Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Некоторые важные пептиды

    Некоторые важные пептиды [c.191]

    Метод Меррифилда позволил начиная с 1963 г. получить многие пептиды, важнейшие из которых приведены в табл. 2-9. Некоторые из них были, правда, получены не в очень чистом состоянии из-за уже упомянутых недостатков методики. [c.193]

    Важную информацию о структурных особенностях пептидов в растворе дает исследование концентрационных зависимостей избыточных свойств указанных биомолекул. При рассмотрении концентрационных зависимостей кажущихся теплоемкостей и объемов водных растворов некоторых пептидов было выявлено [38] существование трех областей на концентрационных зависимостях избыточных свойств пептидов. Первая область указанные зависимости линейны (вплоть до [c.199]


    Наконец, важно регулировать некоторые другие параметры и особенно присутствие некоторых эффекторов протеаз например, папаин намного активнее в присутствии цистина [70]. Байер с соавторами [26] показали, что присутствие некоторых двухвалентных ионов металлов, таких, как цинк, медь, никель, кобальт, железо, влияют на долю высокомолекулярных пептидов, получаемых гидролизом с помощью пепсина соевого белка. [c.601]

    Некоторые из описанных в данном обзоре методов селективного расщепления играют важную роль в определении последовательности расположения аминокислот в пептидах и белках. В настоящее время только наиболее перспективные из этих методов находят практическое применение в той мере, в какой они пригодны для установления связи между строением и биологической активностью белковых соединений. Однако для исследования более сложных белков могут потребоваться другие методы. Можно надеяться, что проблемы, которые возникнут в связи с изучением этих белков, будут стимулировать изыскание новых методов селективного рас- [c.248]

    Важнейшая функциональная роль АК состоит в том, что АК -предшественники очень многих биомолекул - не только белков и пептидов, но и углеводов, липидных компонентов, гетероциклов, многих молекул-биорегуляторов. Это объясняется тем, что АК вступают в самые разнообразные реакции ниже приведены примеры некоторых превращений АК. [c.14]

    Разработаны методы полимеризации аминокислот (в некоторых случаях ди- или трипептидов), приводящие к образованию полипептидов с большим молекулярным весом. Эти продукты являются очень важными модельными веществами для изучения, например, вопроса о характере рентгенограмм или ИК-спектров для пептидов известного и сравнительно простого строения. [c.1050]

    За период около 10 лет теоретические исследования конформаций пептидов прошли развитие, начав с расчетов отдельных аминокислотных остатков, затем изучались аминокислотные остатки в составе олигопептидов, взаимодействующие как с ближними участками, так и с боковыми радикалами полипептидного скелета, и далее были исследованы олигопептиды, имеющие важные биологические функции. Некоторые аспекты этих исследований отражены в обзорах [83, 84]. [c.445]

    Пепсин, катализирующий гидролиз пептидных связей, образованных остатками ароматических аминокислот, расщепляет практически все природные белки. Исключение составляют некоторые кератины, протамины, гистоны и мукопротеины. При их гидролизе образуются различного размера пептиды и, возможно, небольшое число свободных аминокислот. В желудочном соке детей грудного возраста, а также в секрете четвертого желудочка телят и других молодых жвачных животных содержится отличный от пепсина весьма активный фермент реннин. Он катализирует свертывание молока (превращение растворимого казеиногена в нерастворимый казеин). У взрослых людей эту функцию выполняет пепсин. Механизм этого процесса, несмотря на кажущуюся простоту, в деталях пока не выяснен. Предполагают, что реннин превращает растворимый казеиноген молока в параказеин, кальциевая соль которого нерастворима, и он выпадает в осадок. Интересно отметить, что после удаления ионов Са из молока образования осадка не происходит. Наличие активного реннина в желудочном соке детей грудного возраста имеет, по-видимому, важное физиологическое значение, поскольку при свертывании молока, являюще- [c.424]


    Если приходится фракционировать значительный объем материала, желательно наносить его на сухую, а не на влажную бумагу. Большой объем наносимого материала, естественно, пропитывает значительную площадь бумаги. Если подсушивать место старта , можно частично ограничить растекание наносимого раствора. Правда, в этом случае создается опасность необратимой адсорбции некоторых пептидов на бумаге особенно это относится к большим пептидам, и поэтому такого подсушивания следует избегать. Однако, если область старта действительно занимает слишком большую площадь, наносимый материал можно сконцентрировать следующим способом. Сразу после нанесения образца бумагу кладут на чистое стекло. Увлажненную область старта с помощью двух стеклянных палочек приподнимают так, чтобы она не касалась стекла. Продвигая кончик пипетки параллельно линии старта примерно на расстоянии 1 см от увлажненной области, смачивают буферным раствором бумагу вокруг нее. Буферный раствор должен свободно выходить из пипетки и впитываться в бумагу. Увлажнение повторяют несколько раз по обе стороны стартовой зоны, пока она полностью не пропитается буферным раствором. После этого смачивают всю остальную площадь листа фильтровальной бумаги. Очень важно, чтобы нанесенный материал в стартовой области имел pH используемого буферного раствора. Особенно это существенно в тех случаях, когда лиофилизированный образец наносится в растворе аммиака. Поскольку этот раствор имеет более высокое значение pH, чем обычно используемый буферный раствор, важно, чтобы последний был достаточно емким. Обеспечить нужный )Н в месте нанесения образца можно довольно простым приемом. Для этого бумагу вокруг стартовой зоны смачивают буферным [c.98]

    За последние годы стало очевидным, что такого рода модуляторные эффекты играют важную роль при нейрональной активности. Так, в гл. 8 уже упоминались иммуногистохимические данные о том, что ряд нейропептидов упакован в нервных окончаниях вместе с классическими нейромедиаторами. Было найдено, например, что энкефалины существуют в некоторых нервах с адреналином и норадреналином или также с серотонином и ацетилхолином. В других синапсах вместе с серотонином или ацетилхолином было обнаружено вещество Р — хорошо известный медиатор ряда нервных путей. В этих случаях пептид, очевидно, модулирует действие медиатора, и такой модулирован- [c.297]

    НПр а-Аминокислоты (ь-конфигурация) — важнейшие составные части пептидов и белков. Встречаются и другие аминокислоты (Р-аланин, 4-аминомасляная кислота и др.). Любому живому организму необходимы определенные аминокислоты, некоторые из них являются незаменимыми и не могут быть синтезированы в организме из обычно доступных веществ. Человеку необходимо 9 таких аминокислот. [c.341]

    Белки, пептиды и аминокислоты синтезируются в растениях и представляют собой один из трех важнейших классов пищевых продуктов. Растения строят эти вещества, комбинируя фотосинтезируемые соединения, которые образуются из воды, кислорода и двуокиси углерода с азотом, взятым из почвы в виде аммиака или нитрат-аниона. Эти формы фиксированного азота ) образуются из азота воздуха почвенными бактериями. Подобные ор-гани.змы часто связаны с корнями некоторых растений, в частности бобовых. [c.535]

    Ионообменная хроматография на колонках применяется в трех очень важных областях 1) для качественного и количественного аминокислотного анализа пептидов и белков, дающего ценную характеристику молекул его можно использовать Как средство обнаружения некоторых специфических различий среди белков 2) для определения аминокислотного состава биологических жидкостей, который дает не только существенную информацию о наличии свободных аминокислот, но и позволяет проследить за изменениями, происходящими в организме под воздействием многих факторов, таких, как окружающая среда, физиологическое состояние и генетическая конституция 3) для определения первичной структуры белков — чрезвычайно важной задачи биохимии сегодняшнего дня. Многие исследователи занимаются определением аминокислотной последовательности большого числа разнообразных белков. Это дает возможность установить их химическую структуру и изучить ее взаимосвязь с функцией. [c.8]

    Эта добавка, предложенная Фуджино и сотр. [314, 315], вызывала лишь незначительную рацемизацию. Она была испытана иа примерах синтеза некоторых важных пептидов (АКТГ, люлиберина и др.). Можно вести реакцию также с выделением соответствующего эфира. [c.156]

    В-четвертых, химический синтез иногда проводят из экономических соображений. Например, применяемый для терапевтических целей окситоцин в настоящее время по этой причине получается исключительно химическим синтезом. Это же относится и к некоторым другим пептидам, как, например, к АКТГ и секретину. Синтетический секретин в десять раз дешевле природного продукта, изолированного из свиных кишок. Также обстоит дело и со многими другими активными пептидами. Наряду с вопросами стоимости важную роль играет здесь также доступность пептидов, получаемых химическим синтезом, так как некоторые активные пептиды, как уже упоминалось, встречаются в природе только в нанограммовых количествах. В случае же специфических пептидов человека их получение возможно только синтетическим путем. На примере синтезов АКТГ, глю-кагона и секретина можно показать, что синтетические продукты имеют более высокую степень чистоты, чем пептиды, изолированные из природных источников. Полное разделение родственных по аминокислотной последовательности пептидов с противоположным или другого рода действием часто не всегда возможно с помощью применяемых в настоящее время методов изолирования и очистки. [c.94]


    N-Зaщищeнныe аминокислоты этерифицируют реакцией с алкилгалогенидами в присутствии третичных аминов или с дназометаном или производными диазометана и т. д. N-Зaщищeнныe аминокислоты и пептиды можно превращать в соответствующие эфиры в очень мягких условиях при реакции их цезиевых солей с алкилгалогенидами [128]. В табл. 2-3 приведены некоторые важные карбоксизащитные группы наибольшее практическое значение имеют метиловые, этиловые, бензиловые, 4-нитробензиловые и / /и-бутиловые эфиры. [c.117]

    Чрезвычайно большое число гетероциклических соединений встречается в природе, а также синтезируется в большом масштабе промышленностью красителей и лекарственных препаратов. Многие из этих соединений выполняют важные физиологические функции в организмах растений и ншвотных. Выше мы уже встречались с некоторыми важными природными гетероциклами. Так, углеводы можно рассматривать как кислородсодержаш ие гетероциклы, тогда как в состав нуклеиновых кислот, а также аминокислот, пептидов и белков входят азотсодерн ащие циклические системы. Некоторые другие типы соединений, содержащих гетероциклы, будут обсуждены в гл. 28 и 30. [c.283]

    После выяснения структуры инсулина было установлено строение некоторых других пептидов, а также белков. С каждым годом число белков и пептидов, у которых исследуется аминокислотная последовательность, становится все больше. В настоящее время к ним относятся, кроме инсулина, важнейшие гормоны окситоцин и вазопрессин, меланотропный и адренокортикотроп-ный гормоны гипофиза, глюкагон из поджелудочной железы, фермент рибонуклеаза, гемоглобин, цитохроы С и белок вируса табачной мозаики и др. [c.36]

    Б. Внутриклеточные медиаторы. Хотя механизм действия инсулина изучается более 60 лет, некоторые важнейшие вопросы, например природа внутриклеточного сигнала, остаются нерешенными, и инсулин в этом отношении не исключение. Внутриклеточные посредники не идентифищ1рованы для очень многих гормонов (табл. 44.1). Множество различных молекул рассматривалось в качестве возможных внутриклеточных вторых посредников или медиаторов. К ним относятся сам инсулин, кальций, циклические нуклеотиды (сАМР, сСМР), Н2О2, пептиды мембранного происхождения, фосфолипиды мембраны, одновалентные катионы и тирозинкиназа (рецептор инсулина). Не одно из предположений не подтвердилось. [c.261]

    За последние годы наблюдается быстрое развитие представлений о механизме функционирования металлоферментов, а именно удалось установить место и последовательность протекания реакций в активном центре, а также найти ключи к пониманию некоторых механизмов. Важное место занимает гидролиз (или гидратация) субстратов карбонильного и фосфорильного типа, таких, как СО2, эфиры карбоновых кислот, эфиры и ангидриды фосфорной кислоты и пептиды. По-видимому, не вызывает удивления тот факт, что для функционирования большинства таких систем требуется ион двухвалентного металла. Гораздо удивительнее то, что такими ионами обычно оказываются 2п(П) или Мд(11) (в ферментах действующих на ДНК, РНК, сАМР или сОМР). Так, например, цинк по своему содержанию в организмах млекопитающих (в организме человека 2,4 г на 70 кг) уступает лишь железу (5,4 г на 70 кг), и большая часть его необходима для функщганирования ферментов [215]. [c.343]

    В 1963 г. Р. Меррифилд [722] разработал важный метод, который с тех пор применяется для синтеза многих пептидов [723]. Этот метод называется твердофазным синтезом, или синтезом на полимерных подложках [724]. Здесь используются те же реакции, что и в обычном синтезе, но один из реагентов закреплен на твердом полимере. Например, если желательно соединить две аминокислоты (получить дипептид), то в качестве полимера может выступать полистирол, содержащий боковые группы H2 I (рис. 10.1, 99). Одну из аминокислот, защищенную трет-бутоксикарбонильной группой (Вое), закрепляют на боковых группах (стадия А). Нет необходимости, чтобы все боковые группы вступили в реакцию достаточно, чтобы это произошло с некоторыми из них. Затем гидролизом в присутствии трифтороуксусной кислоты в дихлорометане снимают защитную группу Вое (стадия Б) и к иммобилизированной аминокислоте присоединяют другую аминокислоту, используя ДЦК или другой агент сочетания (стадия В). После этого удаляют вторую защитную группу Вое (стадия Г), что дает дипептид, все еще закрепленный на полимере. Если этот дипептид и есть желаемый продукт, его можно снять с полимера действием HF (стадия Д). Если необходимо получить пептид с более длинной цепью, прибавляют другие аминокислоты, повторяя стадии В и Г. [c.156]

    Соединения ряда тиязола приобретают псе большее значе-1ШС в фармацевтическом производстве, биохимии и технике. Из чима производных тиагюла в значительных количествах получают меркаптотаазолы, которые применяются в качестве ускорителей вулканизации в резиновой промышленности, д ш синтеза различных сульфамидных и противотуберкулезных препаратои и входят в состав пенициллина и тиамина. Некоторые соединения ряда тиазола, повидимому, займут важное место в качестве промежуточных продуктов лля сиитеза амин(жис. 10Т, пептидов и пуринов этот вопрос был обсужден в одной нз работ, опубликованных в 1949 г. [1]. [c.301]

    При обсуждении важнейших биологически активных пептидных гормонов и токсинов рассмотрены также гормоны и токсины белкового характера. Отмечено возросшее количество работ, посвященных гормонам гипоталамуса и других нейропептидов, например эндорфина. Затронуты также и некоторые иммунологически интересные пептиды. Предлагаемая классификация пептидных антибиотиков основана на принципе главного действия. [c.7]

    Некоторые представители, такие, как вещество Р, бомбезин, причисляются к нейропептидам. Из кожи амфибий были изолированы новые интересные опиатоподобные пептиды, важнейший из них — дерморфин Туг-о-Ala-Phe-Dly-Tyr-Pro-Ser-NH2. который наряду с [б-оксипролин]дерморфи-ном был изолирован из метанольного экстракта кожи южноамериканских [c.281]

    Применение калориметрии и денсиметрии в биологических исследованиях позволило значительно продвинуться вперед в изучении взаимодействий как между низкомолекулярными веществами (ионы биометаллов, аминокислоты, пептиды, основания нуклеотидов и некоторые другие биомолекулы), так и между биополимерами (белки, липиды, полисахариды) в водных растворах [5, 6, 15-18]. Является чрезвычайно важным, что в этих исследованиях значительное место отведено рассмотрению взаимодействий растворенное вещество-растворитель и установлению роли сольватации в проявлении биологических функций молекул перечисленных выше соединений. [c.5]

    Важным представляется вопрос о критерии отбора перспективных структурных вариантов. Коль скоро метод энергетической оценки пептидных конформаций является не строго теоретическим, а полуэмпири-ческим, то пороговое значение энергии при селекции структурных вариантов должно устанавливаться опытным путем. Однако этот путь фактически закрыт из-за отсутствия соответствующих экспериментальных количественных данных о конформационных возможностях линейных низкомолекулярных пептидов. Позднее эта тема будет рассмотрена подробнее. Сейчас лишь отметим некоторые факты, с помощью которых можно сделать ориентировочную оценку пороговой величины энергий. Так, в структурах белков практически отсутствуют остатки (кроме Gly) с Н-формой основной цепи и редко встречаются остатки с L-формой величины энергий этих форм уступают R- и В-формам всего лишь -2,0 и 1,5 ккал/моль соответственно. Почти не встречаются в белках остатки, стоящие перед Pro, с R-формой основной цепи, энергия которой в этом случае составляет 4,5-5,0 ккал/моль. Можно привести еще несколько аналогичных фактов, указывающих на порядок величины пороговой энергии. Тем не менее подобные оценки не формализуют метод и не освобождают его полностью от интуиции исследователя. [c.232]

    Специфичные сахарные остатки выполняют функции узнавания. Последние два примера табл. 10.3 показывают, что сахара выполняют важную роль в специфических взаимодействиях между поверхностями клеток и растворимыми макромолекз лами. Межклеточное распознавание, например, при образовании тканей из различных типов клеток также основано на структурном разнообразии гликопротеидов [709, 713]. Сахара действительно являются подходящими элементами образования некоторых специфических структур [85]. Если из трех различных аминокислот можно составить только шесть различных пептидов (используя все перестановки), то из трех сахарных остатков можно образовать по меньшей мере в десять раз больше первичных структур в связи с этим многие из возможных объединений моносахаридов используются in vivo. Однако механизмы узнавания с участием сахарных остатков часто основываются скорее на стохастических, чем на стехиометрических процессах, поскольку синтезу сложных углеводов недостает точности белкового синтеза. [c.270]

    Наиболее распространенным пептидом этого типа несомненно является глутатион (20). Он, по-видимому, присутствует во всех живых организмах и найден преимущественно в межклеточном пространстве, обычно в относительно высокой концентрации. Поскольку он выделен и охарактеризован почти 60 лет назад, изучены многие его биологичёские функции, и он включают сохранение тиольных групп в протеинах и других соединениях, разрушение пероксидов и свободных радикалов, выполнение роли кофермента для некоторых ферментов, а также детоксификация чужеродных соединений по пути образования меркаптуровой кислоты. Многие эти исследования, включая полученные таким путем химические данные, рассмотрены в обзорах [48, 49]. Наиболее крупное достижение, которое привлекло пристальное внимание, касалось роли у-глутаминового цикла 50] схема (4) . Этот важный биохимический процесс, в котором глутатион обеспечивает перенос аминокислот сквозь клеточные мембраны, описан достаточно хорошо. Следует отметить, что этот цикл описывает ферментативный синтез глутатиона с промежуточным образованием ферментно-связанного ацилфосфата. [c.298]

    Вообш,е говоря, циклические депсипептиды можно разделить на две большие группы, а именно группу с регулярно чередующимися пептидными и сложноэфирными связями и группу с нерегулярным внедрением сложноэфирных связей. Валиномицин (88), энниатины (89) и боверицин (90), большинство которых было охарактеризовано еще 25 лет назад, принадлежат к первой группе. Сделанное в середине 60-х годов наблюдение о том, что валиномицин и родственные соединения обладают единственными в своем роде избирательными возможностями транспорта ионов, возобновило интерес к этим соединениям, отнесенным на этом основании к ионофорам. Эти пептиды образуют имеющие важное биологическое значение липидорастворимые комплексы с полярными катионами, такими как К" , Ыа+, Са +, Мд +, а также с биогенными аминами. Многообразные физические исследования указывают на то, что кинетика образования и распада комплекса и скорости диффузии ионофоров и их комплексов через липидные барьеры настолько благоприятны, что их транспорт через биологические и искусственные мембраны достигает в некоторых случаях величин, превосходящих соответствующие величины для ферментных систем. Биологические применения ионофоров, среди которых имеются полиэфиры и синтетические соединения, всесторонне рассмотрены в обзорах [142, 143]. [c.321]

    Актиномицины являются мощными ингибиторами ДНК-зависи-мого синтеза РНК, т. е. ступени транскрипции в биосинтезе белка см. схему (1) и служат мощным биохимическим средством. Актиномицин D нашел также ограниченное применение в клинике для лечения некоторых видов опухолей. Его действие включает образование высокоустойчивых комплексов с ДНК, что препятствует этой кислоте проявлять свое биологическое действие. В связи о этим были приложены значительные усилия по исследованию конформаций этих молекул как в кристаллическом состоянии, так и в растворе [115, 150]. Общепринятая схема взаимодействия двойной спирали ДНК с актиномицином основана на данных рентгеноструктурного исследования кристаллического комплекса, содержащего актиномицин и дезоксигуанозин (рис. 23.4.3) [151]. По этой схеме феноксазоновый хромофор внедряется между соседними парами оснований G- ДНК, где остатки гуанина принадлежат различным цепям ДНК, и две аминогруппы остатков гуанина образуют специфические водородные связи с обоими циклическими пептидами, находящимися в узком желобе спирали. Эта модель согласуется с известными данными и представляет собой важное достижение в молекулярной биологии. [c.325]

    Аналогично использованию многих уретановых производных для защиты аминогрупп существует целый набор простых эфиров, которые можно использовать для защиты карбоксильной группы. Так, бензиловые эфиры (расщепляемые гидрогенолизом илн сильными кислотами) и г/ ет-бутиловые эфиры (расщепляемые кислотной обработкой, но в более мягких условиях) нашли широкое применение для защиты С-терминальиых и боковых карбоксильных групп в производных аминокислот и пептидов. Подобным образом могут быть использованы некоторые содержащие заместители в кольце бензиловые и другие сложные эфиры, аналогичные урета-нам, приведенным в табл. 23.6.1. Эфиры с простыми алкилами (метил или этил), расщепляемые омылением, находят лишь ограниченное применение для защиты карбоксильной функции. Хотя производные пептидов со сложноэфирной группой на С-конце существенно более электрофильны, чем обычные алифатические сложные эфиры (благодаря электронооттягивающим свойствам а-кар-боксамидного заместителя), условия для их расщепления в щелочной среде слишком жестки для пептидов, за исключением самых простых. В общем случае они также непригодны для защиты карбоксильной функции в боковой группе (см. разд. 23.6.2.3) соответствующие уретаны в этих условиях продвергаются внутримолекулярной циклизации в производные гидантоина (см. разд. 23.6,2.1) вместо обычного гидролиза. Тем не менее метиловый и этиловый эфиры являются важными промежуточными продуктами для получения С-терминальных гидразидных производных для продолжения пептидного синтеза азидным методом (см. разд. 23.6.3.4). [c.380]

    Еще сравнительно недавно протеиназы традиционно связывали только с процессами переваривания. В настоящее время появляется все больше данных о более широкой биологической роли протеолитических ферментов органов и тканей в регуляции ряда вне- и внутриклеточных процессов. Некоторые протеиназы выполняют защитную функцию (свертывание крови, система комплемента, лизис клеток), другие генерируют гормоны, токсины, вазоактивные агенты (ангиотензин, кинины). Ряд протеиназ регулирует образование пищеварительных ферментов, взаимодействие между клетками и клеточными поверхностями, процессы фертилизации (хитин-синтетаза) и дифференциации. Регуляция в большинстве случаев предусматривает превращение неактивного предшественника в активный белок путем отщепления ограниченного числа пептидов. Этот процесс, впервые описанный К. Линдерстрем-Лангом еще в 50-е годы, в последнее время называют ограниченным протеолизом. Значение его очень важно для понимания сущности биологического синтеза в клетках неактивных пре-и пробелков. Кроме того, этот процесс нашел широкое практическое применение в лабораториях и промышленности. В регуляции действия протеолитических ферментов участвуют также ингибиторы протеиназ белковой природы, открытые не только в поджелудочной железе, но и в плазме крови, курином яйце и т.д. [c.423]

    Подавляющее большинство генов растений локализованы в ядерной ДНК, однако хлоро-пласты и митохондрии тоже содержат гены, кодирующие ряд важных и уникальных функций. При этом не все белки, присутствующие в этих органеллах, закодированы в их ДНК. Некоторые из них кодируются ядерной ДНК, синтезируются в цитоплазме, а затем с помошью специального механизма импортируются в соответствующую органеллу. Есть два способа введения специфического чужеродного белка в митохондрии или хлоропласты. Один способ — это слияние гена, кодирующего чужеродный белок, и последовательности сигнального пептида, направляющего белки в органеллы. Такая конструкция может быть [c.383]

    Бактериостатическое действие феназониевых солей может быть подоб ным действию пенициллина. Кеваллито [161] показал, что пенициллин, стреп томицин и пиоцианин дезактивируются в течение приблизительно 15 мин простыми пептидами, содержаш.ими сульфгидрильные группировки, возможно путем соединения с ними. Этот тип взаимодействия может быть также близок важному свойству некоторых производных феназина, таких, как сафранин окрашивать живую ткань. Базин [162] постулировал, что проникающая способ ность красителя в живую клетку рода hara тесно связана с числом незамещенных аминогрупп в красителе. [c.544]

    У Крама и Хэммонда основной скелет учебника — реакции, их систематика и механизм, образование и разрыв химических связей, в особенности связей с углеродом, а собственно систематический материал органической химии — соединения, их родственные связи и т.д. — сообщается попутно и поэтому эпизодичен. Лишь некоторые большие группы соединений сконцентрированы в шести специальных главах (22—27). Это гетероциклы (в весьма лаконичном, чтобы не сказать поверхностном, изложении), углеводы и фенольные соединения растительного происхождения, аминокислоты, пептиды и алкалоиды, липиды, терпены и стероиды, полимеры, углеводороды нефти. Как видно, эти главы, посвященные отдельным группам соединений, носят выборочный характер и объединяют иногда непривычно разнородный материал — аминокислоты и пептиды с алкалоидами, углеводы с фенольными продуктами и т. д., используя те или другие линии логической связи разных групп веществ, которые всегда можно найти в органической химии — в первом случае, например, биогенез алкалоидов из аминокислот. Главы эти не могут содержать сколько-нибудь систематического материала, имея более чем скромный размер, однако в них приводятся очень свежий и интересный материал, причем сосредоточивается внимание в большей степени на новом и отбрасывается старое. Так, в разделе об алкалоидах подробно рассмотрено исследование строения хинина и цинхонина и дан исключительно громоздкий синтез резерпина, и, в сущности, этим исчерпывается раздел. В гл. 23 среди прочего материа.да о веществах, родственных сахарал , приводятся структуры стрептомицина, тетрациклина, левомицетина, но бегло и без доказательств. Хотя и эти главы (22—27) читаются с интересом, их роль чисто иллюстративная и весь центр книги сосредоточен на предыдущих главах, после необходимого фундамента (гл. 1—8) посвященных реакциям. Поскольку такое изложение ново, оно интересно отнюдь не только для начинающего изучать органическую химию. Книгу с интересом прочтет и взрослый химик. Этот интерес усугубляется тем, что подбор реакций очень свежий и здесь нашли место многие новые реакции крупного значения. Особенно важно то, что воедино систематически собраны по признаку механизма реакции, которые в обычном изложении оказываются резбросанными по курсу. Механизму реакций уделяется то пристальное внимание, которое характерно для нынешнего этапа развития органической химии. В связи с этим и стереох1Шии течения реакций уделяется большое место. Таким образом, этот раздел книги представляет собой наибольшую ценность независимо от того, действительно ли такое построение с педагогической стороны наиболее целесообразно. Сомнение в этом закрадывается на том основании, что нри таком изложении физиономия химического индивидуума расплывается и [c.5]

    По-видимому, встречающиеся в природе пептиды (но не из микроорганизмов) содержат аминокислотные остатки, принадлежащие к Ь-конфигу-рационному ряду. Так, окситоцин, который является гормоном задней Д0Ш1 гипофиза (стимулирует сокращение матки), состоит только из Ь-амино-кислотных остатков. Некоторые из аминокислотных групп, найденных в антибиотиках, имеют В-конфигурацию. Например, остаток В-фенилаланина обнаружен в грамицидине 3 (рис. 24.2). Пенициллин — второй пример пептидообразного вещества, состоящего из аминокислотных групп, среди которых имеются группы с В-конфигурацией. Это вещество можно рассматривать как производное аминокислоты, пеницилламина, который похож по структуре и на аланин, и на цистеин, но имеет В-конфигурацию. Пенициллин был первым открытым природным антибиотиком и до сих пор остается важнейшим. Это вещество в очень малых дозах тормозит рост разнообразных болезне- [c.539]

    В послвднев время появились данные об эффективности восстановленного глютатиона при некоторых заболеваниях /31/. Три-пептид глютатиона, имеющий в своем составе 5Н-групцу цистеи-на, играет важную роль в защите тиоловых групп ферментов и кровяного пигмента от окисления и в осуществлении основных окислительно-восстановительных процессов в тканях /20/. [c.125]


Смотреть страницы где упоминается термин Некоторые важные пептиды: [c.297]    [c.90]    [c.421]    [c.89]    [c.11]    [c.287]    [c.371]    [c.325]    [c.365]    [c.214]   
Смотреть главы в:

Органическая химия -> Некоторые важные пептиды




ПОИСК







© 2024 chem21.info Реклама на сайте