Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Ковалентная связь и орбиты

    Итак, при образовании ковалентных связей орбитали связывающихся атомов могут взаимодействовать двояким образом Например, в молекуле водорода Нз 1з-орбитали двух атомов объединяются в одну молекулярную орбиталь так, что область максимальной электронной плотности, или область перекрывания атомных орбиталей, лежит на линии, соединяющей центры атомов (рис 17, а) Такой тип связи называется а-связью а-Связи образуют и гибридизованные орбитали Например, во фрагменте С—Н образуется а-связь между гибридизованной орбиталью углерода и 18-орбиталью атома водорода (рис 17, б), а во фрагменте С—С — между двумя гибридизованными орбиталями (рис 17, в) а-Связь обладает большой прочностью, так как основная масса электронной плотности сосредоточена в небольшом пространстве между ядрами атомов [c.54]


    Итак, при образовании ковалентных связей орбитали связывающихся атомов могут взаимодействовать двояким образом. [c.45]

    Частица, предоставляющая для связи двухэлектронное облако, называется донором-, частица со свободной орбиталью, принимающая эту электронную пару, называется акцептором. Механизм образования ковалентной связи за счет двухэлектронного облака одного атома и свободной орбитали другого называется донорно-акцеп-торным. [c.67]

    Пространственная структура комплексных частиц может быть объяснена с позиций метода валентных связей (метод ВС). Этот метод предполагает, что комплексная частица возникает в результате образования ковалентных связей между комплексообразователем и лигандами. При этом ковалентная а-связь образуется в результате перекрывания вакантной орбитали атома (или иона) комплексообразователя (акцептора) с заполненными, т. е. содержащими не-поделенные пары электронов, орбиталями лигандов (доноров). Максимальное возможное число с-связей определяет координационное число комплексообразователя. [c.209]

    Первые два электрона в юлекулярно.м ионе Не располагаются со спаренными спинами на связывающей а-орбитали и заполняют ее. А что происходит с третьим электроном Согласно принципу запрета Паули, он не может занимать о-орбиталь, а должен разместиться на следующем, более высоком энергетическом уровне, который соответствует разрыхляющей о -орбитали. Этот третий электрон выталкивается из межъядерной области из-за наличия в ней первых двух электронов и вынужден находиться во внешней области, за пределами обоих ядер. Такой электрон оказывает на молекулярную систему разрушающее действие-он расталкивает ядра. Молекула имела бы большую устойчивость, если бы в ней не было третьего электрона. В сущности, он компенсирует действие одного из связывающих электронов, и в результате молекула испытывает эффективное связывающее действие всего одного электрона, т.е. в молекуле образуется неполная, одноэлектронная ковалентная связь. Энергия связи в ионе Нсз должна быть поэтому меньше, че.м в молекуле Н,. [c.518]

    Углерод. Два новых электрона в молекуле углерода, С2,. окончательно заполняют связывающие молекулярные орбитали и л . Таким образом, в молекуле С2 эффективное число связывающих электронов равно четырем, и, согласно терминологии Льюиса, в ней образуются две ковалентные связи. В основном электронном состоянии эта молекула не должна содержать неспаренных спинов. В согласии с предсказаниями, энергия связи 2 приблизительно вдвое больше, чем для В2 (603 кДж моль против 274 кДж-моль ), а длина связи меньше (1,24 А против 1,59 А). У молекулы С2 не обнаруживается парамагнитных свойств. [c.526]


    В гетероядерной двухатомной молекуле АВ, где В-более электроотрицательный атом, чем А, связывающая молекулярная орбиталь содержит больший вклад атомной орбитали атома В, а разрыхляющая молекулярная орбиталь больше напоминает атомную орбиталь атома А. Если разность электроотрицательностей атомов А и В очень велика, как, например, в КР, валентные электроны локализуются на более электроотрицательном атоме (в данном случае Р) и представление о ковалентной связывающей орбитали теряет свой смысл. В такой ситуации правильнее говорить об ионной структуре К Р . Большинство гетероядерных двухатомных молекул имеют промежуточный характер связи между ионными парами и ковалентно связанными атомами другими словами, они имеют частично ионный характер связи и могут описываться структурами А В .  [c.544]

    Химическую связь в молекуле метана, СН4, удается хорошо объяснить, исходя из представлений о тетраэдрических хр -гибридных орбиталях атома углерода. Эти представления позволяют также объяснить строение этана, СзН , и многих других органических соединений, в которых атомы углерода соединены друг с другом в цепи простыми связями. В этане к каждому из двух атомов углерода присоединено по три атома водорода с образованием ковалентных связей, в которых участвуют три из четырех гибридных хр -орбиталей. Четвертая хр -орбиталь каждого атома углерода используется для образования ковалентной связи с другим таким же атомом. Перекрывание р -гибридных орбиталей двух атомов углерода приводит к возникновению устойчивой связывающей молекулярной орбитали и неустойчивой разрыхляющей орбитали. Связывающая орбиталь, симметричная относительно оси С—С, является а-орбиталью и заполнена двумя электронами со спаренными спинами. [c.565]

    Однако это еще не окончательная картина электронного строения бензола, потому что экспериментально наблюдаемая длина связи С—С (1,390 А) оказывается значительно меньше длины простой связи С—С (1,54 А). У каждого атома углерода остается одна негибридизованная 2р-орбиталь, ориентированная перпендикулярно плоскости гексагонального кольца (рис. 13-23). В молекуле бензола 30 валентных электронов по 4 от каждого из шести атомов углерода и по 1 от каждого из шести атомов водорода. Из них 12 электронов используются для образования шести простых связей С—Н и 12-для образования шести простых а-связей С—С. Остаются еше шесть электронов и шесть неиспользованных в а-связях р-орбиталей атомов углерода. Возможно, эти орбитали используются попарно для образования еще трех ковалентных связей. Но как выбрать такие три пары  [c.573]

    Каждая из указанных гибридных орбиталей может перекрываться с орбиталью лиганда с образованием связывающей и разрыхляющей орбита-лей, имеющих а-симметрию относительно оси связи между металлом и лигандом. Неподеленная пара электронов от каждого лиганда занимает возникающую связывающую молекулярную орбиталь, и в результате образуются шесть ковалентных связей (рис. 20-8). Аналогичные соображения поясняют образование четырех эквивалентных гибридных орбиталей, направленных к вершинам квадрата в плоскости ху, из р - и [c.225]

    Каждый атом В образует две обычные двухцентровые ковалентные связи В—Н, в которых занято всего восемь электронов. Остающиеся у диборана четыре валентных электрона используются для образования двух трехцентровых связей В—Н—В, в которых каждый из трех атомов поставляет по одной орбитали в связывающую молекулярную орбиталь. Представление о трехцентровых связях позволяет объяснить строение всех гидридов бора. Кроме того, оно объясняет, почему бор неспособен к проявлению таких химических свойств, как углерод. [c.272]

    Рассмотрим содержание этого понятия на примере соединений углерода, в подавляющем больщинстве которых атом С образует четыре ковалентные связи, хотя в валентной конфигурации основного состояния он имеет только две неспаренные орбитали (два неспаренных электрона, как чаще говорят). [c.172]

    МОЖНО привести алмаз, в котором каждый атом углерода связан с четырьмя другими атомами углерода в направлении от центра тетраэдра к его вершинам (рис. 3). Таким образом создастся устойчивая восьмиэлектронная орбита около каждого атома углерода и вместе с тем каждый атом углерода приобретает по четыре ковалентных связи. Обилием ковалентных связей и высокой степенью симметрии решетки алмаза объясняется его исключительно высокая твердость. [c.9]

    Одним из важных свойств химической (ковалентной) связи в молекулах с закрытыми оболочками является ее насыщаемость. Так, из атомов водорода может образоваться молекула На, но не Нд или Н4. Причина насыщаемости химической связи заключается в самой природе атомов и молекул как многоэлектронных систем в подчинении их принципу Паули. Если две молекулы На в основном состоянии оказываются очень близко друг к другу, два электрона первой молекулы на о15-орбитали и два электрона второй молекулы на такой же (тЬ-орбитали оказываются в одной области пространства, МО перекрываются. При этом данному электрону первой молекулы отвечает во второй молекуле электрон в точно таком же квантовом состоянии. Такие два электрона, согласно принципу Паули, будут избегать друг друга, и обе пары электронов сблизившихся молекул будут стремиться уйти из области соприкосновения, уводя с собой ядра, т. е. будет наблюдаться отталкивание молекул. Слияние системы в молекулу Н4 не произойдет. Связь в молекулах На в этом смысле насыщена. Аналогичное состояние отталкивания, часто называемое обменным отталкиванием или отталкиванием Паули, возникает при сближении и других молекул. [c.88]


    Присоединение радикала по кратной связи может идти двумя путями. Радикал может образовать ковалентную связь с реакционным атомом субстрата (сг-комплекс), тогда реакция протекает по схеме (18.1). Образование другого возможного продукта идет через так называемый я-комплекс. Для того чтобы представить структуру я-комплекса, рассмотрим приближение реагента А—В (А—В — молекула или радикал) к субстрату, содержащему кратные связи. Предположим, что валентный электрон реагента находится на р -орбитали [А(Рг)—В]. Тогда приведенная ниже схема иллюстрирует образование п-комплекса. [c.169]

    В ионе аммония каждый атом водорода связан с атомом азота общей электронной парой, одна из которых реализована по донор-но-акцепторному механизму. Важно отметить, что связи Н—N. образованные по различным механизмам, никаких различий в свойствах (например, в энергии связи, дипольном моменте связей и т. д.) не имеют, т. е. независимо от механизма образования возникающие ковалентные связи равноценны. Указанное явление обусловлено тем, что в момент образования связи орбитали 2в- и 2р-электронов атома азота изменяют свою форму. В итоге возникают четыре совершенно одинаковые по форме орбитали. Поскольку форма этих новых орбиталей есть нечто среднее между формами 8- и р-орбиталей, то эти новые орбитали принято называть гибридными, а процесс их возникновения — гибридизацией атомных орбиталей (б).  [c.36]

    Особым видом ковалентной связи является так называемая координационная, или донорно-акцепторная связь. Координационной называется связь между атомами, один из которых — донор — имеет заполненную внешнюю атомную орбиту (как говорят, имеет неподеленную пару электронов, т. е. пару электронов, не принимающих участия в образовании других химических связей), а второй — акцептор — имеет пустую, не содержащую ни одного электрона, внешнюю атомную орбиту, В молекуле этим двум атом- [c.12]

    Классическим примером молекул с донорно-акцепторной связью являются нитросоединения. Атом азота, имеющий в свободном состоянии три неспаренных электрона и одну неподеленную пару электронов, в нитросоединениях связан одной ковалентной связью с атомом углерода, двумя — с атомом кислорода и донорно-акцепторной связью еще с одним атомом кислорода, который имеет одну незаполненную 2р-орбиту и может выступать в качестве акцептора [c.13]

    Некоторые молекулы, хотя они на первый взгляд являются валентно насыщенными системами, так как их валентные электроны попарно заселяют молекулярные орбитали, отнюдь не лишены способности соединяться химическими связями с другими молекулами, не разрывая при этом своих собственных межатомных связей. Одни из этих молекул для этого должны иметь незанятые валентные орбитали, а другие — неподеленные пары электронов. Таким образом, одни молекулы проявляют способность присоединять другие молекулы до тех пор, пока не будут заняты все их валентные орбитали. Как известно, р -орбиталь бора не занята в молекуле ВРз. Поэтому эта молекула присоединяет молекулу аммиака, атом азота которой имеет на валентной орбитали одну пару неподеленных электронов, причем образуется донорно-акцеп-торная связь, почти ничем не отличающаяся от других ковалентных связей. Следовательно, нет оснований называть подобные соединения молекулярными комплексами — это настоящие атомные, а не молекулярные соединения. Связи подобного типа с донорами электронов могут образовать также молекулы — соединения бериллия, алюминия и др. В молекулах типа ВеРг имеются две незанятые валентные орбитали. Благодаря этому фторид бериллия присоединяет две молекулы диэтилового эфира, кислород которого служит донором электронов. Если в молекулах имеются незанятые валентные орбитали и недостаточное количество электронов для их нормального заселения парами электронов, как, например, в молекулах бороводородов, то эти молекулы в ряде случаев соединяются друг с другом путем делокализации всех валентных электронов между всеми молекулярными орбиталями, в результате чего все они оказываются частично заселенными электронами и между молекулами образуются настоящие химические связи. Это относится не только к взаимодействию молекул диборана с образованием высших боранов, но и к конденсации атомов металлов, в результате которой получаются твердые металлы. Атомы металлов также имеют незаселенные валентные орбитали, которые при конденсации сливаются в валентную зону и таким образом становятся достоянием всех валентных электронов. [c.88]

    В качестве примера удобнее всего рассмотреть неискаженный октаэдрический комплекс. Рассмотрим комплекс (Мп +) (Р )б, центральный атом которого имеет пять -электронов. Как видно из рис. 10.11, 2 - и 2р-орбнтали шести атомов фтора образуют груп-[ювые орбитали лигандов, обладающие той же симметрией, что и каждая из пяти -орбиталей, и они способны образовать ковалентные связи. Орбитали 22 и ж2 у2 или е -орбитали образуют только ст-связи, а 2а-°Рбитали образуют только л-связн. Ниже приведены орбитали лигандов, классифицированные по симметрии [c.221]

    Авторы С38-403 у синтезированных ими в твердом виде соединений титана(Ш) с этими реагентаали обнаружили те же полосы поглощения, которые они также отнесли к полосам переноса заряда. Большую устойчивость по отношению к окислению комплексов титана(Ш) с О-фенантролином по сравнению с а, а -дипиридялом можно объяснить более тесным связыванием колец в молекуле о-фенантролина, что приводит к образованию орбиталей, энергетически гораздо более выгодных для осуществления с ионами металлов 38-связи [41]. Отсутствие Зо5-элект-рона у иона титана(1У) изменяет энергетическое состояние 3 ( -орбит, вследствие чего становится менее эффективным образование ковалентных связей -орбитали титана (17) с неподеленными парами электронов с незаряженными лигандами, и поэтому соединения тита-на(1Я с ними менее устойчивы, чем соединения титана(Ш). Об этом свидетельствуют значения электродных потенциалов системы титан(17) /титан(Ш) в присутствии <>-фенантролина и а.а -дипиридила (табл.2), которые показывают, что вежчины констант нестойкости соединений титана(Ш) с этими лигандами гораздо ниже, чем у соединений тита-на(1У), и, следовательно,эти лиганды стабилизируют титан в степени окисления три. [c.44]

    Ковалентная связь. Орбиты связей. Представим себе два атома водорода А и В, состоящие каждый из одного протона и одного электрона, занимающего орбиту 1 . Сначала атомы отстоят далеко друг от друга их электронные системы, еще не возбужденные , можно представить волновыми функциями фл и фв. Как было указано выше, электронные облака атомов не обладают четкими внешними границами. Когда атомы нриблии аются друг к другу, то электрон атома А притягивается и ядром В, а электрон атома В притягивается и ядром А. Электронные облака атомов перекрываются. Когда ядра находятся на определенном расстоянии (нормальном расстоянии в молекуле На), перекрывание настолько велико, что уже невозможно отличить электрон атома А от электрона атома В. При перекрывании электронных облаков орбиты фл и фв теряют свою индивидуальность и между ядрами образуется молекулярная орбита. Эта орбита нового тина отличается от атомных орбит, во-первых, тем, что она обладает двумя ядрами. Плотность общего электронного облака имеет максимальное значение в области менаду ядрами. Как и атомные орбиты, молекулярная орбита может быть занята не более чем двумя электронами с антинараллельными спинами. Энергия образующейся при этом системы меньше суммы энергий отдельных атомов молекула Нг устойчивее, чем отдельные атомы. [c.65]

    Здесь ковалентная связь возникла за счет пары электронов, первоначально принадлежавшей одному атому (донору элек тронной пары), и свободной орбитали другого атома (а к цеп  [c.130]

    Атомы элементов третьего и иоследуюидих периодов могут использовать для образования ковалеитиых связей не только 5- и р-, по также п /-орбитали. Известны соединения -элементов, в которых в образовагши ковалентных связей участвуют 5- и р-орбнтали внешнего электронного слоя и все пять -орбиталей предшествующего слоя в подобных случаях ковалентность соответствующего элемента достигает девяти. [c.132]

    Литий. Атом лития имеет один валентный электрон, поэтому молекула может иметь не больше двух связывающих электронов. Эти электроны спарены на низшей доступной для них молекулярной орбитали, о,. Следовательно, в молекуле Li2 имеется одна ковалентная связь. Длина этой связи (2,67 А) превышает длину связи в молекуле Н2 (0,74 А), потому что в молекуле лития связь образуется более протяженными атомными орбиталями сп = 2, анесп = 1. По этой же причине связь в слабее, чем в Н2 энергия связи в 2 равна ПО кДж мoль , а в Н2-432 кДж моль Ч Ядра атомов лития расположены дальше друг от друга, электронное облако распределено в большем объеме и силы притяжения между электронами и ядрами соответственно ослаблены. [c.525]

    Если провести математические операции, выражаемые словами скомбинируем две атомные орбитали так, чтобы получить разрыхляющую и связывающие молекулярные орбитали , то обнаружится, что две такие атомные орбитали должны обладать достаточно близкими энергиями. В молекуле каждая из двух молекулярных орбиталей содержит 50%-ный вклад от Ь-орбитали каждого атома водорода. В противоположность этому если в молекуле АВ скомбинировать орбиталь атома А, обладающую очень высокой энергией, и орбиталь атома В с довольно низкой энергией, то математические выкладки покажут, что разрыхляющая молекулярная орбиталь представляет собой почти чистую исходную орбиталь атома А, а связывающая орбиталь - почти чистую исходную орбиталь атома В. Следовательно, пара электронов на такой связывающей орбитали в сущности находится вовсе не на настоящей ковалентной связывающей орбитали. На самом деле речь идет о неподеленной паре электронов на атомной орбитали атома В. Взаимодействие атомных орбиталей двух атомов с больщим различием в энергиях пренебрежимо мало. На примере молекулы НР мы увидим, что это означает, если принять во внимание частично ионный характер связи. [c.532]

    Попытаемся представить себе, что произойдет со связью Н—Р, если энергия Ь-орбитали атома водорода постепенно понизится. Различие в энергиях между молекулярной орбиталью ст и двумя атомными орбиталями, из которых она образовалась, постепенно уменьщится и вклады атомных орбиталей в молекулярную орбиталь ст уравняются. Неравномерность в распределении электронного заряда должна снизиться, и в молекуле постепенно возникает полностью симметричная ковалентная связь такого типа, как в р2 или в Н2. К такой ситуации гораздо ближе связь в молекуле НС1, поскольку первые энергии ионизации атомов Н и С1 довольно мало отличаются друг от друга 1310 и 1255 кДж-моль соответственно. В молекулах НС1, НВг и Н1 связи значительно ближе к чисто ковалентной, а разделение зарядов между атомами намного меньще, чем в НР. [c.535]

    СЯ для образования ковалентных связей в кристаллической структуре кремния, у фосфора остается еще один электрон. При наложении на кристалл электрического поля этот электрон может смещаться в сторону от атома фосфора поэтому говорят, что фосфор является донором электронов в кристалле кремния. Для высвобождения донируемых электронов требуется лищь 1,05 кДж моль эта энергия превращает кристалл кремния с небольшой примесью фосфора в проводник. При введении в кристалл кремния примеси бора возникает противоположное явление. Атому бора недостает одного электрона для построения необходимого числа ковалентных связей в кристалле кремния. Поэтому на каждый атом бора в кристалле кремния приходится одна вакансия на связывающей орбитали. На эти вакантные орбитали, связанные с атомами бора, могут быть возбуждены валентные электроны кремния, что дает возможность электронам свободно перемещаться по кристаллу. Подобная проводимость осуществляется в результате того, что на вакантную орбиталь атома бора перескакивает электрон соседнего атома кремния. Вновь образовавшаяся вакансия на орбитали атома кремния тут же заполняется электроном со следующего за ним другого атома кремния. Возникает каскадный эффект, при котором электроны перескакивают от одного атома к следующему. Физики предпочитают описывать это явление как движение положительно заряженной дырки в противоположном направлении. Но независимо от того, как описывается это явление, твердо установлено, что для активации проводимости такого вещества, как кремний, требуется меньше энергии, если в кристалле содержится небольшое количество донора электронов типа фосфора либо акцептора электронов типа бора. [c.632]

    Теперь допустим, что шесть лигандов, каждый с неподеленной электронной парой, должны образовать шесть ковалентных связей с ионом кобальта, который использует для этого свои октаэдрически ориентированные ги-бридизованные орбитали. Если в гибридизации участвуют 4х-, 4р- [c.226]

    Однако теория кристаллического поля несколько глубже. В ней рассматривается, что происходит с пятью -орбиталями атома металла, когда к нему приближаются октаэдрически расположенные вокруг него шесть отрицательных зарядов предполагается, что эти заряды располагаются на осях координатной системы, в которой определены -орбитали. Эти отрицательные заряды изображают неподеленные пары электронов на лиган-. дах. Считается, что они принадлежат лигандам и в комплексе, а не вовлекаются в образование ковалентных связей с металлом. Следовательно, теория кристаллического поля исходит из предположения о чисто ионной связи. [c.228]

    Возникающая в результате образования молекулярных орбиталей комплекса диаграмма энергетических уровней изображена на рис. 20-14. В ее нижней части находятся уровни шести связывающих орбиталей, заполненные электронными парами. Их можно пр)едставить как шесть электронных пар, поставляемых лигандами-донорами, и больше не обращать на них внимания. Точно так же можно исключить из рассмотрения четыре верхние разрыхляющие орбитали, являющиеся пустыми, за исключением предельных случаев сильного электронного возбуждения, которыми можно пренебречь. Несвязывающий уровень и нижний разрыхляющий уровень соответствуют двум уровням, и вд, к которым приводит расщепление кристаллическим полем (см. рис. 20-13). Мы будем продолжать называть их по-прежнему уровнями 12д и е даже в рамках молекулярно-орбитального подхода. Но важно отметить разницу в объяснении расщепления между этими уровнями. В теории кристаллического поля оно является следствием электростатического отталкивания, а в теории поля лигандов-следствием образования молекулярных орбиталей. Как мы убедились в гл. 12 на примере молекул НР и КР, теория молекулярных орбиталей позволяет охватить все случаи от чисто ионной до чисто ковалентной связи. Поэтому выбор между теорией кристаллического поля и теорией поля лигандов основан лишь на рассмотрении одной из двух предельных моделей связи. В комплексе СоР довольно заметно проявляется ионный характер связи, потому что, как можно видеть из рис. 20-14, орбитали лигандов располагаются по энергии ниже орбиталей металла и ближе к связывающим молекулярным орбиталям. Поэтому связывающие молекулярные орбитали по характеру должны приближаться к орбиталям лигандов, а это должно обусловливать смещение отрицательного заряда в направлении к лигандам. Таким образом, связи в данном случае должны быть частично ионными. [c.235]

    Ковалентная связь. На рис. 22 представлено образование связывающей и разрыхляющей МО молекулы Нг из АО, а также диаграмма плотности вероятности (плотности электронного облака). В нижней части рис. 22, а и б приведены условные контурные диаграммы электронной плотности, напоминающие топографические карты. В пространстве между ядрами значения ф5 и ф5р выше, чем были бы они для изолированной атомной орбитали. Соответственно выше здесь и плотность электронного облака. Это означает, что для молекулярной орбитали вероятность пребывания электрона в межъядерной области велика. Отрицательный заряд между ядрами притягивает к себе положительные заряды обоих ядер и в то же время экранирует их друг от друга, уменьшая их взаимное отталкивание. В результате наблюдается значительное понижение энергии электрона в поле двух ядер молекулы по сравнению с энергией электрона в атоме. Общее понижение энергии —результат преобладающего понижения потенциальной энергии электрона. Поэтому система из двух ядер и электрона оказывается более устойчивой, чем система разъединенных ядер, иными словами, вследствие понижения потенциальной энергии электрона возникает химическая связь. Характерной ее особенностью является коллективизирозание электрона всеми (здесь двумя) ядрами молекулы. Такая связь называется ковалентной. В основе хими- [c.69]

    Для всех гетеронуклеарных молекул можно отметить характерную особенность электронная плотность в них распределена несимметрично относительно обоих ядер. При таком распределении электронной плотности химическую связь называют полярной или точнее полярной ковалентной связью, а молекулы полярными. Среди молекул гидридов у НР особенно заметно несимметричное распределение заряда (рис. 31). Не только несвязывающие молекулярные орбитали 1а , 2а и 1л,1 практически целиком сосредоточены вокруг ядра фтора, но и на связывающей молекулярной о-орбитали электронная плотность благодаря большому различию в эффективных зарядах ядер водорода (1) и фтора (5.20) смещена в сторону последнего. Вследствие этого электрические центры тяжести положительных зарядов ядер и отрицательных зарядов электронов не совпадают, и в молекуле возникает постоянный электрический диполь — система двух равных по величине и противоположных по знаку зарядов +<7 и —д, разде-. ленных расстоянием I, называемым длиной диполя (рис. 32). Взаимодействие молекулы с электрическим полем будет зависеть от величины вектора а — электрического дипольного момента молекулы [c.84]

    Однако понятие насыщаемости ковалентной связи нельзя рассмат- ривать как абсолютное. Можно себе представить, что при сближении двух молекул На внешнее воздействие преодолевает силы отталкивания и четыре электрона разместятся на двух новых орбиталях, охватывающих все четыре ядра водорода. Расчет (Конрой и Малли, 1969) показал, что энергия такой системы на 523 кДж превышает энергию двух молекул На. Это значит, что орбитали системы Н4 лежат намного выше, чем у молекул На. Такая система, будучи предоставлена самой себе, окажется неустойчивой по отношению к распаду на две молекулы На- [c.88]

    Электроны неподеленных пар лиганда переходят на молекулярные орбитали, т. е. происходит частичное смещение электронной плотности в направлении лигандцентральный ион, благодаря чему связь приобретает частично ковалентный характер. Механизм образования связи во многом напоминает донорно-акцепторный. Теория поля лигандов позволяет из спектров комплексов установить последовательность роста ковалентности связи в ряду лигандов (не-фелоксетический ряд) [c.127]

    Карбонилы металлов. В теории поля лигандов принимается, что неподеленные пары электронов СО участвуют в образовании ковалентных связей, переходя на молекулярные орбитали комплекса. В октаэдрическом карбониле Сг(СО)а двенадцать электронов шести молекул СО переходят на а-связывающие орбитали комплекса (а- д, Ьа и г)- Шесть электронов хрома располагаются на 2я-орбиталях (сильное поле, см. рис. 56). Эти орбитали не участвуют в образовании а-связей. Но они могут образовать -л-связи со свободными разрыхляющими п-орбиталями мЬлекулы СО, каждая из трех г -орби-талей с л -орбиталями двух молекул СО [c.128]

    Важнейшим видом химической связи в молекулах является так называемая коваугентная, нли гомеополярная, связь. Ковалентная связь образуется между двумя атомами, обладающими неспаренными электронами. При сближении атомов из двух атомных орбит, занимаемых неспаренными электронами, в результате взаимного возмущающего действия атомов образуются две молекулярные орбиты. Если неспаренные электроны сближающихся атомов имеют противоположно ориентированные (антипараллельные) спины, то они оба могут, согласно принципу Паули, попасть на низшую, энергетически более выгодную молекулярную орбиту (так называемую связывающую орбиту), что приводит к возникновению устойчивой связи между атомами. [c.10]

    Характер и типы ковалентной связи. Гибридизация орбита-лей. Параметры молекул - длина, углы и прочность связей. Способы изображения структуры. иолеку.г. Изомерия, конформации [c.26]

    УФ-спектры. В рамках теории переноса заряда Малликен [3. 15] отметил, что в спектре комплекса могут наблюдаться полосы поглои сния, характерные для свободных донора и акцептора, а также несколько полос переноса заряда , вызываемого переходом электрона с наиболее высокой запяаой молекупярной орбитали донора на наименее низкую свободную молекулярную орбиталь акцептора, в результате чего возникает ковалентная связь [3]. [c.63]


Смотреть страницы где упоминается термин Ковалентная связь и орбиты: [c.132]    [c.139]    [c.533]    [c.535]    [c.615]    [c.47]    [c.41]    [c.445]    [c.113]    [c.48]    [c.207]   
Природа химической связи (1947) -- [ c.39 ]




ПОИСК





Смотрите так же термины и статьи:

Ковалентность

Направленная ковалентная связь. Прочности связей валентные углы. Магнитный критерий типа связи Природа атомных орбит и их способность к образованию связей

Орбита

Орбиты связи

Связи ковалентные Связи

Связь ковалентная



© 2025 chem21.info Реклама на сайте