Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

МЭА-очистки от окиси углерода

    После очистки от этих компонентов в водороде остается окись углерода, от которой газ очищают медноаммиачным раствором. Этот метод требует довольно сложной и громоздкой аппаратуры, поэтому изыскиваются пути его замены метанированием или синтезом на основе окиси углерода. Полученная в процессе очистки окись углерода может быть возвращена в цикл или использована в качестве топлива. [c.163]


    В процессе медно-аммиачной очистки окись углерода абсорбируется при высоком давлении водным раствором медно-аммиачной соли с образованием комплексного медно-аммиачного соединения окиси углерода  [c.346]

    В процессе медно-аммиачной очистки окись углерода поглощается под высоким давлением водным раствором медно-аммиачной соли ГбП. В практике используются аммиачные растворы формиата, карбоната или ацетата меди. Степень очистки газа зависит от парциального давления окиси углерода над регенерированным раствором и общего давления газа. Для достижения остаточного содержания окиси углерода в 10 ppm. промывка должна производиться при давлении 80-300 ат и температуре от О до -10°С. [c.55]

    Процесс переработки газа включает отделение образовавшихся при пиролизе ароматических углеводородов, очистку газа и абсорбцию ацетилена. Из остаточных газов выделяются этилен и окись углерода. Остающаяся часть используется как топливо. [c.97]

    Под тонкой очисткой понимают процесс очистки газа от органической серы . Органически связанная сера присутствует в газе в первую очередь в виде сероуглерода (примерно 60%), затем следуют серо-окись углерода (40%) и некоторое количество тиофенов, меркаптанов и других органических сернистых соединений. [c.81]

    Из всех выбросов химических предприятий в атмосферу наибольший вред приносят сернистый газ, окислы азота, окись углерода, нефтяные газы, а также различные пыли. Нефтедобыча и нефтехимия дают около 15,5% всех выбросов в атмосферу. Между тем очистка отходящих газов на химических заводах не только возможна, но и экономически выгодна, так как нередко отходы удается переработать в продукт, нужный народному хозяйству например ЗОз перерабатывается в серную кислоту. [c.281]

    Газ для синтеза аммиака обычно получают из исходного сырья, содержащего углерод. Окислы углерода, которые дезактивируют катализатор синтеза аммиака (гл. 7), должны быть удалены из синтез-газа перед его использованием. На большинстве современных аммиачных установок окись углерода конвертируют в две стадии с паром в двуокись углерода, абсорбируют СОа в скруббере и окончательно очищают синтез-газ метанированием остатков СО и СОа До уровня следов. Другие схемы очистки — такие, как абсорбция СО раствором меди или очистка путем низкотемпературной дистилляции (промывки) — обычно имеют более высокую эксплуатационную стоимость, а иногда также более высокие капитальные затраты, чем каталитическая очистка, но им все же может быть отдано предпочтение в некоторых случаях на отдельных заводах. [c.117]


    Известны два способа очистки водорода от окиси углерода. Окись углерода можно либо окислить до двуокиси, которая затем поглощается щелочью, либо восстановить до метана некоторым количеством водорода. Подобным же образом вместо извлечения щелочью следы СО2 можно удалить, прогидрировав ее до метана. [c.181]

    Вредные выбросы. Точно установлено, что двигатели внутреннего сгорания, прежде всего автомобильные карбюраторные двигатели, являются основными источниками загрязнения. Выхлопные газы автомобилей, работающих на бензине, в отличие от автомобилей, работающих на СНГ, содержат соединения свинца. Такие антидетонационные добавки, как тетраэтилсвинец,— наиболее дешевое средство приспособления обычных бензинов к современным двигателям с высокой степенью сжатия. После сгорания свинецсодержащие компоненты этих добавок попадают в атмосферу. Если применяются очистительные фильтры каталитического действия, то поглощаемые ими соединения свинца дезактивируют катализатор, в результате чего не только свинец, но и окись углерода, несгоревшие углеводороды выбрасываются вместе с выхлопными газами в количестве, зависящем от условий и стандартов на эксплуатацию двигателей, а также от условий очистки и ряда других факторов. Количественно концентрацию загрязняющих компонентов в выхлопных газах при работе двигателей как на бензине, так и на СНГ определяют по методике, хорошо известной теперь как калифорнийский цикл испытаний . При проведении большинства экспериментов было выявлено, что перевод двигателей с бензина на СНГ приводит к снижению количества выбросов окиси углерода в 5 раз и несгоревших углеводородов в 2 раза. [c.217]

    Полученную окись углерода собирают в газгольдеры над маслом или глицерином (см. стр. 101), нз которых перекачивают ее в стальные баллоны. После хранения в стальных баллонах в окиси углерода обнаруживают следы карбонила железа и двуокиси углерода. Очистка от карбонила железа описана ниже (см. стр. 244). [c.244]

    В перегонную колбу на 500 мл, помещенную в водяную баню, наливают 125 < концентрированной серной кислоты, а в капельную воронку— 85 г 90%-ной муравьиной кислоты. Колбу соединяют с двумя промывал-ками, наполненными концентрированной серной кислотой. Колбу нагревают до 70—80° и по каплям приливают муравьиную кислоту. Выделяющаяся Окись углерода содержит, кроме воды, SOj и СО2. Для более тщательной очистки необходимо после промывных склянок с концентрированной серной кислотой ставить колонку, наполненную твердым едким натром или едким кали. Окись углерода—бесцветный, очень ядовитый газ. Приборы для его получения и применения должны находиться в хорошо действующем вытяжном шкафу. [c.167]

    Водород, полученный из водяного газа, может содержать следующие примеси непредельные и предельные углеводороды. кислород, азот, окись углерода, двуокись углерода, сероводород, мышьяковистый водород и влагу. Очистка такого водорода затруднена и, например, азот, насыщенные углеводороды и окись углерода практически удалить нельзя. [c.18]

    Процесс частичного окисления основывается на взаимодействии углеводородов с обогащенным кислородным потоком в некаталитическом пламени для получения газа, содержащего водород и окись углерода с небольшими количествами двуокиси углерода, водяного пара и метана. Затем проводят взаимодействие этой газовой смеси с водяным паром над катализатором реакции водяного газа и абсорбцией удаляют двуокись углерода, получая водород концентрацией 90—98%. В зависимости от дальнейшего назначения водорода применяют различные дополнительные операции очистки продукта. [c.182]

    Основным фактором, который необходимо учитывать при выборе варианта с непосредственным впрыском или с установкой котла-утилизатора, является назначение пара высокого давления потребляется ли он только для использования в качестве технологического непосредственно на установке или имеются другие потребители пара, не связанные с производством синтез-газа. На установках производства тоннажного водорода окись углерода, содержащаяся в синтез-газе, конвертируется на специальном катализаторе путем взаимодействия с водяным паром для получения добавочного водорода с одновременным образованием двуокиси углерода. На таких установках весь вырабатываемый пар высокого давления потребляется на ступени конверсии окиси углерода для последующей очистки целевого водорода и удовлетворения других энергетических потребностей. [c.184]

    В настоящее время основным сырьем в производстве аммиака являются природный газ, попутные газы нефтедобычи, жидкие углеводороды и коксовый газ. Доля аммиака, получаемого из твердого топлива и электролитического водорода, все более снижается. При современных методах получения аммиака все большее значение приобретают процессы очистки газа. Из технологических газов на разных стадиях получения аммиака удаляют такие примеси, как сернистые соединения, двуокись и окись углерода, ацетилен, окислы азота, кислород и др. Эти примеси, содержащиеся в газе в различных концентрациях, по-разному влияют на процесс. Например, сернистые соединения оказывают сильное влияние на все катализаторы, применяемые в синтезе аммиака серосодержащие соединения, присутствующие в исходном углеводородном сырье, ухудшают работу катализаторов конверсии метана, что приводит к повышению температуры процесса и увеличению расхода кислорода. При использовании наиболее экономичного способа производства аммиака, который основан на методе бескислородной каталитической конверсии метана в трубчатых печах, содержание сернистых соединений в природном газе не должно превышать 1 мг/м . [c.7]


    В схеме 2 двуокись углерода удаляют из газа воднощелочной очисткой под давлением 27,4-10 —29,4-10 Па (28—30 кгс/см ), а окись углерода — промывкой жидким азотом. Чтобы обеспечить безопасные условия эксплуатации агрегата промывки жидким азотом, перед ним устанавливают контактный аппарат для гидрирования окиси азота, являющейся опасной примесью (содержание окиси азота не должно превышать 0,02 см /м ). [c.10]

    Процесс промывки газа жидким азотом основан на физической абсорбции. В отличие от большинства известных абсорбционных процессов в данном случае отсутствует стадия десорбции растворенного газа из растворителя, промывка ведется чистым абсорбентом, поэтому принципиально может быть достигнута любая степень очистки. Особенность процесса такова, что его можно рассматривать не как абсорбцию, а как ректификацию смеси азот — окись углерода в токе инертного газа — водорода [29]. [c.359]

    В табл. VI1-4 приведено число теоретических тарелок, необходимое для очистки смеси [31, 32], содержащей 6% СО, до концентрации 0,001% СО при соотношении жидкий азот — окись углерода, равном 5,5, т. е. примерно в 3,5 раза больше минимального, достигаемого при 83 К и 25,6-10 Па (26 кгс/см ). [c.360]

    Газ, полученный в результате конверсии углеводородов, содержит значительные количества окиси и двуокиси углерода (от 10 до 35% и от 15 до 30% соответственно). Окись углерода, как известно, является потенциальным источником водорода, в результате ее каталитического взаимодействия с водяным паром образуются водород и двуокись углерода. Этот процесс можно рассматривать как грубую очистку от окиси углерода. Грубую очистку от двуокиси углерода осуществляют описанными выше абсорбционными методами. В результате очищенный газ может содержать от 50 см /м до 7000 см /м окислов углерода. Кроме того, в газе обычно присутствуют незначительные примеси кислорода (до 500 см /м ). [c.366]

    Электролитический водород в баллонах достаточно чист, содержит лишь незначительную примесь кислорода и может при--меняться непосредственно для гидрирования без предварительной очистки. Однако в баллонах может поступать в лаборатории и так называемый печной водород, получаемый из водяного газа. Такой водород содержит довольно много примесей сероводород, мышьяковистый водород, фосфористый водород, кислород, окись углерода, углекислый газ и др., большинство которых отравляет катализаторы гидрирования. Для очистки печной водород пропускают через 50%-ный раствор едкого кали или через трубку с натронным асбестом, затем через две промывных склянки с раствором марганцовокислого калия, одну склянку с щелочным раствором гидросульфита натрия и, наконец, через трубку с медной сеткой или с платинированным асбестом, нагреваемую при 550—400°, после чего, если нужно, газ высушивают. Для гидрирования под давлением в автоклавах, где указанную очистку два ли можно применить, печной водород использовать нельзя. [c.240]

    Очищенный от углекислоты газ, после первой ступени мо-ноэтаноламинной очистки, компримируется многоступенчатыми газовыми компрессорами на I—Ц—III ступенях до 30 ат, проходит I ступень моноэтаноламинной очистки, щелочную очистку и затем подвергается очистке от окиси углерода путем промывки жидким азотом. Предварительно охлажденный жидким аммиаком до минус W газ высушивается алюмогалем, охлаждается в обратных холодильниках, поступает в колонну отмывки жидким азотом, который поглощает окись углерода и кислород. [c.336]

    Реакции, идущие в газопенераторе типа Лурги , типичны для процесса сухой перегонки угля, а именно возгонка летучих углеводородов из угля и соответствующий крекинг их до метана и низших углеводоров, взаимодействие синтез-газа с образующимися при парокислородной карбонизации коксом или полукоксом, в результате чего образуются окись углерода и водород, и, наконец, реакция метанизации окиси углерода водородом под давлением. Газы, образующиеся на разных уровнях реактора, соединяются и по трубопроводу направляются в отделение очистки. Перед подачей на очистку газ охлаждается в котле-утилизаторе с получением пара, расходуемого на нужды всей установки. Охлажденный газ проходит через реактор прямой конверсии окиси углерода, в котором часть ее реагирует с избытком пара и образует двуокись углерода и водород. Смола и концентрат аммония удаляются из конденсата как в котле-утилизаторе, так и в холодильнике после реакции конверсии окиси углерода. [c.157]

    Процеос Метанизации известен в течение многих лет как необходимая стадия очистки газа при синтезе аммиака из азота и водорода. Остаточная окись углерода, являющаяся потенциальным отравителем всех катализаторов, применяемых в производстве аммиака, должна быть полностью удалена из синтез-газа. Установлено, что этот процеос легко осуществляется при наличии большого избытка водорода. Обычно двуокись углерода полностью удаляется из газа еще до того, как последний достигает секции установки, где осуществляется метанизация. Небольшое коли1 ество двуокиси углерода не оказывает влияния на ход процесса, и присутствие тяжелых компонентов становится нежелательным только при подаче синтетического аммиака в центробежные компрессоры. [c.176]

    Отравление катализатора крекинга весьма специфично. Если для подавляющего большинства катализаторов сернистые соединения, окись углерода, кислород и другие вещества являются ядами, то присутствие их почти не влияет на процесс крекинга. Но зато некоторые азотсодержащие соединения резко снижают активность катализатора, вызывая обратимое отравление его. Необратимо отравляютка-тализатор соединения щелочных металлов. Длительное воздействие паров воды при высокой температуре также приводит к необратимой потере активности катализатора в основном за счет уменьшения удельной поверхности его. Все технологические схемы крекинга предусматривают тщательную очистку исходного сырья от щелочных металлов. Замечено, что степень отравления различными азотсодержащими соединениями симбатна их основным свойствам. Повышение молекулярного веса азотсодержащего соединения увеличивает отравляющую способность его. Степень отравления понижается с повышением температуры. Так, присутствие 1% хинолина снижает скорость крекинга нри 575° С на 30%, а нри 500° С уже на 80%. При этом полная потеря активности катализатора наступает при содержании хинолина, покрывающего лишь 2% всей поверхности катализатора. [c.238]

    I — окись углерода И — олефины III — катализатор IV — вода V — реакционная смесь VI — катализатор на регенерацию VII — сырые кислоты VIII — промывная вода на очистку IX — товарные нео-кислоты X — кубовый остаток на сжигание. [c.267]

    Абсорбционная очистка газов может быть основана и на при ципе растворения СО2 и НаЗ в жидком поглотителе. Двуокись угд рода и сероводород — более тяжелые трехатомные газы — раств " ряются в жидкости лучше двухатомных газов, таких, как водорок окись углерода, азот. Регенерацию поглотителя в этом случае пр водят за счет снижения давления газа над поглотителем. Более по ное выделение газа из поглотителя достигается созданием вакууиц или продувкой поглотителя инертным газом.  [c.113]

    Примененные на отечественных установках инертного газа способы очистки от окислов углерода пбзволяют добиться снижения содержания СО до 0,1% (об.), а СО2 —до 1,0% (об.). Такая глубина очистки недостаточна, поскольку, как установлено, окись углерода может легко образовываться из СО2 при относительно низких температурах (150—200°С) в присутствии платинового, катализатора. Поэтому в настоящее время выдвинуто требование [c.261]

    Э9,С можно получать очисткой конвертированного газа путем сжижения всех компонентов, кроме водорода, с последующей ректификацией одновременно пол> чавт и чистую окись углерода /92,- 937. [c.266]

    В дальнейшем на этом же катализаторе при 120 °С из пентан-гексановой фракции за один проход, т. е. без рециркуляции был получен выход изомерных пентанов и гексанов, равный 73%- Необходимо отметить, что при применении. платиновых или палладиевых бифункциональных катализаторов очень жесткие требования предъявляются к качеству как сырья, так и водородсодержащего газа. Такие примеси как окись углерода, кислород, влага и особенно сернистые соединения являются де зактиваторами катализатора. Поэтому требуется предварительная очистка и осушка водородсодержащего газа и сырья. [c.306]

    Карбонильный способ очистки никеля заключается в том, что над нагретым до 80° С измельченным черновым никелем пропускают ток окиси углерода, уносящий с собой образующийся тгтракарбоннл никеля N1(00)4. Смесь газов нагревают до 200° С. В результате распада N (00)4 при этой тe пературе выделяется чистый никель, а окись углерода возвращается в производство. Химизм процесса выра> ается схемой [c.44]

    Окись углерода, поступающая в продажу в стальных баллонах, может содержать примеси Oj, 0 Hj, СН,, Nj и Fe( O)s. Для очистки газ пропускают через склянку с раствором КОН и через колонку с твердым КОН. Для связьшапия кислорода и карбонила железа газ медленно пропускают через накаленную до 600 °С медную спираль или через активированную медь при 200 °С (см. разд. Азот , приготовление п. 1 и 2). Очистить от примеси Hj, СН4 и N2 можно либо многократным фракционированием сжиженного гаэа, либо газоадсорбционной хроматографией. [c.363]

    Очистка растворителя. Получение ДМФ высокой чистоты - довольно сложная задача. В процессе перегонки растворитель разлагается при температуре кипения. Кислоты и основания даже при комнатной температуре катализируют этот процесс разложения, при котором образуются диметиламин и окись углерода. Проблема очистки ДМФ была тщательно исследована Томасом и Роккоу [I]. Авторы предложили четыре метода очистки и определяли качество продукта по его удельной электропроводности и содержанию примесей, которые рассматривались как примеси воды. Во всех случаях большое количество воды удалялось в виде азеотропной смеси с избытком бензола (т. к. бензола 80,2 °С, т. к. азеотропа 69,2 °С при 8,83% Н2О). В первом методе этот продукт сушился безводным MgS04 и затем перегонялся в вакууме. Второй метод включал повторное встряхивание с окисью бария и последующую перегонку при давлении 15-20 мм. В третьем методе продукт сушился путем встряхивания с А Оз и перегонялся при давлении 5-10 мм. Четвертый метод предусматривал обработку полученного первым методом продукта трифенилхлорсиланом. Эта смесь выдерживалась при 120-140 °С в течение 24 ч, а затем перегонялась при давлении 5 мм. Удельная электропроводность (в Ом -СМ ) этих продуктов и содержание примесей (%> воды) в них соответственно составляли (0,9-1,5)-10 и 0,01 (0,4-1,0>10 и 0,001-0,005 (0,3-0,9) -Ю и 0,005-0,007 (0,6-1,35)-10 и <0,001. [c.17]

    Окись углерода, сохраняемая в баллонах, мож вт содержать примеси СО2, 62, Н2, СН4, N2 и ре (СО) Б. Вначале удаляют, двуокись углерода промывкой раствором КОН и пропусканием газа через колонии с влажным КОН. Для удаления кислорода и карбонила железа газ пропускают с небольшой скоростью через трубку, наполненную восстановленной металлической медью (сетка или проволока) м нагретую до 600 °С, или через трубку с активной м-едью при температуре 170—200 °С (ом. стр. 146). Для окончательной очистки от пр имесей На, СН4 и N2 сухой газ конденсируют при температуре жидкого азота и цод-вергают многократной фракционированной дистилляции (ом. стр. 241). Полную очистку окиси углерода от О2, Нг, СН4 й N3 можно осуществлять методам газо-адсорбционной хроматографии (ом. стр. 59—76 и 97). [c.244]

    Система очистки водорода. Обычно из конвертированного газа необходимо по возможности полностью удалить окись и двуокись углерода. Основную массу окиси углерода превращают в двуокись реакцией конверсии (3) в отдельном адиабатическом реакторе, следующем после печи конверсии. Выбор процесса для удаления двуокиси углерода и остаточной окиси углерода определяется требованиями, предъявляемыми к чистоте водорода, и обычными экономическими соображениями. В тех случаях, когда в очищенном водороде депускается содержание метана 1 % или больще, остаточную окись углерода обычно превращают в мета в противном случае ее удаляют промывкой аммиачным раствором медных солей или превращением в двуокись углерода с последующим ее удалением. [c.174]

    Для очистки от сероокиси углерода, сероводорода и окиси углерода эти примеси каталитическими процессами превращают в соединения, менее вредные или легче удаляемые из газового потока. В качестве катализатора для гидрирования сернистых соединений в сероводород на промышленных установках применяют сульфид никеля [13], сульфат магния и окись цинка [22, 25], тиомолибдаты металлов [12] и окислы металлов [44]. Окись углерода превращают в двуокись, пропуская газ через один или несколько конверторов, в которых окись углерода, взаимодействуя на стационарном катализаторе с водяным паром, образует двуокись углерода и водород [5]. Образующуюся двуокись углерода удаляют из газового потока одним из рассмотренных выше процессов. Иногда небольшие количества окиси и двуокиси углерода удаляют превращением в метан реакцией гидрирования. Ацетиленовые углеводороды удаляют из алкенсодержащих газовых потоков процессом избирательного гидрирования [35, 68]. [c.99]

    Применение растворителя способствует лучшему осуществлению теплосъема, более равномерному распределению катализатора в реакционном объеме и защищает катализатор от ядов полимеризации. Ядами полимеризации являются ацетилен, кислород, вода, окись и двуокись углерода, сернистые соединения. Для удаления ацетилена из этилена применяют как метод селективного -гидрирования, так и извлечение органическими соединениями при низких температурах сернистые соединения и углекислый газ удаляют щелочной очисткой, метан, окись углерода — тонкой ректификацией, кислород— пропусканием этилена через слой горячей металлической меди, а воду — адсорбционными методами (осушкой на активированной окиси алюминия, силикагеле или цеолитах). [c.52]

    Газ процесса полукоксования полукоксовый газ) содержит в своем составе различные углеводороды, водород, окись углерода и балласт двуокись углерода, азот и водяные пары. Значительная часть углеводородов при обычных температурах окружающей среды конденсируется в виде смол, бензола, газового бензина, которые улавливаются, так как представляют собой ценное сырье для химической промышленности. Газ после улавливания конденсирующихся продуктов и очистки находит применение в качестве топлива. Теплота сгорания нолукоксового газа 20,0—30,0 Мдж1м . [c.17]

    На схеме 9 показано получение технологического газа газификацией каменного угля (или других видов твердого топлива). Газ, полученный в результате переработки этого вида сырья, подвергают многоступенчатой очистке от пыли в циклонах, скруббере, орошаемом водой, и мокропленочном электрофильтре. Затем с помощью раствора моноэтаноламина газ очищают от сероводорода и частично от двуокиси углерода. Эта очистка предшествует стадии конверсии окиси углерода. Газ после конверсии СО очищают известными абсорбционными способами двуокись углерода поглощается водой, окись углерода — медно-аммиачным раствором. Для окончательного удаления СО2 после медно-аммиачной очистки газ промывают раствором аммиака при давлении 302,8-10 —313,6-10 Па (310— 320 кгс/см2). Чтобы обеспечить требуемую степень чистоты азоте-водородной смеси, перед синтезом аммиака проводят каталитическое гидрирование кислородсодержащих примесей в аппаратах пред-катализа (давление процесса 294-10 —313,6-10 Па 300— 320 кгс/см ). [c.20]

    Распространение защитных атмосфер увеличило возможность возникновения взрывов. Ряд защитных атмосфер содержит водород, окись углерода или и то и другое. С точки зрения техники безопасности самое важное правило заключается ч том, чтобы постоянно поддерживать избыточное давление в печи и тем самым не допускать попадания в нее воздуха. Давление в печи можно поддерживать автоматически. Если температура в печи превышает 750°, воздух, проникающий в печь, немедленно используется для горения. Если же воздух проходит в печь, которая должна пускаться, то образуется смесь, могущая взорваться, когда печь нагреется до температуры воспламенения этой смеси. При аварии с регулятором давления для защиты печи устанавливается еще другое предохранительное устройство. Это — электрически нагреваемая трубка, в которой при засосе воздуха сразу возникает горение. Трубку располагают вблизи подины, так как внешний воздух тяжелее атмосферы в печи. В соответствии с требованиями техники безопасности необходимо, чтобы весь воздух из печи был удален до того как печь нагреется до температуры 750°. Весьма надежный способ очистки печи автор наблюдал в 1931 г. в Германии. На подину печи направляли углекислый газ, получаемый из дымовых газов элек-тронстанции. Газ вытеснял воздух. Когда весь воздух из печи был удален, небольшой факел пламени у отверстия в верхней части печи погасал. Тогда под свод печи подводился защитный горючий газ. Если после этого небольшое пламя, горящее у отверстия внизу печи, зажигало защитный газ, вытекающий из [c.386]


Смотреть страницы где упоминается термин МЭА-очистки от окиси углерода: [c.78]    [c.315]    [c.218]    [c.246]    [c.132]    [c.115]    [c.357]    [c.97]   
Очистка технологических газов (1977) -- [ c.444 ]




ПОИСК







© 2025 chem21.info Реклама на сайте