Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Диффузионный потенциал и его определение

    Жидкостное соединение Диффузионный потенциал, определенный методом с пилотным ионом> или с веществами, дающими пилотный ион (в круглых скобках) Е (неводный раствор) — (водный раствор) Литера- тура [c.162]

    Уравнение (173.2) можно использовать для расчета (или ф ) по измеренной , если известны ф (или ф .) и фд. Поскольку расчет и экспериментальное определение диффузионного потенциала затруднены, то при измерениях э. д. с. фд исключают, используя солевой мостик. Последний представляет собой концентрированный раствор [c.472]


    Определение средних ионных коэффициентов активности растворов электролитов. Для этого необходимо измерить э. д. с. электрохимической цепи с одним электролитом (отсутствует диффузионный потенциал), электроды которой обратимы относительно катиона и аниона исследуемого электролита. Так, при определении среднего ионного коэффициента активности соляной кислоты составляется цепь [c.495]

    Метод стандартных добавок рекомендуется использовать для определения ионов в сложных системах, содержащих высокие концентрации посторонних веществ. Предварительно необходимо изучить область обратимости электрода относительно определяемого иона по стандартным растворам. Затем в пробу испытуемого раствора вводят одну или последовательно несколько порций стандартного раствора с таким условием, чтобы добавки не вызвали заметного изменения ионной силы раствора. При выполнении этого условия небольшим изменением коэффициента активности определяемого иона и диффузионного потенциала можно пренебречь, а наблюдаемые изменения э. д. с. считать зависимыми от концентрации определяемого иона. Тогда можно записать  [c.115]

    Опыт 58. Диффузионный потенциал и его определение [c.136]

    Для измерения чисел переноса ионов через мембраны существуют два основных метода. Первый — метод непосредственного аналитического определения концентрационных изменений в растворе, вносимых мембраной, второй — методика диффузионного потенциала. [c.206]

    ОПРЕДЕЛЕНИЕ ЧИСЕЛ ПЕРЕНОСА ИОНОВ В МЕМБРАНЕ МЕТОДОМ ДИФФУЗИОННОГО ПОТЕНЦИАЛА [c.210]

    Второй метод определения чисел переноса через мембраны основывается на использовании диффузионного потенциала. Диффузионный потенциал возникает, как известно, при соприкосновении двух растворов электролитов различной концентрации, вследствие разной скорости диффузии отдельных ионов разного знака заряда. При диффузии ионов электролита в сторону более разбавленного раствора, если катион обладает большей подвижностью по сравнению с анионом, то более разбавленный раствор приобретает положительный заряд. При большей относительной подвижности аниона более разбавленный раствор получает отрицательный заряд. Величина диффузионного потенциала зависит от соотношения подвижностей катиона и аниона. По Нернсту величина диффузионного потенциала и связана с подвижностью катиона и и аниона V следующим соотношением [c.210]


    Однако подавляющее большинство химических цепей — это цепи с переносом, в которых имеется или непосредственное соединение двух растворов, или их соединение через солевой мостик. Комбинируя различные окислительно-восстановительные полуреакции, можно построить очень большое число химических цепей. Разность соответствующих стандартных потенциалов позволяет в первом приближении оценить э. д. с. этих цепей. Точное значение разности потенциалов на концах химической цепи с переносом рассчитать не удается, во-первых, из-за невозможности точного определения диффузионного потенциала и, во-вторых, из-за неизбежной замены активностей отдельных ионов в формуле Нернста средними активностями или просто концентрациями этих ионов. В качестве примера химической цепи с переносом можно привести цепь элемента Даниэля — Якоби  [c.127]

    Для сопоставления результатов экспериментального определения э.д.с. с теми значениями, которые предсказывает теория, вычислим э. д. с. для всех вариантов концентраций. По-прежнему считаем, что диффузионный потенциал элиминирован. Кроме того, условно примем, что активности ионов равны средней активности соответствующих солей. Тогда уравнение (IX. 129) примет вид  [c.570]

    Уравнение (4.37) показывает, что скорость диффузии ионов различного типа неодинакова. Поэтому при одном и том же градиенте концентрации анионы и катионы будут диффундировать с различными скоростями, по крайней мере, в некоторый начальный период. В дальнейшем более подвижные ионы, ушедшие вперед, будут задержаны в своем движении в результате притяжения со стороны менее подвижных ионов противоположного знака заряда. Менее подвижные ионы станут диффундировать несколько быстрее, и в стационарном состоянии образовавшийся двойной ионный слой будет перемещаться с определенной скоростью в сторону более разбавленного раствора. Аналогичные рассуждения в принципе применимы и к более общему случаю возникновения диффузионного потенциала на границе, разделяющей растворы не одних и тех же, а различных ионов. [c.88]

    Определение диффузионного потенциала может быть выполнено одним из следующих способов применительно к цепи с хлор-серебряными электродами  [c.114]

    Концентрационные элементы с переносом могут быть использованы для определения чисел переноса. При полном элиминировании диффузионного потенциала э. д. с. элемента [c.138]

    Непосредственно измерить диффузионный потенциал нельзя экспериментально можно определить только разность потенциалов между двумя точками, находящимися в одной фазе. Поэтому опытное определение фд сводится к вычислению его из э. д. с. концентрационных цепей. [c.144]

    Таким образом, потенциал электрода определяют как э. д. с. элемента, одним из электродов которого является исследуемый, а другим - стандартный водородный электрод. Поскольку электродный потенциал представляет собой электродвижущую силу, то для него используют обозначение Е. Чтобы исключить неоднозначность в понимании смысла этой величины, обычно применяют индексы. Следует подчеркнуть, что данное определение электродного потенциала справедливо, если отсутствует диффузионный потенциал. [c.107]

    Указанные первичные стандарты применяются для настройки рН-метров в диапазоне pH 3,5 - 9,2. В сильнокислых и сильнощелочных средах из-за нестабильности диффузионного потенциала значения pH отличаются от определенных из э. д. с. элементов без переноса. Поэтому применение первичных стандартов ограничивается лишь средней областью шкалы pH. [c.182]

    Серьезным недостатком метода градуировочного графика является погрешность, обусловленная предположением, что Е" после градуировки электрода остается постоянной. Это предположение редко бывает правильным, поскольку состав анализируемого раствора почти всегда отличается от состава растворов, применяемых для градуировки. Вследствие этого диффузионный потенциал, входящий в °, будет слегка изменяться, если даже применяется солевой мостик. Обычно эта погрешность составляет величину порядка 1 мВ, что приводит к ошибке 4% при прямом потенциометрическом определении концентрации однозарядного иона, + 8% при определении двухзарядных ионов и 12% при определении трехзарядных ионов. Такой точности во многих случаях оказывается достаточно для практических целей. В погрешность прямых потенциометрических измерений существенный вклад вносят также флуктуация значений S во времени и зависимость крутизны наклона электродной функции от концентрации и температуры анализируемого раствора. Говорят, что отклик электрода нернстовский, если наклон зависимости Е - Ig отличается от теоретической величины не более чем на 1-2 мВ. Ниже этой величины зависимость называется суб-нернстовской, выше - гипер-нернстовской. [c.225]

    Недавно были предложены новые значения Ерн для различных типов каломельных электродов, причем они, повидимому, включают большую часть диффузионного потенциала. Эти значения могут быть весьма удобны и полезны для определения констант диссоциации и других констант равновесия, где не требуется очень высокой точности. Эти значения Ерн были определены путем замены исследуемых растворов в элементе I буферными растворами кислот, для которых константы диссоциации были точно определены с помощью кондуктометрического метода или из данных по электродвижущим силам элементов без жидкостного соединения Определение величин Ерн можно проиллюстрировать на примере буферного раствора, содержащего слабую кислоту НА и ее натриевую соль. Если представляет собой отрицательный логарифм термодинамической константы диссоциации этой кислоты, то, согласно уравнению (76) и уравнению (14) гл. VII, получается выражение [c.303]


    Количество работ, посвященных определению констант диссоциации с помощью элементов с жидкостным соединением или по кривым электро-мет ческого титрования, весьма велико [55]. В табл. ИЗ приводятся некоторые значения, полученные при использовании элементов с жидкостным соединением и принадлежащие к числу наилучших результатов, полученных при помощи современной экспериментальной техники и методов экстраполяции, основанных на теории междуионного притяжения. Соответствующие величины, полученные при использовании элементов без жидкостных соединений, были интерполированы до значений при 18°. Согласно данным табл. 113, результаты, полученные двумя методами, отличаются в среднем на 1,5%, причем это совпадение следует считать исключительно хорошим, так как очень часто встречаются расхождения в 10 раз, что является, вероятно, скорее следствием неопределенности, связанной с внесением поправок на диффузионный потенциал, чем результатом значительных экспериментальных ошибок. Это обстоятельство подчеркивает преимущество применения элементов без жидкостных соединений или использования таких комбинаций элементов (гл. X, 7), в которых исключается влияние диффузионного потенциала. [c.478]

    Главным в этих рекомендациях является набор первичных стандартных (эталонных) буферных растворов, pH которых точно определен на основе некоторого первичного метода . К веществам, составляющим эти буферные растворы, и к их буферным свойствам предъявляются чрезвычайно высокие метрологические требования высокая буферная емкость стойкость к разбавлению слабая зависимость pH от температур низкий остаточный диффузионный потенциал низкая ионная сила. Кроме того, реактивы и вода, используемые для приготовления первичных буферных растворов, должны иметь высший метрологический сертификат чистоты и стабильности при хранении. Этим требованиям удовлетворяют семь буферных растворов (табл. 6.1.). [c.711]

    Очевидно, что этот экспериментальный метод не может обеспечить определение концентрации ионов водорода в исследуемых смесях по двум причинам. Они могут рассматриваться как дефекты уравнений (II.9) и (П.11). Первое из этих уравнений пригодно только для идеальных растворов и только при строгом равенстве двух диффузионных потенциалов, т. е. когда остаточный диффузионный потенциал равен нулю. В современной форме этого уравнения концентрации заменены активностями. Далее, в настоящее время считают, что концентрация ионов водорода в растворе сильной одноосновной кислоты (с концентрацией С]) скорее равна Сь чем а Си как показывает уравнение (П.11). [c.30]

    Очевидно, в исследованных условиях из-за появления диффузионного потенциала определение величины потенциала зонда не дает возможности достаточно точно оценить концентрацию ио-тенциалпределяющих ионов у его поверхности [216]. Кроме того, следует учесть, что с продвижением зонда к поверхности катода увеличивается степень экранирования последнего и тем самым в определенной мере искажается картина общего состояния распределения концентрации электролита в прикатодном слое. Однако, несмотря на это, вполне обоснованно моншо считать, что изменение потенциала при его удалении от поверхности исследуемого электрода приближенно отображает закономерности изменения концентрационных соотношений в изучаемом слое электролита. [c.46]

    Используются три экспериментальных метода измерения чисел переноса 1 I классический метод Гитторфа 2) метод движущейся границы и 3) метод, смязанный с определением диффузионного потенциала. [c.457]

    Описанный способ прост и может быть использован в любой лаборатории. Однако погрешности определения рНа этим способом очень велики, что объясняется наличием диффузионного потенциала и необходимостью определения pH стандартных растворов. Однако в большинстве случаев интересные для практических целей растворы являются буферными (см. гл. XVIII, 12, стр. 491). Однозначно определить активность Н+ в стандартном растворе можно путем экстраполяции данных для раствора сильной кислоты к бесконечному разведению. Но такой раствор имеет ничтожную буферную емкость и не может служить стандартом. [c.588]

    Если рассмотреть границу между более разбавленным и более концентрированным раствором, то за определенный промежуток времени при различной подвижности катионов и анионов Б сторону разбавленного электролита продиффун-дирует большее число подвижных ионов. Число положительных и отрицательных зарядов по обе стороны границы становится неодинаковым. Разбавленный раствор приобретает заряд более подвижного, а концентрированный — менее подвижного иона возникает разность потенциалов, получившая название диффузионного потенциала 1/ . [c.43]

    Для определения потенциалов отдельных электродов (см. далее) диффузионный потенциал стараются уменьшить. Для этого заполняют электролитический мостик насыщенным раствором электролита с близкими подвижностями ионов (КС1, NH4NO3). Нитрат аммония применяют, если растворы в гальваническом элементе содержат ионы, образующие труднорастворимые хлориды (Ag+, РЬ +). В некоторых гальванических элементах диффузионный потенциал совершенно отсутствует. Такие элементы называют цепями без переноса. Если диффузионный потенциал пренебрежимо мал, то уравнение (XII. 7) можно записать в виде  [c.134]

    Систематические ошибки измерения могут искажать значение параметра 2 , применяемого для получения информации о качественном составе веществ. 11апрнмер, в полярографии при определении потенциала полуволны могут быть получены неправильные значения напряжения ячейки, потенциала электрода сравнения, диффузионного потенциала и т. д. Ситуацию в таких случаях можно улучшить добавлением стандарта с определенным известным значенибм 2ст, например ионов Т1+, значение потенциала полуволны которых. —0,49 В, измеренное относительно насыщенного каломельного электрода, не зависит от фонового электролита. Координаты стандартного сигнала используют также н методах оптической атомной эмиссионной спектроскопии, ЯМР и т. д. [c.451]

    Согласно равенству (11.2) ЭДС электрохимической цепи включает диффузионный потенциал. Однако расчет и экспериментальное определение диффузионного потенциала затруднительны, поэтому фдифф стараются свести к минимальной величине. Для этого заполняют электролитический (солевой) мостик, представляющий собой П-образную трубку, насыщенным раствором электролита с близкими подвижностями ионов (обычно КС1). Электролитический мостик располагают между растворами, поэтому вместо одной жидкостной границы возникают две. Так как концентрация ионов в растворе электролитического мостика выше, чем в растворах, то через жидкостные границы диффундируют практически только ионы К и С1. На обеих границах возникают малые и противоположные по знаку диффузионные потенциалы, которые взаимно [c.167]

    В момент соприкосновения растворов ионы переходят из одного раствора в другой. Скорость перехода ионов из более концентрированного раствора в менее концентрированный будет больше, нежели скорость перехода ионов в обратном направлении. Так как подвижности катионов и анионов различны, то и количество их, проходящее в начале диффузии через границу соприкосновения растворов, будет различно. Если подвижность катионов больше, то их больше перейдет в менее концентрированный раствор, чем анионов. Тогда менее концентрированный раствор у поверхности раздела зарядится положительно, а более концентрированный — отрицательно. Вследствие этого скорость движения катионов начнет уменьшаться, а скорость движения анионов — увеличиваться. Через некоторое время скорости катионов и анионов сравняются и количества их, переходящие границу раздела между растворами, станут равными. Образуется двойной электрический слой с определенным скачком диффузионного потенциала. Диффузионные потенциалы невелики их величина не превышает нескольких сотых вольта. Точно измерить величину диффузионного потенциала трудно, так как она зависит не только от состава и концентрации прикасающихся растворов, но и от других причин, например формы сосуда. Поэтому при измерениях э. д. с. нужно сделать диффузионный потенциал возможно малым. Это достигается соединением двух различных электролитов солевым мостиком. Последний представляет собой концентрированный раствор соли, ионы которой обладают примерно одинаковой подвижностью (КС1, KNO3). [c.289]

    Гальванические элементы с жидкостной границей содержат полуэлемент, обратимый к определенному виду ионов, или окислительно-восстановительный и сравнительный полуэлемент с известным электродным потенциалом Афер. Измеренная э.д.с. включает неизвестный диффузионный потенциал. Применение солевого моста, заполненного электролитом, ионы которого обладают примерно равной подвижностью, и стандартизация измерений э. д. с. элиминирует диффузионный потенциал или, по-крайней мере, уменьшает и стабилизирует его. С помошью гальванического элемента с жидкостной границей определяют ионный показатель (водородный, металлический, анионный) рА = = —IgiiA, так как Д<р = Афер = Аф° ( /n)lgaA. [c.633]

    На первый взгляд, выход из этого положения можно найти, используя уравнение (6.9) сравнением потенциалов водородного, электрода в растворе с точно фиксированным значением рН и в растворе с неизвестной величиной pH. Однако и этот путь не является вполне корректным вследствие погрешностей, привносимых за счет диффузионных потенциалов, возникающих на границе растворов различного ионного состава. В самом деле, при измерении потенциала Ех водородного электрода в растворе с фиксированным значением pH необходимо образовать гальванический элемент водородный электрод — стандартный электрод сравнения. Но тогда потенциал на границе двух электролитов неизбежно входит как слагаемое значение э. д. о. такого элемента. То же самого справедливо и в отношении измерения потенциала водородного электрода в растворе с неизвестным pH относительно того же самого электрода сравнения. Предположение о том, что в обоих случаях диффузионный потенциал совершенно одинаков, в какой-то степени можно допустить только в том случае, когда pH = рН . Такое положение явно не выполняется при всяком ином соотношении между pH стандартного и исследуемого растворов. Таким образом в целом необходимо признать, что, несмотря на широкое использование в самых различных целях потенциометрического метода определения концентрации водородных ионов, мы не распола-лагаем совершенно безупречным способом измерения этой величины. [c.120]

    В больщинстве случаев И. э. представляет собой устройство, осн. элементом к-рого является мембрана, проницаемая только для определенного иона. Между р-рами электролитов, разделенных мембраной, устанавливается стабильная разность потенциалов, к-рая алгебраически складывается из двух межфазных скачков потенциала и диффузионного потенциала, возникающего внутри мембраны (см. Мембранный потенциал). Измерение концентрации определяемого иона в принципе возможно по значению эдс гальванич. элемента, составленного из находящихся в контакте исследуемого и стандартного р-ров, в каждый из к-рых погружены идентичные И. э., избирательно чувствительные к определяемому иону концентрация этого иона в стандартном р-ре СдТочно известна. Для практич. измерений гальванич. элемент составляют из И, э. и электрода сравнения (напр., хлоросеребряного), к-рые сначала погружают в стандартный, а затем в исследуемый р-р разность соответствующих эдс равна Е. Состав стандартного р-ра должен быть по возможности близок к составу измеряемого. Искомую концентрацию с вычисляют по ур-нию  [c.265]

    Большинство хим. Э. ц.- цепи с переносом, в к-рых р-ры (расплавы, твердые электролиты) соединены либо непосредственно, либо через солевой мостик. Комбинируя разл. окислит.-восстановит. полуреакции, можно построить большое число хим. Э. ц. Разность соответствзтощих стандартных потенциалов позволяет в первом приближении оценить эдс этих цепей. Точное значение эдс на концах цепи с переносом рассчитать не удается из-за невозможности точного определения диффузионного потенциала и из-за того, что в ур-нии Нернста термодинамич. активности отд. ионов заменяются ср. активностями или концентрациями этих ионов. [c.463]

    Практически устранение диффузионного потенциала, которое достигается в элементе IV путем уменьшения величин ж гпц, можно сделать абсолютно полным, если найти предельную величину некоторой функции от Е и от концентраций при стремлении значений ж к нулю как к своему пределу 1. Экспериментальное определение этой предельной величины заключается в измерении электродвижущих сил ряда элементов, содержащих растворы переменного состава, но с постоянной ионной силой, что достигается добавлением электролита, который не участвует в электродных реакциях [35]. При экстраполяции до нулевых концентраций тех ионов, которые имеются лишь в одном из соприкасающихся растворов, диффузионный потенциал исчезает. Условия экстрапо.пяции были проанализированы Оуэном и Бринкли [34в]. Влияние инертного электролита исключается путем последующей экстраполяции до нулевой ионной силы. Данный метод можно проиллюстрировать на примере следующего элемента  [c.307]

    С целью уменьщить влияние диффузионного потенциала при работе с ионоселективными электродами, следует использовать электрод сравнения, заполненный насыщенным или концентрированным (3 моль л" ) раствором КС1. При измерениях в области малых концентраций с постоянной ионной силой (например, 1 = 0,1 моль л KNO3) часто используют электролитический ключ, заполненный таким же раствором. В ряде случаев можно в качестве электрода сравнения использовать твердофазные ионоселективные электроды (ИСЭ) с обязательным введением в раствор потенциалопределяющих ионов для электрода сравнения. Например, при определении фторидов с помощью Е-ИСЭ в качестве электрода сравнения был взят 1-ИСЭ с добавлением в пробу определенного количества иодида калия [32]. [c.725]

    Константа равновесия этой реакции (константа обмена, ) зависит от пр1фоды мембраны и прщюды иона В" . Подвижности ионов А и В, Ид и и в фазе мембраны различны, поэтому возникает диффузионный потенциал, вносящий определенный вклад в величину . [c.133]

    Для определения диффузионного потенциала Влчек [2] рекомендует метод экстраполяции, примененный им при проведении исследований в 17 М Н25 0 4. Он измерял электродвижущую силу элемента [c.437]

    Зёренсен придерживался, в основном, той техники определения, которая ранее предложена Бьеррумом [14]. Была сделана попытка элиминировать диффузион- g ный потенциал на жидкостных границах методом экстраполяции Бьер-рума [15]. Для этой цели проводили два измерения э. д. с. элемента (И. 8) для каждого раствора х с солевым мостом из 3,5 и 1,75 н. растворов КС1, помещенным между двумя полуэлементами. Наблюдаемую разность потенциалов добавляли к а. д. с. цепи с более концентрированным солевым мостом или вычитали из нее (рис. П. 1) для того, чтобы получить гипотетический потенциал, соответствующий солевому мосту с бесконечно большой концентрацией (1/с = 0), при которой диффузионный потенциал становится равным нулю. Очевидно, такая процедура действительно приведет диффузионный потенциал к пренебрежимо малой величине только в том случае, когда наблюдаемая разность э.д.с. мала [16, 17]. Михаэлис [18] считает, что экстраполяцию Бьеррума следует применять тогда, когда концентрация ионов водорода или гидроксила в исследуемом растворе превышает 0,001 г-ион/л. [c.29]

    Величины Е, R, Т и F в уравнении (П1.4) —физически определенны. Очевидно, что —Ig ан теряет физическую определенность вследствие невозможности экспериментального измерения Е° - -Ец. Диффузионный потенциал Ед является сложной функцией активности rriiyi и чисел переноса Г,- нескольких видов ионов г в промежуточных слоях  [c.42]


Смотреть страницы где упоминается термин Диффузионный потенциал и его определение: [c.181]    [c.22]    [c.153]    [c.217]    [c.311]    [c.298]    [c.42]   
Смотреть главы в:

Демонстрационные опыты по физической и коллоидной химии -> Диффузионный потенциал и его определение




ПОИСК





Смотрите так же термины и статьи:

Потенциал диффузионный

Потенциал определение



© 2025 chem21.info Реклама на сайте