Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Гидрирование азотсодержащих ароматических соединений

    Гидрирование азотсодержащих ароматических соединений [c.376]

    В промышленности основного органического и нефтехимического синтеза гидрирование азотсодержащих соединений проводится главным образом для получения аминов. При этом возможно гидрирование кратных связей углерод-азот, кратных связей азот—кислород, непредельных связей углерод—углерод, превращение ароматического кольца в нафтеновое. Гидрирование может сочетаться е одновременным аммонолизом кислородных соединений. [c.49]


    В состав органической части каменных углей входят битумы, гуминовые кислоты и остаточный уголь. Молекулярная структура органической части угля представляет собой жесткий трехмерный полимер нерегулярного строения, содержащий подвижную фазу в виде разнообразных мономолекулярных соединений. Обе фазы построены из отдельных фрагментов, включающих ароматические, в том числе многоядерные и гидрированные системы с алифатическими заместителями и азотсодержащие гетероциклы, соединенные мостиковыми связями С-С, С-О-С, С-8-С и С-МН-С. Степень конденсированности фрагментов (п) зависит от степени углефикации каменного угля. Так, при степени углефикации 78% п = 2, при степени 90% п = [c.156]

    АНМ-катализатор активен при гидрировании конденсированных ароматических углеводородов и азотсодержащих соединений. Поэтому этот катализатор рекомендуют для очистки тяжелого высокоароматизированного сырья каталитического крекинга. [c.802]

    Процесс гидроочистки, связанный с гидрированием сернистых, азотсодержащих, кислородсодержащих, непредельных и отчасти ароматических соединений, имеет положительный тепловой эффект. Для прямогонных легких фракций (бензин, керосин, дизельное топливо) он равен 53—84 кДж на 1 кг сырья, а для тяжелых топлив, содержащих большие количества непредельных и сернистых соединений, составляют 250— 500 кДж/кг. В промышленных установках реакционное тепло снимают циркулирующим холодным газом. [c.239]

    Катализатор допускает присутствие серу- и азотсодержащих соединении в сырье и обеспечивает высокую степень гидрирования ароматических соединений [c.64]

    В процессе гидроочистки при давлении 105 ат происходит гидрирование не только сернистых и азотсодержащих соединений, но и полициклических ароматических углеводородов. Б, результате каталитического крекинга гидроочищенного сырья выход бензина возрастает, а коксоотложение снижается более чем в 2 раза. На рис. 56 и 57 приведены зависимости выходов соответственно кокса и бензина от степени превращения прямогонных газойлевых фракций при каталитическом крекинге [83]. Глубина гидроочистки оценивалась по расходу водорода на гидрирование. По этим рисункам можно ориентировочно установить эффективность гидроочистки сырья каталитического крекинга. [c.227]

    С повышением молекулярного веса нефтяной фракции удаление серы и азота из серу- и азотсодержащих соединений путем гидрирования с использованием имеющихся катализаторов становится все более трудной задачей. Нежелательные свойства смазочным маслам придает в основном наиболее трудно удаляемый азот. Поэтому установки для гидроочистки смазочных масел конструируются в расчете на работу в самых жестких условиях рабочего диапазона температура поддерживается вблизи 400°С, а давление - около 100 атм, В этих условиях, кроме обычных реакций удаления серы и азота, могут проходить некоторые реакции гидрокрекинга и, возможно, дегидрогенизации циклогексановых колец в ароматические. [c.246]


    Удаление всех компонентов, кроме простых эфиров И углеводородов Удаление всех компонентов, кроме ароматических и парафиновых углеводородов Удаление простейших кислород- и азотсодержащих соединений Гидрирование ненасыщенных соединений [c.224]

    Гидрогенолизу подвергались сераорганические соединения различного строения, относящиеся к различным классам тиолы, сульфид, алкилтиофены и тионафтены. Во всех случаях единственной реакцией, изменяющей характер углеводородных осколков, является реакция гидрирования ароматических колец. Авторы указывают на возможность распространения данного метода на кислород-и азотсодержащие соединения. [c.390]

    Большинство реакций восстановления характеризуется присоединением водорода по кратной связи. Гидрирование олефинов и ацетиленов на поверхности переходных металлов относится к радикальным реакциям этот тип восстановления будет рассмотрен в главе 26. Восстановление растворенными металлами, например натрием, может быть классифицировано как нуклеофильное присоединение в соответствии с этим оно наблюдается для карбонильной группы, соединений с двойной связью С = С, сопряженной с ароматическим ядром, и для многих азотсодержащих соединений, таких, как нитро-, нитрозе- и азосоединения. Этот второй тип восстановления и рассматривается в настоящей главе. Сюда включены также электролитическое восстановление и восстановление действием металлов и ионов металлов, которое может протекать с образованием радикалов. [c.477]

    Первый пример был опубликован недавно в работе [11]. Разбавленные растворы хинолина в додекане подвергались каталитическому гидрированию, и необходимо было определить, какие получились продукты. Основной интерес представляли ароматические азотсодержащие соединения. Общая концентрация азота в продуктах гидрирования колеблется в пределах от 1000 до менее чем 1 ч. на млн. На рис. 6.5 показаны основные интересующие нас продукты, хотя они не были известны в начале работы. Вначале был проведен качественный анализ основных продуктов образца. Начальное, поисковое разделение, цель которого—определить композиционный состав образца, целесообразно проводить методом градиентного элюирования. На рис. 6.6 показана хроматограмма, полученная при разделении типичных продуктов образца при градиентной подаче растворителя (ТЖХ). Основные компоненты (они перенумерованы) собираются в средней части хроматограммы, незначительное число углеводородов (т. е. соединений, не содержащих азота) вымывается в начале и незначительное количество более полярных соединений в конце хроматографирования. Основные [c.173]

    Азотсодержащие соединения в процессе гидрогенизации вначале подвергаются гидрированию, а затем от полученных продуктов отщепляется азот в виде аммиака. При более глубоком гидрировании возможно образование насыщенных углеводородов, а также вторичных и третичных аминов. При гидрировании полициклических азотсодержащих соединений вначале насыщается водородом кольцо, содержащее атом азота оно же в первую очередь подвергается деструкции. В результате получаются ароматические углеводороды, аммиак и циклические амины. [c.49]

    Наряду с сернистыми и азотными соединениями важную роль в стойкости масел к окислению могут играть и другие соединения, так как после удаления серо- и азотсодержащих соединений гидрированием масла имеют высокую стойкость к окислению. В этом случае важное значение могут иметь ароматические углеводороды или частично гидрированные ароматические углеводороды и продукты окисления фенола. При очень глубокой очистке масел их ингибирующий эффект утрачивается. [c.187]

    Несмотря на это, описаны разнообразные каталитические системы, которые способны гидрировать ароматические или гетероароматические соединения. Очевидно, что гидрирование азотсодержащих гетероароматических соединений представляет собой более легкую проблему показано 1], что катализатор, образующийся при обработке ННС1з(ру)з в диметил- [c.73]

    Обычно наблюдаемая степень удаления арота не превышает 30%, даже при высоких показателях по удалению серы. Прямая деструкция азотсодержащих соединений невозможна из-за высокой термической стабильности. Энергия разрыва связи С-КНг составляет 335,2 Дж/моль, т. е. практически равна энергии разрьта связи С-С. Удаление азота обязательно должно включать стадию насыщения кольца [36,40]. В результате расход водорода высок — 6-7 моль водорода на моль аммиака [37]. Для ускорения реакции деазотирования в катализаторе необходимы обе функции - гидрирования и гидрообессеривания [47], но они сильно зависят от типа соединений. Азотсодержащие соединения оказывают ингибирующее влияние на активные центры катализаторов гидрообессеривания, природа которых пока полностью не выяснена. В целом гидродеазотирование гетероциклических соединений азота изучено хуже, чем гидрообессеривание. Ясно, однако, что тип связи азота, так же как и связи серы, играет большую роль и определяет скорость деструктивного гидрирования азотсодержащих соединений. Например, алифатические амины значительно более реакционноспособны, чем ароматические. [c.56]


    Разработанные и внедренные в ряде стран процессы гидрирования масляных дистиллятов и деасфальтизатов дают возможность в одном каталитическом процессе достичь результатов, получаемых сочетанием глубокой селективной очистки и гидроочистки. Процесс обычно осуществляют под давлением 15— 30 МПа, при температуре 340—420°С, скорости подачи сырья 0,5—1,5 ч и объемном отнощении водородсодержащего газа к сырью 500— 1500. В качестве катализаторов можно применять катализаторы гидроочистки или более активные — сульфидновольфрамовый, ни-кельвольфрамовый на окисноалюминиевом носителе (алюмони-кельвольфрамовый) и др. Для повышения активности применяют промотирующие добавки, придающие катализатору кислотные свойства, — двуокись кремния, галоиды. Введение такой добавки способствует более интенсивному гидрированию азотсодержащих соединений и конденсированных ароматических углеводородов. Благодаря применению высокого давления и активных катализаторов реакции гидрирования протекают весьма глубоко — практически все компоненты, удаляемые при селективной очистке в виде экстракта, превращаются в целевые продукты. Гидрированием под высоким давлением в промышленном масштабе производят базовые высококачественные масла различного назначения индустриальные, турбинные, моторные, гидравлические, веретенные. В зависимости от вида сырья выход масел с одинаковым индексом вязкости при гидрировании равен или несколько выше, чем при селективной очистке. Вырабатываемые масла по эксплуатационным свойствам превосходят масла селективной очистки, особенно по стабильности и, следовательно, по сроку службы. [c.308]

    Гидрокрекинг представляет собой совокупность ряда параллельных и последовательных реакций расщепления парафиновых, нафтеновых и непредельных углеводородов, гидрирования ароматических и олефиновых углеводородов, деструктивного гидрирования, изомеризации и гидрогенолиза серо- и азотсодержащих соединений. В неблагоприятных условиях процесс может сопровождаться реакциями, противоположными основному направлению дегидрогенизацией некоторых алици-клических соединений, полимеризацией непредельных углеводородов и конденсацией их с ароматическими соединениями эти реакции приводят к коксообразованию. Под высоким давлением водорода реакции уплотнения молекул и дегидрирования подавляются и практически могут предотвращаться полностью [3, 4, 49—54]. [c.140]

    К гидрокрекингу близко примыкает гидроочистка чтобы лучще понять роль обоих процессов при переработке сырья, имеет смысл сравнить их между собой. Гидроочистка нефтяных дистиллятов — это процесс удаления серу- и азотсодержащих соедйнений путем селективного гидрирования. В промышленных процессах гидроочистки используют кобальт-молибденовые или никель-молибденовые сульфидные катализаторы, нанесенные на окись алюминия. Проводится гидроочистка в таких условиях, которые позволят избежать значительного гидрирования ароматических соединений, например при давлении водорода около 70—140 атм и температуре, близкой к 350° С Теоретически расход водорода должен обеспечивать только гидрогенизацию серу-, и азотсодержащих соединений до аммиака и сероводорода. Однако в реальных условиях реакции обессеривания неизбежно сопровождаются некоторым развитием процессов гидрогенизации и гидрокрекинга, глубина которых зависит от характера сырья и количества удаленной серы. Так, например, согласно расчетным данным, расход водорода на 90%-ное обессеривание 1 л кувейтского атмосферного газойля должен был составлять около 17 л, тогда как фактический расход примерно равен 22 л. Таким образом, на реакции гидрогенизации и гидрокрекинга было израсходовано примерно 5 л водорода. Для 75%-ного обессеривания 1 л кувейтского атмосферного остатка, содержащего 4,0% серы, теоретическй требуется 50 л водорода, а фактический расход превышает 100 л, т. е. свыше 50 л водорода расходуется на реакции, не связанные с обессерива-нием [1]. Повышение рабочей температуры с 350 до 400° С, переход на вакуумный газойль с применением алюмоникельмолибденового катализатора, обычно используемого для гидроочистки, еще больше усиливают реакции гидрокрекинга, в результате образуются главным образом компоненты средних дистиллятов. Однако в подобных условиях скорость дезактивации катализаторов превышает допустимую для тех промышленных процессов, которые проводятся при сравнительно невысоких давлениях, принятых в гидроочистке. [c.338]

    Основные научные работы посвящены изучению ароматических и азотсодержащих органических соединений. Установил (1885), что в структуру ретена входит фенант-реновое ядро. Гидрированием производных нафталина получил [c.39]

    НЫМИ кислородсодержащими циклами с двумя двойными связями. Сначала будут рассмотрены частично гидрированные ароматические соединения. Они, в свою очередь, распадаются на две группы 1) шестичленные азотсодержащие циклы с одной или двумя двойными связями и 2) пятичленные азот-, кислород- или серусодер-жащйе циклы с одной двойной связью. [c.61]

    Промышленные катализаторы обладают высокой избирательностью. В присутствии АКМ-катализатора с высокой скоростью протекают реакции разрыва С— S-связей, он достаточно активен в реакциях насыщения алкенов, разрыва связей С—N и С—О. Расщепления связей С—С не происходит. Этот катализатор практически пригоден для гидроочистки любых нефтяных фракций. АНМ-катализатор значительно более активен в реакциях насыщения полициклических аренов и гидрирования азотистых соединений, поэтому его рекомендуют для очистки тяжелого высокоароматизированного сырья каталитического крекинга. Алюмоникель — или алюмокобальтвольфрамовые катализаторы (АНВ или АКВ) предназначены для глубокого гидрирования азотсодержащих и ароматических соединений в процессах гидрогенизационной очистки парафинов, гидрирования 356 [c.356]

    Восстановление азотсодержащих соединений а) Нитросоединения СНзСНгСНСНз СНзСНаСНСНз эфир 1 N02 КНз 2-Нитробутан 2-Аминобутан (85%) Литийалюминийгидрид — удобный реагент для восстановления нитросоединений, нитрилов, амидов, азидов и оксимов до первичных аминов. Возможно также каталитическое гидрирование. Ароматические соединения лучше всего восстанавливаются водородом, образующимся при реакции металла с кислотой или полисульфидами аммония или натрия (см. гл. 24). Восстановление К-замещенных амидов приводит к вторичным аминам [c.22]

    Прошлые теоретические и экспериментальные работы [7—12] и последние исследования [13—17] показали, что процесс гидрокрекинга, или, как раньше его называли, крегинг в присутствии водорода (деструктивная гидрогенизация), представляет собой совокупность ряда параллельных и последовательных реакций. К ним относятся расщепление парафиновых, нафтеновых и оле-финовых углеводородов, отрыв боковых цепей ароматических и нафтеновых углеводородов, деструктивное гидрирование, или гидродеалкилирование алкиларома-тических углеводородов, гидрогенолиз сероорганических и азотсодержащих соединений, гидрирование продуктов расщепления, изомеризация, уплотнение полупродуктов и коксообразование. Гидрокрекинг, может протекать под давлением водорода от 30 до 700 ат и выше, при этом реакции уплотнения молекул и дегидрирования заметно подавляются. При высоких давлениях (200 ат и более) они могут предотвращаться практически полностью. [c.10]

    При этом процессе, проводимом в мягких условиях, изменяются углеводородный состав и свойства сырья, главным образом в результате гидрирования труднокрекируемых полициклических ароматических углеводородов, серо-, азотсодержащих и металлор-ганических соединений. В результате снижаются коксуемость сырья и содержание в нем упомянутых соединений, однако при этом расходуется сравнительно много водорода. Гидрирование [c.34]

    Несмотря на то, что при гидрогенизации твердых топлив большая часть водорода (до 75%) расходуется на первой (жидкофазной) стадии, основные процессы, осуществляемые с целью получения высококачественных бензинов, протекают, как правило, в газовой фазе. Газофазную гидрогенеза-цию в прог<лышленной практике проводят в две стадии - предварительное гидрирование и расщепление (бензинирование). На каждой ступени используют свой катализатор. При предварительном гидрировании сырье обогащается водородом и освобождается от кислородсодержащих, сернистых и особенно азотсодержащих соединений, являющихся ядом для многих катализаторов. При этом происходит отщепление сероводорода, воды и аммиака. Кроме того, имеющиеся в сырье ароматические углеводороды превращаются в шестичленные нафтены, а олефины - в предельные углеводороды. [c.145]

    Начальной реакцией всех соединений, содержащих пиридиновое или лиррольное кольцо, является насыщение гетероциклического кольца. Затем происходит разрыв гидрированного кольца в различных положениях с обра--зованием смеси первичных и вторичных аминов. После этого ариламины подвергаются дальнейшему гидрогенолизу с образованием ароматических углеводородов с короткими боковыми цепями, алканов — С3 и свободного аммиака. В присутствии гидрирующего катализатора образуются основания, первоначально отсутствовавшие в исходном сырье. Если катализатор не обладает гидрирующей активностью, например при каталитическом крекинге, то активность его не снижается азотистыми соединениями неосновного характера. При гидрокрекинге азотсодержащих нефтяных фракций в присутствии дисульфида вольфрама на алюмосиликатном носителе изомеризация частично подавляется вследствие образования] аммиака и аминов, которые дезактивируют катализатор. [c.138]

    Гидрирование олефинов и диеновых углеводородов. Работы С. В. Лебедева, Б. А. Казанского, Д. В. Сокольского и др. Гидрирование ацетилена и его производных. Работы Ю. С. Залькинда и др. Гидрогенизация жиро1в и растительных масел. Работы С. А. Фокина, С. Ю. Еловича и Г. М. Жабровой, кафедры катализа Казахского государственного университета и др. Гидрирование ненасыщенных азотсодержащих соединений нитрилов, азинов. Работы К. А. Тай пале и др. Гидрирование ароматических углеводородов бензола и его гомологов, нафталина, антрацена и др. Работы А. В. Лозового, М. К. Дьяковой, С. А. Синявина, А. А. Алчуджана, А. А. Введенского и А. В. Фроста и др. Гидрирование алицик-личных углеводородов. Работы Б. А. Казанского по гидрированию пятичленных циклов. Деструктивное гидрирование органических соединений, каменного угля и тяжелых нефтяных фракций с целью получения моторного топлива. Каталитическое восстановление ароматических нитросоединений. Работы М. М. Зайцева, Н. Д. Зелинского и А. А. Стрельцовой, Г. Б. Смита с сотрудникамй и др. [c.233]

    Не менее сложный процесс описывается в патенте (278] для получения реактивного топлива. Здесь также используется газойль каталитического крекинга, содержащий бициклические ароматические углеводороды, который перегоняют на ряд 33 градусных фракций, выкипающих в интервале 230—300°. Фракции подвергают первичному гидрированию в присутствии водорода и серостойкого кобальт-молибденового катализатора, в результате чего серо- и азотсодержащие соединения превращаются в более низкокипящие соедипения, а основная маоса бициклических ароматических углеводородов — в тетралины. После отделения серо- и азотсодержащих соединений, остаток гидрируют вторично в присутствии более активного катализатора — платина на окиси алюминия, причем тетралины превращаются 3 декалины. Фракции, (Выделенные из продуктов вторичного гидрирования, содержащие декалины, представляют собой компоненты реактивных топлив с весовой теплотворной способностью 1000 ккал кг п объемной — 8300 ккал л. [c.109]

    В работе /"l 11 7отмечается, что при гидроочистке тяжелого дистиллята при температуре 371 С на АНМ катализаторе гидрируется на 10% больше ароматических углево -дородов, чем на АКМ. Глубина гидрирования серу- и азотсодержащих соединений при переработке фракций 300-500°С в присутствии АНМ катализатора выше соответственно на 5-10 и 20-25%, чем на АКМ катализаторе [W . Глубина обессеривания вакуумного газойля на АНМ катализаторе СредАзНИИ НП также выше, чем на АКМ катализаторе, особенно при повышенных объемных скоростях подачи сырья fll( . [c.72]

    Алифатические соединения серы (тиолы, дисульфиды), али-циклические и алкилароматические сульфиды гидрируются в условиях гидроочистки полностью и с большей скоростью, чем ароматические сульфиды и тиофены. В пределах одного класса соединений скорость гидрирования уменьшается с увеличением молекулярной массы. По реакционной способности органические соединения серы можно расположить в следующий ряд (в скобках даны относительные скорости гидрирования) [9] тиолы (7,0) =дибензилсульфид (7,0)>вторичные алкилсульфи-ды (4,3—4,4) >-тиоциклопентан и его производные (3,8— 4,1) >первичные алкилсульфиды (3,2) >производные тиофена и диарилсульфиды (1,0—2,0). В присутствии азотсодержащих соединений скорость гидрогенолиза органических соединений серы всех классов снижается [10]. [c.6]


Библиография для Гидрирование азотсодержащих ароматических соединений: [c.207]   
Смотреть страницы где упоминается термин Гидрирование азотсодержащих ароматических соединений: [c.209]    [c.566]    [c.375]    [c.308]    [c.173]    [c.767]    [c.11]    [c.55]    [c.78]    [c.43]    [c.205]   
Смотреть главы в:

Катализ в органической химии -> Гидрирование азотсодержащих ароматических соединений




ПОИСК





Смотрите так же термины и статьи:

соединения гидрирование



© 2025 chem21.info Реклама на сайте