Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Электронная оболочка атома химического элемента

    БЕТА-РАСПАД ( -распад) — радиоактивное превращение атомного ядра, при котором испускаются р-частицы — электроны (р ) или позитроны (Р+). К Б.-р. относят также захват атомным ядром электронов с ближайшей к ядру электронной оболочки. Массовое число ядра при Б.-р. не изменяется, заряд ядра увеличивается на единицу при испускании электрона и уменьшается на единицу при испускании позитрона или захвате электрона. При этом атом химического элемента превращается в атом другого (соседнего) элемента. [c.44]


    Химические свойства элементов подгруппы кислорода свидетельствуют о резко выраженном неметаллическом характере этих элементов, что связано с тем, что на внешней электронной оболочке атомы этих элементов содержат 6 электронов — 2 на -орбитали и 4 на р-орбитали Ковалентность кислорода, как правило, равна 2. Но в некоторых случаях атом кислорода, обладая неподеленными электронными парами, может проявлять роль донора электронов и образовывать дополнительные ковалентные связи. [c.79]

    Если рассмотреть структуры внешних электронных слоев атомов наиболее пассивных в химическом отношении элементов, например инертных газов, легко убедиться, что их внешние электронные оболочки содержат четное число электронов атом гелия — 2 электрона, атомы всех остальных инертных газов — по 8 электронов. Напротив, во внешней электронной оболочке наиболее активных элементов — галогенов, щелочных металлов имеется нечетное число электронов. [c.99]

    Какое же число электронов может при подобном взаимодействии отдать или принять атом какого-нибудь данного элемента Наиболее вероятный результат взаимодействия заключается в приобретении атомом стольких электронов, чтобы образовалась устойчивая структура электронной оболочки. Такой является структура оболочек атомов инертных газов. В самом деле химическая инертность этих элементов вызывается именно тем, что их атомы в свободном состоянии обладают структурой электронных оболочек, наиболее устойчивой по сравнению с любыми другими структурами, которые могли бы образоваться при взаимодействии их с другими атомами. [c.59]

    На этом пути, идя снизу вверх, я выхожу и на систематизацию видов атомов (химических элементов), следуя генеалогической родословной материи. Такое переворачивание вектора познания влечет за собой и переворачивание дефиниций некоторых естественнонаучных понятий. Раньше атом определялся как "частица вещества микроскопических размеров (микрочастица), наименьшая часть химического элемента, являющаяся носителем его свойства". В новом подходе "атом — это частица вещества, качественная определенность которой характеризуется определенным числом протонов и нейтронов в ядре и определенным числом электронов (равным числу протонов) в электронной оболочке". [c.83]

    Используемое ныне в научной литературе выражение "превращение химических элементов" некорректно. Оно подменяет конкретный объект превращения (атом), неопределенным понятием (химический эле.мент). Недостатком формулировки закона радиоактивных смещений (правильнее превращений ) является то, что она не выделяет подвиды атомов как объект превращения. Она, по-прежнему, "вяжет" их к смещениям в Периодической системе. Возникает принципиальное несоответствие между законом и наглядной его иллюстрацией. Периодическая система химических элементов имеет в основе своей структуры устройство электронной оболочки атомов. Строение ядра имеет здесь лишь опосредованное значение через равенство Ерц. = 1 . Закон же радиоактивных превращений касается исключительно ядерных преобразований и индифферентен (в рамках данных рассмотрений ) к структуре электронной оболочки. И в этом аспекте рассмотрения система атомов идентична системе ядер. Мы как бы на время, игнорируем присутствие электронной оболочки. [c.102]


    В дальнейшем понятие химического элемента получило уточнение в соответствии с современным учением о строении атомов. Как известно, атом является сложной системой, состоящей из положительно заряженного ядра и электронной оболочки — совокупности элементарных отрицательно заряженных частиц — электронов. Ядро [c.6]

    Поскольку химический элемент — это вид атомов, свойства элементов, естественно, определяются свойствами атомов и выявляются при взаимодействии последних друг с другом. Наиболее характерным типом взаимодействия является такое, которое сопровождается частичной перестройкой электронных оболочек атомов, вызываемой переходом электронов от атома к атому или перекрыванием электронных облаков (см. гл. III). У атомов одних элементов сильнее выражена тенденция к потере электронов, что обусловливает их восстановительные свойства у атомов других элементов более сильно выражена способность к присоединению электронов, и она обусловливает их окислительные свойства. Сочетание восстановительных и окислительных свойств нейтральных атомов и определяет химическую природу элементов. [c.32]

    Радиоактивный распад с испусканием р- и а-частиц приводит к изменению заряда ядра, т. е. к превращению исходного ядра в ядро другого элемента. В случае Р -распада атомный номер увеличивается на единицу, при р+-распаде уменьшается на единицу. В обоих случаях массовое число не изменяется. В результате а-распада атомный номер уменьшается на два, а массовое число—на четыре. Часто а- и р-распад ядер сопровождается электромагнитным излучением очень высокой энергии, которое называют у-излучением. Наличие 7-излучения свидетельствует, что первоначально в результате радиоактивного распада образуется ядро в возбужденном состоянии, которое переходит в основное состояние с испусканием у-квантов. а-, р- и у-излучения обладают высокой энергией, измеряемой сотнями тысяч и даже миллионами электрон-вольт. Для сравнения можно сказать, что энергия разрыва одной химической связи измеряется несколькими электрон-вольтами энергия, необходимая для удаления одного электрона из окружающей атом электронной оболочки, измеряется несколькими электрон-вольтами или небольшим числом десятков электрон-вольт. Поэтому каждая а- или р-частица или у-квант могут на своем пути произвести вполне ощутимые действия. Так, в газе, ударяясь о встречные атомы или молекулы, они способны выбивать из них электроны и превращать их в ионы. Поэтому электрическая проводимость газа становится на какой-то очень короткий промежуток времени больше, и если частица пролетела между электродами, то удается зарегистрировать прохождение тока ( вспышку проводимости). Если число распадающихся атомных ядер не превышает нескольких тысяч в секунду, то каждая вспышка может быть зарегистрирована отдельно (проводимость, возникшая в результате пролета одной частицы успеет упасть до малых значений перед пролетом следующей частицы) и тем самым можно сосчитать число актов радиоактивного распада. Это можно сделать и другим способом, поместив радиоактивное вещество в специальный раствор, содержащий какой-либо сцинтиллятор — вещество, молекулы которого под действием р-частиц начинают испускать свет. Естественно, что каждая р-частица может вызвать свечение не очень большого числа молекул сцинтиллятора, однако современные высокочувствительные фотоумножители позволяют регистрировать такие слабые вспышки, и по числу вспышек света можно определить число распавшихся радиоактивных атомов. [c.27]

    Естественно, что фундаментальный закон химии, открытый Д. И. Менделеевым, — периодический закон—должен найти себе объяснение в закономерности строения атоМов, вскрываемой квантовой механикой. Периодичность в изменении химических свойств элементов при возрастании заряда ядра определяется периодическим повторением у определенных атомов строения внешних электронных оболочек. Легко заметить, что число электронов в последовательности от 5 до ближайшей конфигурации (первый период) или (остальные периоды) равно 2, 8, 8, 18, 32 (табл. 3), т. е. совпадает с числом элементов в периодах системы Д. И. Менделеева и объясняет, почему именно столько элементов содержится в данном периоде. Период начинается элементом, у которого впервые в системе возникает новый квантовый слой, содержащий один л-электрон (щелочной металл), и оканчивается элементом, у которого впервые в этом квантовом слое достраивается шестью электронами -подоболочка (благородные газы). Очевидно, что номер периода )авен главному квантовому числу электронов внешнего слоя. Например, атом натрия, открывающий третий период, и атом аргона, заканчивающий его, имеют конфигурации К 13л и К соответст- [c.60]

    Уже было сказано (с. 111) о том, что понижение характерной степени окисления в триаде слева направо связано с повышением стабильности d-электронного уровня ио мере его заполнения — число стабильных химических связей, в которые вступает атом платинового элемента, тем меньше, чем ближе к заверщению -электронная оболочка. Напротив, при перемещении сверху вниз по диадам, характерная степень окисления возрастает, что связано с увеличением ковалентного характера химической связи из-за роста деформируемости почти сформированного -электронного уровня по мере увеличения числа электронов в атоме (разница в числе электронов для атомов элементов-аналогов легкой и тяжелой диад составляет большую величину — 32 электрона). [c.151]


    Химические свойства. Как элемент, занимающий место в правом верхнем углу периодической системы химических элементов Д. И. Менделеева, кислород обладает ярко выраженными неметаллическими свойствами. Имея на наружном энергетическом уровне шесть электронов, атом кислорода может перейти к предельно заполненной 8-й электронной оболочке (условие максимальной химической устойчивости), присоединив 2 электрона. Поэтому в реакциях с другими элементами (кроме фтора) кислород проявляет исключительно окислительные свойства. [c.178]

    Атом водорода состоит из одного протона (ядро) и одного электрона. Это простейший атом, не имеющий аналогов в периодической системе химических элементов Д. И. Менделеева. Он способен терять электрон с образованием положительно заряженного катиона Н и в этом отношении сходен со щелочными металлами, которые также проявляют степень окисления + 1. Однако катион Н" " представляет собой голый протон, в то время как ядра катионов щелочных элементов окружены электронными оболочками. Ион водорода имеет очень небольшой радиус — 0,53-10 см, поэтому в ходе химических реакций он легко проникает в электронные облака других атомов, причем связь может быть ковалентной. [c.98]

    Второй электрон на 5й -оболочке появляется только у гафния (2 = 72). А полностью б -орбитали заполняются у атома ртути. Таким образом, десять металлов от лантана до ртути (без лантаноидов) входят в третью десятку элементов вставной декады. Тогда лантаноиды, у которых происходит заселение 4/-орбиталей, рассматриваются как вставка во вставку, так как они вклиниваются между лантаном и гафнием. У таллия начинает заполняться 6/з-оболочка, которая завершается в атоме радона. В незаконченном седьмом периоде у франция начинается, а у радия заканчивается заполнение 75-оболочки. Атом актиния, как и лантана, начинает заполнение -оболочки. Для актиния это будут 6й-орбитали. Актиноиды (90—103) застраивают 5/-оболочку. Так как с ростом порядкового номера разница в энергиях соответствующих орбита-лей делается все меньше (см. рис. 18), в атомах актиноидов происходит своеобразное соревнование в заполнении 5/- и 6 -орбита-лей (табл. 3), энергии которых очень близки. У 104-го элемента курчатовия, открытого в Дубне под руководством акад. Флерова Г. Н., очередной электрон заселяет 6й-оболочку, доводя ее до 6с 2. Поэтому курчатовий является химическим аналогом гафния, что доказано экспериментально. По-видимому, у 105-го элемента (впервые также полученного в лаборатории акад. Флерова в 1969 г.) 6й -оболочка будет состоять из трех электронов, т. е. 105-й элемент должен быть химическим аналогом тантала эка-танта-лом. Особенности заполнения электронных слоев и оболочек атомов Периодической системы  [c.57]

    Эта задача осложняется прежде всего тем, что при образовании сплавов существенную роль играет химическое взаимодействие между компонентами. Так, различная электроотрицательность должна приводить к переходу электрона от атома одного элемента к атому другого, т. е. к возникновению явления, подобного гетерополярной связи. При этом большое значение имеет характер заполнения электронных состояний атомов. Атомы с недостроенными оболочками должны проявлять акцепторные свойства. Действительно, тенденция к образованию интерметаллидов, проявляющаяся в элементах с недостроенными оболочками, резко уменьшается у меди, /-оболочка которой заполнена. [c.652]

    До развития электронных представлений о строении в-ва В. трактовалась формально. В рамках электронной теории химической связи В. атома определяется числом его неспаренных электронов в основном или возбужденном состоянии, участвующих в образовании общих электронных пар с электронами др. атомов. Поскольку электроны внутр. оболочек атома не участвуют в образовании хим. связей, макс. В. элемента считают равной числу электронов во внеш. электронной оболочке атома. Макс. В. элементов одной и той же группы периодич. системы обычно соответствует ее порядковому номеру. Напр., макс. В. атома С должна быть равной 4, С1-7. Электростатич. теория хим. связи привела к формулировке близкого к В. и дополняющего ее понятия степени окисления (окислит, числа), соответствующей заряду, к-рый приобрел бы атом, если бы [c.344]

    Атом удобно представлять состоящим из остова и определенного числа валентных электронов. Под остовом понимается ядро плюс электроны на низших энергетических уровнях, не принимающие участия в химических превращениях. Элементы одной группы отличаются друг от друга своими остовами, но имеют одинаковое число валентных электронов. На размеры атома и его способность терять или приобретать электроны оказывают влияние число заполненных энергетических уровней остова и заряд ядра, но основным фактором, определяющим химические свойства элемента, является строение валентной электронной оболочки его атомов. [c.92]

    Вопрос о механизме миграции энергии пока еще слабо выяснен, может быть, за исключением, полупроводниковых тел. Мы точ Ьо не знаем, как мигрирует энергия по большим молекулам, в частности по макромолекулам белка, так же как не ясны формы ее миграции по металлическим поликристаллам. Здесь мы неизбежно вступаем в область лишь более или менее достоверных догадок. В порядке рабочей гипотезы можно думать, что миграция энергии происходит по экситонному. типу, т. е. путем эстафетной передачи зонно-электронного возбужденного состояния по кристаллу от одного активного центра к другому. Принять передачу энергии через колебания самой решетки труднее, так как они слишком легко рассеивал - бы энергию в окружающую среду. Примером электронной активации центра может служить возбуждение палладия, пере водящее его из структуры 4(8 р с1 °). с замкнутой 18-электронной оболочкой в структуру 5 с затратой энергии 0,8 эв (т. е. 18 ккал на атом) и с приобретением двух неспаренных электронов, т. е. двух химических валентностей в этом виде палладий обычно проявляет себя как элемент и как катализатор. [c.58]

    Атом следующего элемента периодической системы — лития — имеет уже три электрона. Литий представляет собой металл, по химическим свойствам очень похожий на натрий. Во всех своих соединениях он всегда одновалентен. Следовательно, из трех электронов атома лития один электрон связан с ядром атома значительно слабее и расположен дальше от ядра, чем два другие электрона. Принципиально важно то обстоятельство, что в атоме лития сохраняется устойчивая конфигурация гелия из двух электронов, образующих первую, т. е. ближайшую к атомному ядру электронную оболочку (электронный слой) атома. [c.76]

    Атомы, входящие в состав химического соединения, имеют во внешней электронной оболочке количество электронов, характерное для атома инертного газа соответствующего периода таблицы Д. И. Менделеева. Так, у атома водорода, находящегося в I периоде, внешней орбитой является К-оболочка, которая может содержать максимально 2 электрона (Ь ) поэтому атом водорода не может участвовать в образовании более одной ковалентной (двухэлектронной) связи. Атомы элементов, находящихся во П периоде—В, С, М, О и Р, не могут иметь на внешней оболочке ( -оболочка) больше 8 электронов (25 , 2р ). Атомы III и IV периодов могут иметь на внешней оболочке больше 8 электронов. [c.62]

    Но, наряду с большим сходством, элементы группы щелочных металлов проявляют и отличие друг от друга. При сопоставлении индивидуальных особенностей отдельных щелочных металлов выясняется замечательная закономерность. Подобно тому как это наблюдается в группе галогенов, индивидуальные свойства щелочных металлов изменяются от одного элемента к другому последовательно, в зависимости от массы атома, количества электронных оболочек и их структуры (см. таблицу в начале параграфа). Указанная закономерность имеет место в отношении как химических, так и физических свойств. Так, по мере возрастания массы атома (атомного веса) удельный вес щелочных металлов возрастает, температура плавления п температура кипения понижаются, удельные теплоемкости уменьшаются я т, д. (числовые данные—см. таблицу на стр. 350). Даже мягкость металла повышается по мере повышения атомного веса. Чем больше промежуточных электронных слоев, тем легче валентный электрон отрывается с внешнего слоя. Наиболее трудно отдает валентный электрон атом лития, легче всего— атом цезия. Соответственно, наиболее энергичный металл—цезий, наименее энергичный—литий. [c.349]

    На рис. 211 показана зависимость числа электронов в ато.мах (ионах) от их валентного состояния. График составлен на основании изучения многих химических соединений. Хорошо видно, что атомы большинства химических элементов в наиболее характерных для них валентных состояниях имеют электронные оболочки, аналогичные электронным оболочкам инертных газов, т. е. в наружных оболочках ионов (катионов и анионов) число электронов равно восьми. Реже катионы имеют 18-электронную наружную оболочку. [c.189]

    Металличность и неметалличность в значительной степени определяются структурой атома, т. е. зарядом его ядра и особенностями строения электронной оболочки. Как известно, атомы состоят из положительно заряженного ядра и отрицательно заряженньт< электронов. Между ними действуют две противоположные силы притяжение— между разноименными зарядами и отталкивание— между одноименными. Наличие и взаимодействие этих сил обеспечивает, во-первых, устойчивое существование атома, во-вторых, открывает возможность таких химических реакций, в процессе которых в зависимости от условий I, р и химической природы другого реагента) от атома отделяется или к нему притягивается то или иное количество электронов. Факты показывают, что проявление металлических свойств в простейшем виде связано с отдачей электронов, а неметаллических— с приобретением. Поскольку атом химического элемента способен в принципе как к приему, так и к отдаче валентных электронов, то вполне понятным становится сосуществование в атоме металлических и неме- [c.127]

    Как отмечает В. И. Кузнецов [17] Даже при беглом в гляде на состав химических соединений мы убеждаемся, что атомность только в исключительных случаях, прежде всего для кислорода, водорода и фтора, неизменна. Элементарные атомы часто проявляют к положительным элементам другую атомность, чем к отрицательным . Это очень важное замечание. Оно побуждает к иному объяснению природы валентности, так как взаимодействуют не только положительный атом с отрицательным атомом. Взаимодействуют друг с другом и однознаковые атомы, что, казалось бы, ломает все предписанные им Периодической системой правила поведения . Э го кажущееся противоречие снимается, как только мы переходим к рассмотрению химической связи на электронном уровне. Решающим фактором здесь является относительная электронодонорность атомов, участвующих во взаимодействии. При взаимодействии двух однозначных атомов в каче-стие положительного будет выступать тот, электронодонорность которого вьш1е, т. е. электроны внешнего слоя (слоев) подвижнее. А это, в свою очередь, зависит от типа внешнего слоя (слоев) в структуре электронной оболочки, что и является нсриопричиной структуры системы химических элемен-юн. [c.175]

    Поскольку в образовании химических связей принимают участие неспаренные электроны, то количество связей, которое образует атом данного элемента, или его валентность, равны числу неспаренных электронов. Таким образом, получает свое объяснение целочислениость и насыщаемость валентности количество неспаренных электронов измеряется целыми числами, атом не может образовать химических связей больше, чем у него имеется неспаренных электронов. Неспаренные электроны, принимающие участие в образовании химических связей, называются валентными электронами, а электронные оболочки, на которых располагаются валентные электроны — [c.70]

    Радиоактивный распад с испусканием Р- и а-частиц приводит к изменению заряда яДра, т. е. к превращению исходного ядра в ядро другого элемента. В случае Р"-распада атомный номер увеличивается на единицу, при р+-распаде — уменьшается на единицу. В обоих случаях массовое число не изменяется, В результате а-распада атомный номер уменьшается на два, а массовое число — на четыре. Часто а- и р-распад ядер сопровождается электромагнитным излучением очень высокой энергии, которое называют у-излучением. Наличие 7-излучения свидетельствует, что первоначально в результате радиоактивного распада образуется ядро в возбужденном состоянии, которое переходит в основное состояние с испусканием у-квантов. а- и Р-Частицы, так же как и 7-излучение, обладают высокой энергией, измеряемой сотнями тысяч и даже миллионами электронвольт. Для сравнения можно сказать, что энергия разрыва одной химической связи измеряется несколькими эВ энергия, необходимая для удаления одного электрона из окружающей атом электронной оболочки, измеряется несколькими эВ или небольшим числом десятков эВ, Поэтому каждая а- или р-частица или у-квант могут на своем пути произвести вполне ощутимые действия. Так, в газе, ударяясь о встречные атомы или молекулы, они способны выбивать из них электроны и превращать их в ионы. Поэтому газ становится на какой-то очень короткий промежуток времени более электропроводным, и если частица пролетела между электродами, то удается зарегистрировать прохождение тока ( вспышку электропроводности). Если число распадающихся атомных ядер не превышает несколько тысяч в секунду, то каждая вспышкй может быть зарегистрирована отдельно (электропроводность, возникшая в результате пролета одной частицы успеет упасть до малых значений перед пролетом следующей частицы) и тем самым можно считать число актов радиоактивного распада. Это [c.23]

    В положительных ионах по Косселю реализуется устойчивая 8-элек-тронная оболочка (октет). Таким же образом возникают положительные ионы с зарядами 2+ и 3+. Оторвать большое число электронов от атома не удается, так как это связано с затратой большого количества энергии, которая не окупается энергией образования химических связей. Кроме того, атом данного элемента может проявлять иную положительную валентность, меньшую, чем максимальная. [c.86]

    КРЕМНИЙ (Sili ium) Si, химический элемент IV ф. периодич. системы, ат. н. 14, ат. м. 28,0855. Состоит из трех стабильных изотопов Si (92,27%), Si (4,68%) и Si (3,05%). Поперечное сечение захвата тепловых нейтронов 1,3 10 м . Конфигурация внещ. электронной оболочки 3i 3p степень окисления +4 (наиб, устойчива), +3, +2 и + 1 энергии ионизации при последоват. переходе от Si к Si соотв. 8,1517, 16,342, 33,46 и 45,13 эН сродство к электрону 1,22 эВ злектроотрицательность по Полингу 1,8 атомный радиус 0,133, ионный радиус Si (в скобках указаны координац. числа) 0,040 нм (4), 0,054 нм (6), ковалентный-0,1175 нм. [c.508]

    Периода-шость. химических, оптических, электрических и магнитных свойств атомов разл шьрс элементов в зависимости от 2 связана со сходным строением внешних электронных оболочек, определяющих эти свойства. Эта периодичность сохраняется и ддя ионов. Теряя один электрон. ато.м по ряд> свойств становится подобным атомам предыдутцей гр тты. [c.25]

    Атом — наименьшая электронейтральная частица химического элемента, являющаяся носителем епз свойств. Каждому химическому элементу соответствует определенный вид атомов. А. состоит из ядра и электронной оболочки. Масса А. сосредоточена в ядре, которое характеризуется положительным зарядом, численно равным порядковому номеру (атомному номеру). См. Ядро апюшюв. А. в целом электронейтра-лен, поскольку положительный заряд ядра компенсируетт я таким же числом электронов. См. Электрон. Электроны могут занимать в атоме положения, которым отвечают определенные (квантовые) энергетические состояния, называемые энергетическими уровнями. Число энергетических уровней определяется номером периода, в котором находится данный элемент. Число электронов, которые могут заселять данный энергетический уровень, определяется ло формуле N = 2п , щеп — номер уровня, считая от ядра. т.е. главное квантовое число. Согласно квантовой теории невозможно одновременно и абсолютно точно определить энергию и местоположение электрона. Можно лишь говорить о нахождении электрона в определенном объеме пространства, что собственно и представляет собой атомную орбиталь (АО). Электрон заполняет пространство вокруг атомного ядра в форме стоячей волны, которую можно представить как электронное облако. Плотность электронного облака, понимаемого как облако электрического заряда электрона, — электронная плотность, различна и зависит от того, насколько электрон удален от ядра. [c.38]

    Основные научные исследования посвяш,ены развитию электронных представлений в химии. Предложил (1916) статическую электронную теорию строения атомов и молекул, согласно которой а) атомы благородных газов обладают особенно устойчивой восьмиэлектронной внешней оболочкой (атом гелия — двухэлектронной) б) атомы других элементов во внешней оболочке имеют неполный электронный октет в) образование химического соединения происходит вследствие перехода электронов от атома одного элемента к атому другого элемента и появления ионной химической связи, то есть благодаря электростатическому притяжению. Наиболее устойчивыми должны быть те соединения, в которых валентные электроны распределяются так, чтобы каждый атом был окружен оболочкой, имитирующей электронную оболочку благородного газа. Гипотеза Косселя о гетерополярных связях легла в основу теории ионной связи и гетеровалентности. [22, 324[ [c.258]

    По своему химическому строению водород занимает особое место среди других химических элементов положительно заряженное ядро и один валентный электрон в пер зой главной квантовой оболочке. Так как эта оболочка имеет два электрона на -уровне, то Н-атом может образовать с таким же атомом ковалентную связь. Эти связи водорода достаточно стабильны (см. табл. 2.3), что отчасти обусловливает низкую реакционную способность водорода. В молекулах Нг, НО, НТ, Ог, ОТ и Тг межмолекуляр-ные ван-дер-ваальсовы силы являются весьма слабыми. [c.46]

    Водород образует бинарные соединения с большинством химических элементов и громадное количество соединений с углеродом. Не менее 95 % всех известных химических соединений содержат водород. Основная роль водорода в этих соединениях заключается в том, что он покрывает собой периферию молекул. Чаще всего каждый атом водорода образует прочную связь лишь с одним атомом молекулы. В образовании этих связей участвуют атомы водорода, уже связанные ковалентной связью с атомами других элементов. Водородные связи очень слабы, они примерно в 20 раз слабее обычных химических связей. Возникновение таких слабых связей объясняется тем, что hoij водорода — положительно заряженный протон, хорошо притягивается к отрицательно заряженным электронным оболочкам других атомов, не испытывая при этом, в силу минимального заряда протона, сильного отталкивания ядер. [c.53]

    Инертные элементы (подгруппа УП1А) играют большую роль в теории периодической системы. В оболочке их атомов завершается построение периферического энергетического уровня — вся электронная оболочка атома становится устойчивой. Весь атом данного инертного элемента приобретает характер прочного очередного атомного остова, как основы для построения последующего периода (см. рис. 4-3), причем ход заполнения элементами нового периода как бы повторяется по сравнению с предыдущим отчетливо проявляется периодичность в изменении электронной структуры, а следовательно, и химических свойств элементов в пределах каждого данного периода. Однако в этой периодичности нет простого повторения развития по замкнутому кругу каждый последующий период, как это видно из рисунка 4-3, по сравнению с предыдущим в своей основе имеет иной ядерно-электронный остов соответствующего инертного элемента. Структура этого остова от периода к периоду изменяется, его конфигурация усложняется, что существенным образом влияет на химические свойства каждого элемента периода на энергию связи валентных электронов с атомом, на свойства соединений, даже у элементов прн проявлении ими одинаковой валентности. Это в основном зависит [c.65]

    Такая химическая связь, которая образуется уже связанным атомом водорода с атомом другого элежнта, обладающего большой электроотрицательностью, назыеается водородной связью (или кратко Н-связью). При образовании Н-связи проявляется своеобразие иона Н" ". Атом водорода, теряя единственный электрон, остается в виде ядра — протона, диаметр которого в тысячи раз меньше диаметров ионов других элементов. В результате ион водорода, обладая очень сильным электрическим полем, активно взаимодействует с электронными оболочками других атомов или ионов. Ион Н" "— активный акцептор по отношению к неподеленной паре электронов атомов и ионов сильно электроотрицательных элементов. Например, водородные связи у воды проявляются в стяжении одной молекулы со стороны водорода с другой со стороны кислорода (точками показана водородная связь)  [c.66]

    Не менее привлекательны и химические свойства элемента № 46. Прежде всего, это единственный металл с предельно заиолненной наружной электронной оболочкой на внешней орбите атома палладия 18 электронов. При таком строении атом просто не может не обладать высочайшей химической стойкостью. Не случайно на палладий при нормальной температуре не действует даже всесокрушающий фтор. [c.271]

    Атомы, входящие в состав химического соединения, имеют во внешней электронной оболочке количество электронов, характерное для атома инертного газа соответствующего периода таблицы Менделеева. Так, у атома водорода, находящегося в I периоде, внешней орбитой является iv-оболочка, содержащая максимально 2 электрона (Is ), и поэтому атом водорода не может образовать более одной ковалентной связи. Атомы элементов, находяищхся во П периоде— [c.59]

    Химические реакции, в которых участвуют атомы разных элементов, не затрагивают атомных ядер. Чтобы получить атом нового элемента, нужно изменить заряд атомного ядра, изменить число протонов в ядре, а когда изменится заряд ядра, немедленно произойдет и изменение строения электронных оболочек. Если число протонов в ядре уменьшилось, то внешняя оболочка потеряет электроны. При увеличении заряда происходит захват электронов на внешнюю оболочку. Изменить состав ядра внешним воздействием несравненно труднее, чем вызвать химическое препращение. потому [c.254]


Смотреть страницы где упоминается термин Электронная оболочка атома химического элемента: [c.51]    [c.177]    [c.52]    [c.53]    [c.6]    [c.489]    [c.486]    [c.166]    [c.220]    [c.92]    [c.183]   
Смотреть главы в:

Общая и неорганическая химия Изд.3 -> Электронная оболочка атома химического элемента




ПОИСК





Смотрите так же термины и статьи:

Оболочка

Электрон в атомах

Электронная оболочка

Элемент химический



© 2025 chem21.info Реклама на сайте