток, имеют общие структурные особенности они представляют собой ансамбли липидных и белковых молекул, удерживаемых вместе с помощью нековалентных взаимодействий. Благодаря этим взаимодействиям поддерживается структурная целостность мембран Однако сами по себе клеточные мембраны являются подвижными, текучими структурами и большинство входящих в их состав молекул способны перемещаться в плоскости мембраны. Как показано на рис. 6-1, липидные молекулы образуют непрерывный двойной слой толщиной около 5 нм. Липидный бислой - это основная структура мембраны, которая и создает относительно непроницаемый барьер для большинства водорастворимых молекул. Белковые молекулы как бы растворены в липидном бислое. С их помощью выполняются разнообразные функции мембраны. Одни мембранные белки обеспечивают транспорт молекул внутрь клетки или из нее, другие являются ферментами и катализируют ассоциированные с мембраной реакции. Еще один класс белков осуществляет структурную связь плазматической мембраны с цитоскелетом, с одной стороны, и(или) с внеклеточным матриксом либо с соседней клеткой - с другой. Отдельную группу составляют белки, выполняющие роль рецепторов для получения и преобразования химических сигналов из окружающей среды. Как и следовало ожидать, мембраны асимметричны оба их слоя различаются по липидному и белковому составу, что отражает, по-видимому, функциональные различия их поверхностей. [c.349]

    СВОЙ тип белка, соответствующий тем физиологическим функциям, которые данная мембрана выполняет в клетке. Известно , например, что активные белки (ферменты), регулирующие транспорт минеральных веществ — поступление их в клетку и выход из клетки, — локализуются в плазмалемме и тонопласте ферменты, участвующие в фотосинтезе, сосредоточены в мембранных системах зеленых хлоропластов и наконец, ферменты, катализирующие окислительные реакции процесса дыхания находятся в митохондриальных мембранах. [c.28]

    Белковый посредник — более общий и точный термин, чем термин фермент. Хотя во многих биохимических процессах белковые посредники представляют собой именно ферменты — катализаторы химических превращений субстратов, но, например, в транспорте субстратов через биологические мембраны перенос опосредуется белками, не являющимися ферментами, так как они не катализируют каких-либо химических реакций, а обеспечивают узнавание и транслокацию субстратов. [c.70]

    Фотохимики и фотобиологи настойчиво ищут искусственные системы, способные расщеплять воду за счет солнечной энергии. В синтетические мембраны, приготовленные из липосом, можно встраивать пигменты, белки и другие молекулы, способные поглощать свет и осуществлять транспорт электронов. Специально синтезируются различные соединения марганца и исследуется их способность катализировать разложение воды. Изготовлены различные полупроводниковые катализаторы, содержащие рутений и (или) титан и способные при освещении выделять молекулярный кислород из воды. Исследуются также искусственные системы, способные к фотовосстановлению СОг с образованием муравьиной кислоты и метилового спирта. Ферредоксин, используемый для моделирования системы хлоропластной мембраны, в присутствии гидрогеназы и платины может восстанавливаться на свету с образованием молекулярного водорода из воды. Преимущество подобных искусственных систем по сравнению с природными системами фотосинтеза состоит в том, что их можно оптимизировать, добиваясь максимальной эффективности фотосинтеза, которая в данном случае не лимитируется физиологическими свойствами и потребностями целого растения. [c.120]

    Все биологические процессы осуществляются при непременном участии белков. Они служат регуляторами генетической функции нуклеиновых кислот, в качестве ферментов участвуют во всех стадиях биосинтеза полипептидов, полинуклеотидов и других соединений, катализируют все метаболические процессы. Особые сократительные белки ответственны за клеточные и внутриклеточные движения. В комплексе с липидами белки вхбдят в состав мембран, обеспечивая активный транспорт метжолитов в клетку и из нее. Белки служат для запасания и перешса кислорода. Низкомолекулярные полипептиды, гормоны, Стимулируют функциональную активность в клетках других тканей и органов. Белки осуществляют иммунологическую функцию, защищая организм от чужеродных соединений. Они входят в состав кожи, волос, соединительных тканей, костей и т. д., выполняя динамическую опорную функцию, обеспечивая тем самым взаимосвязь органов, их механическую целостность н защиту. Это далеко не полный перечень осуществляемых белками функций. [c.5]

    Кривая связывания кислорода гемоглобином зависит от pH при данной величине р(Ог) сродство к кислороду уменьшается номере уменьшения pH (эффект Бора). Гликолиз представляет собой анаэробный процесс, приводящий к образованию молочной кислоты и диоксида углерода. Оба эти соединения имеют тенденцию к понижению pH и способствуют высвобождению кислорода из оксигемоглобина там, где в этом есть необходимость, В дезоксигемоглобине, напротив, содержатся немного более основные, чем у оксигемоглобина, группы (азот имидазола His-146 в р-цепях и His-122 в а-цепях, а также аминогрупп Val-1 в а-цепях), в силу чего дезоксигемоглобин связывает протон после высвобождения кислорода, что важно для обратного транспорта диоксида углерода к легким. Карбоангидраза катализирует образование бикарбоната в эритроцитах из диоксида углерода и воды, и ионы бикарбоната могут связываться с протонированными группами дезокси-гемоглобина. В легких дезоксигемоглобин перезаряжается кислородом, эффект Бора вызывает высвобождение бикарбоната, из которого под действием карбоангидразы образуется диоксид углерода, который затем выдыхается. Транспорт диоксида углерода дезоксигемоглобином приводит также к образованию производных карбаминовой кислоты с аминогруппами белка (схема (9) . Хотя оксигемоглобин также связывает диоксид углерода, у дезоксигемо-глобина эта способность выше ввиду большей доступности аминогрупп. [c.558]


    Биологическая роль. Рибофлавин входит в состав флавиновых коферментов, в частности ФМН и ФАД , являющихся в свою очередь простетическими группами ферментов ряда других сложных белков —флавопротеинов. Некоторые флавопротеины в дополнение к ФМН или ФАД содержат еще прочно связанные неорганические ионы, в частности железо или молибден, наделенные способностью катализировать транспорт электронов. Различают 2 типа химических реакций, катализируемых этими ферментами. К первому относятся реакции, в которых фермент осуществляет прямое окисление с участием кислорода, т.е. дегидрирование (отщепление электронов и протонов) исходного субстрата или промежуточного метаболита. К ферментам этой группы относятся оксидазы Ь- и О-аминокислот, глициноксидаза, альдегидоксидаза, ксантиноксидаза и др. Вторая группа реакций, катализируемых флавопротеинами, характеризуется переносом электронов и протонов не от исходного субстрата, а от восстановленных пиридиновых коферментов. Ферменты этой группы играют главную роль в биологическом окислении. В каталитическом цикле изоаллоксазиновый остаток ФАД или ФМН подвергается обратимому восстановлению с присоединением электронов и атомов водорода к и ФМН и ФАД прочно связываются с белковым компонентом, иногда даже ковалентно, как, например, в молекуле сукцинатдегидрогеназы. [c.224]

    Весьма интересен молекулярный механизм действия дифтерийного токсина. Он оказался наделенным способностью катализировать реакцию АДФ-рибозилирования фактора элонгации эукариот (eEF-2), выключая тем самым его из участия в синтезе белка. Резистентность многих животных к дифтерийному токсину, вероятнее всего, обусловлена трудностью или полным отсутствием проникновения (транспорта) токсина через мембрану клеток. [c.542]

    Митохондрии располагают своим собственным аппаратом для хранения и экспрессии их генетической информации. Эта информация, содержащаяся в митохондриальной ДНК, включает программы для синтеза специальных митохондриальных транспортных и рибосомных РНК. Кроме того, в митохондриальной ДНК запрограммировано несколько полипептидов, участвующих в выполнении основных функций митохондрий. В их числе некоторые из субъединиц цитохром оксидазы и АТФ-синтазы. Однако ббльшая часть белков программируется в ядре и синтезируется в цитоплазме вне митохондрий. Это же полностью относится к белкам, обслуживающим генетический аппарат митохондрий к митохондриальным ДНК- и РНК-полимеразам, к белкам митохондриальных рибосом, которые резко отличаются от цитоплазматических рибосом и по своим основным характеристикам приближаются к рибосомам прокариот, а также к аминоацил—тРНК-синтетазам, катализирующим аминоацилирование митохондриальных тРНК. Следовательно, митохондрии должны располагать механизмом для транспорта в них широкого спектра белков, синтезируемых в цитоплазме. То же в общих чертах можно отнести и к функционированию генетического аппарата хлоропластов. [c.434]

    Представление об участии специфических белков-переносчиков в транспорте ионов подтверждают данные о действии ряда антибиотиков и синтетических веществ. Речь идет о ионофорах. Это соединения с относительно небольшой молекулярной массой (500-2000), молекулы которых снаружи гидрофобны, а внутри гидрофильны. Обладая гидрофобными свойствами, они диффундируют в липидную мембрану. Из антибиотиков-ионофоров наиболее, 1звестен валиномицин он диффундирует внутрь мембраны и катализирует транспорт (унипорт) ионов К , Сз , КЬ" или КН . Поэтому присутствие таких катионов в суспензионной среде приводит к выравниванию заряда по обе стороны мембраны (как бы короткому замыканию) и тем самым к падению протонного потенциала. Другие ио-нофоры образуют каналы, по которым могут проходить ионы. Существуют также синтетические соединения, повышающие протонную проводимость мембран наиболее известный переносчик протонов - карбонилцианид-и-трифторме-токсифенилгидразон. Он действует как разобщитель -нарушает сопряжение синтеза АТР с транспортом электронов, перенося в клетку протоны в обход АТР-синтазы. Изучение мембранного транспорта привело к важным результатам, которые согласуются с хемиосмотической теорией преобразования энергии и подкрепляют ее. [c.260]

    Транслокация группы. При транспорте этого типа молекула химически модифицируется поглощается, например, сахар как таковой, а внутрь клетки он поступает в фосфорилированной форме. Фруктоза, глюкоза, маннитол и родственные вещества поглощаются с помощью фосфотрансферазной системы, зависимой от фосфоенолпирувата. Эта система состоит из неспецифического и специфического компонентов. Неспецифический компонент-это термостабильный белок, который при участии фермента I, находящегося в цитоплазме, фосфорилируется фосфоенолпируватом. Второй компонент-находящийся в мембране инду-цибельный фермент II, специфичный для того или иного сахара он катализирует перенос фрсфата с термостабильного белка (ТБ) на сахар во время транспорта последнего через мембрану  [c.260]

    Передача импульсов возбуждения с периферии в центр связана с деполяризацией постсинаптической мембраны. Медиаторная роль ацетилхолина заключается, с одной стороны, в изменении физико-химических свойств рецепторного белка, а с другой, в выключении работы ферментов, катализирующих активный транспорт. Это выражается, во-первых, в снижении диэлектрического инкремента мембран (Гоциридзе, 1963) и, во-вторых, в торможении Na , К -АТФазы — фермента, ответственного за градиент концентрации ионов (Кометиани, 1970). Как только ацетилхолин распадается, снова начинает работать натриевый насос, и мембрана поляризуется. [c.8]

    В гл. 3 шла речь о том, что различные полипептиды ассоциируют, образуя большие мультиферментные комплексы, которые с высокой эффективностью катализируют сложные реакции благодаря кооперативной работе субъединиц. Аналогичные комплексы белков обнаружены и в мембранах. Наиболее изучен среди них бактериальный фотосинтезирующий реакционный центр. Этот белковый комплекс находится в плазматической мембране пурпурных фотосинтезирующих бактерий Rhodopseudomonas viridis. Он использует поглощенную энергию света для создания электрона с высокой энергией, позволяющей ему пересекать мембрану быстрее чем за наносекунду. Затем электрон переходит к другим переносчикам электронов, находящимся в мембране, которые используют часть энергии, высвобождаемой в процессе электронного транспорта для синтеза АТР в цитозоле. Реакционный центр построен из четырех различных полипептидов L, М, Н и цитохрома. Для изучения трехмерной пространственной структуры этот комплекс был солюбилизирован в растворе детергента, закристаллизован в виде комплекса белков с детергентом и изучен методом рентгеноструктурного анализа. Как оказалось, реакционный центр содержит четыре молекулы хлорофилла и восемь других коферментов, переносящих электроны. В гл. 7 мы будем говорить о том, что для понимания фотосинтеза очень важным оказалось установление точного положения каждого из коферментов в комплексе. Не мепее значимым (в большой степени относящимся к теме данной главы) событием стало выяснение организации четырех белковых субъединиц в трансмембранном комплексе. Субъединицы L и М гомологичны и состоят каждая из пяти а-спиралей, пронизывающих липидный бислой плазматической мембраны (рис. 6-32). Эти две субъединицы образуют гетеродимер, представляющий собой ядро реак- [c.371]

    Центральную роль в компартментации эукариотической клетки играют белки. Они катализируют реакции, протекающие в каждой органелле, и избирательно переносят малые молекулы внутрь органеллы и из нее Белки также служат специфичными для органелл поверхностными маркерами, которые направляют новые партии белков и JIипидoв к соответствующим компартментам. Клетка млекопитающих содержит около 10 миллиардов (10 ) молекул белков примерно 10000 разных типов, синтез почти всех этих белков начинается в цитозоле - общем пространстве, окружающем все органеллы. Каждый вновь синтезированный белок затем специфически доставляется в тот клеточный компартмент, который в нем нуждается. Прослеживая путь белка из одного компартмента в другой, можно разобраться в запутанном лабиринте клеточных мембран. Следовательно, нам надлежит сделать центральной темой этой главы внутриклеточные перемещения белков. Хотя здесь будут описываться и обсуждаться почти все клеточные органеллы, основное внимание будет обращено на эндоплазматический ретикулум (ЭР) и аппарат Г ольджи, которые играют решающую роль в фиксации, сортировке и транспорте множества вновь синтезированных белков. [c.5]

    В больпптстве биохимических процессов белковые посредники представляют собой катализаторы химических реакций ферменты. Однако некоторые процессы, например транспорт многих субстратов ч( р( з биологические мембраш . , осуплествля-ются белками, которые не катализируют каких-либо химических превращений, а обусловливают узнавание и транслокацию субстратов. [c.29]

    В настоящее время неясно, для чего нужен такой ступенчатый путь гликозилирования и какую роль играет в сортировке и транспорте белков. Как уже упоминалось, с помощью дифференциального центрифугирования в градиенте сахарозы удалось разделить аппарат Гольджи на 3 фракции (по-видимому, возможно получение и большего числа фракций, обладающих различной плотностью) и исследовать в каждой из них активность ферментов гликозилирования. Было показано, что фракция наиболее плотных мембран содержит ферменты, катализирующие присоединение к олигосахаридной цепи фосфатных групп, фракция с промежу- [c.179]

    Жидкостно-мозаичная модель структуры мембран (Singer, Ni olson, 1972) очень хорошо объясняет свойства сопрягающих мембран (рис. 2.1). Согласно этой модели, основная часть фосфолипидов в мембране образует бислой, в котором полярные головки молекул обращены в водную фазу. Мембранные белки могут быть как периферическими (внешними), так и интегральными (внутренними) в зависимости от глубины их размещения в гидрофобной области бислоя. Некоторые интегральные белки пересекают мембрану от одного ее края до другого, что позволяет им катализировать трансмембранный транспорт. В этой главе мы остановимся на различиях между транспортом, катализируе- [c.30]

    Свойства белковых систем, катализирующих транспорт через сопрягающие мембраны, обычно сильно отличаются от свойств бислойных участков как в присутствии, так и в отсутствие ионофоров. Транспортные белки обладают многими свойствами, присущими ферментам они проявляют стереоспецифичность, часто их можно специфически ингибировать, они генетически детерминированы. Последнее обстоятельство делает невозможной ту степень обобщения, которая применима к транспорту через бислой. Например, если РССР (рис. 2.5) индуцирует протонную проводимость в митохондриях, то можно смело полагать, что его эффект будет тем же в случае хлоропластов, бактерий или искусственного бислоя. В отличие от РССР транспортный белок может быть специфическим не только для данной органеллы, но и для органеллы из определенной ткани. Например, переносчик цитрата существует в митохондриях из печени, где он участвует в переносе промежуточных соединений синтеза жирных кислот (разд. 8.3), но отсутствует в митохондриях из сердца. Иногда утверждают, что для белковых транспортных систем характерна кинетика насыщения. Хотя в некоторых случаях это может быть верным, в целом кинетика транспортных процессов настолько сложна (особенно если они зависят от мембранного потенциала), что интерпретация ее требует большой осторожности. [c.40]

    Процесс преобразования световой энергии и связанный с ним транспорт электронов при фотосинтезе происходят в ламеллах. Строма содержит много растворимых белков, в том числе ферменты цикла Кальвина — Бенсона ( alvin, Benson) (гл. 6), катализирующие темновые реакции восстановления СОг до углеводов. [c.38]

    Особый интерес вызывает механизм экспорта новых субъединиц рибосом. Эти частицы слишком велики (около 15 нм в диаметре), чтобы проникать через 9-нанометровые каналы. Более вероятно, что они проникают сквозь ядерные поры, используя систему активного транспорта. Полагают, что и молекулы информационной РНК в составе рибонуклеопротеиновьк частиц (в комплексе со специальными белками) переносятся из ядра в цитоплазму активно. Если частицы коллоидного золота диаметром 20 нм, подобные тем, что были использованы в экспериментах с нуклеоплазмином (см. рис. 8-24), связать с молекулами малых РНК (тРНК или 58-РНК) и затем инъецировать в ядро ооцита лягушки, то они быстро переносятся чфез ядерные поры в цитоплазму. С другой стороны, если их ввести в цитоплазму ооцита, они останутся там. Видимо, помимо рецепторов, узнающих сигналы ядерного импорта, поры содержат один или более рецепторов, распознающих молекулы РНК (или связанные с ними белки), предназначенные для цитозоля когда эти рецепторы связаны, пора катализирует активный транспорт наружу вместо транспорта внутрь ядра. Заметим, что хотя некоторые белки ядерных пор (включая мажорный мембранный белок с мол. массой 190 кДа) недавно были выделены, до сих пор неизвестно, как именно работает ядерная пора. [c.28]


Смотреть страницы где упоминается термин Транспорт в катализируемый белками: [c.32]    [c.537]    [c.37]    [c.28]    [c.264]    [c.371]   
Биоэнергетика Введение в хемиосмотическую теорию (1985) -- [ c.40 ]




ПОИСК







© 2025 chem21.info Реклама на сайте