Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Никель i максимальная

    В табл. 2.2 также представлены результаты исследования влияния природы исходных соединений никеля на величину поверхности закиси никеля. Величина поверхности исходных веществ была самой различной. Минимальной величиной поверхности (0,4 м /г) обладал азотнокислый никель, максимальной (195 м /г)—основной углекислый никель. Так же, как и в предыдущем случае, при разложении этих соединений наблюдается существенное увеличение степени дисперсности и соответственно величины поверхности. Для некоторых образцов это увеличение весьма значительно. Если относительное изменение величины поверхности образца, полученного разложением азотнокислой соли, равно 40, то величина кристалликов при этом уменьшается на 2 порядка. Однако абсолютная величина поверхности существенно ниже, чем в случае гидроокиси никеля (16 м /г). Размер частиц, определенный рентгенографически, составляет - 20 нм, а по адсорбционным измерениям 50 нм. Это показывает, что первичные частицы упакованы в более крупные агрегаты настолько плотно, что их поверхность частично недоступна для молекул адсорбируемого газа [9]. [c.26]


    Адсорбционно-экстракционный метод использовала и А. Я. Деменкова [92] для разделения смол из ряда нефтей Урало-Поволжья и Кавказа на традиционно изучаемые при геохимических исследованиях петролейно-эфирные, бензольные и спирто-бензольные фракции (смолы I, И и П1 соответственно, табл. 2.32). Установлено, что компоненты, извлекаемые при экстракции петролейным эфиром, почти лишены ванадия и во многих случаях никеля. Максимальные концентрации V и Ni обнаруживались в бензольных или спирто-бензольных фракциях, однако преобладающая доля металлов (64—81% V и 71— 84% Ni) аккумулировалась в первых в связи с их большими выходами. [c.215]

    Реакция определения никеля (И) диметилглиоксимом (ОНг) в щелочной среде в присутствии окислителей получила большое распространение. В результате реакции образуется соединение, растворы которого окрашены в бурый цвет (отношение N1 [)Нг = = 1 3). Максимальное поглощение наблюдается при >, = 470 нм-, значение е= 13 000. В качестве окислителя используют раствор иода. Никель может быть определен указанной реакцией в сталях в присутствии ванадия, молибдена. Вольфрам, хром и титан могут присутствовать до 18%. Мешают медь, кобальт и все элементы, ионы которых дают осадки гидроокисей в щелочной среде. Это первый недостаток метода, второй — малая чувствительность. [c.493]

    В работе [S2] показано, что зона максимального накопления ванадия лежит на гл иие 300-400 мкм от наружной поверхности гранулы катализатора, имеющего средний диаметр пор 11,5 нм, а в катализаторе со средним диаметром пор 7,65 нм в пределах 150-200 мкм. Длительность работы первого образца составила 285, а второго - 179 сут. Распределение никеля в зерне катализатора как и по высоте слоя, значительно равномернее (рис. 330). [c.123]

    Концентрация никеля и ванадия в катализаторе,равная 0,02% вес., считается максимально допустимой при каталитическом крекинге соляровых дистиллятов, так как при более высокой концентрации этих металлов существенно увеличиваются выходы легких газов и кокса и снижается выход бензина [94, 95]. [c.41]

    Поскольку N18 должен осаждаться, если произведение концентраций его ионов превышает произведение растворимости, максимальная возможная концентрация ионов никеля в данном случае равна [c.255]

    Причина столь резкого изменения картины рассеяния после аварии состояла в образовании в результате отжига монокристаллов никеля, которые служили своего рода дифракционными решетками. Если де Бройль прав и электрон обладает волновыми свойствами, то картина рассеяния должна напоминать рентгенограмму Лауэ. Д рассчитывать рентгенограммы к тому времени уже умели, формула Брэгга была известна. Так, для случая, представленного на рис. 5, угол а между плоскостями Брэгга и направлением, максимального рассеяния электронов составляет 65°. Измеренное рентгенографическим методом расстояние а между плоскостями в монокристалле Ni равно 0,091 нм. Уравнение Брэгга, описывающее положение максимумов при дифракции, имеет вид пХ = 2а sin а (п — целое число). Принимая п = 1 и подставляя экспериментальные значения а и а, получаем для Ъ Я = 2 0,091 sin 65° = 0,165 нм Формула де Бройля [c.22]


    Чтобы лучше понять закономерности кинетики гетерогенно-ката-литических процессов, целесообразно рассмотреть специфические особенности катализа на поверхности раздела фаз. В гомогенном катализе катализатор выступает в молекулярной форме, в гетерогенном катализе катализатор выступает в форме совокупности большого числа молекул или атомов, образующих отдельную фазу. Так, например, в коллоидной частице платины сосредоточено 10 10 атомов, из них менее 1 % расположено на поверхности частицы. В скелетном никеле число атомов в частице радиусом 50 мкм равно 10 , из них только несколько процентов находится на поверхности раздела фаз. Следовательно, в гетерогенном катализаторе только незначительная часть атомов или молекул катализатора может непосредственно взаимодействовать с молекулами реагирующих веществ. С увеличением 5уд возрастает доля молекул или атомов, находящихся на поверхности раздела фаз, возрастает и каталитическая активность. Однако диспергирование катализатора до молекулярной степени дисперсности необязательно приведет к максимальной активности катализатора. Активность при этом может проходить через максимум и снижаться до нуля. Активные центры на поверхности катализатора могут включать несколько атомов или атомных групп. Их каталитическая активность может зависеть от атомов и молекул, находящихся во втором, третьем или п-м слоях атомов и молекул. Тогда переход к молекулярной степени дисперсности приведет к разрушению активного центра и к потере активности катализатора. В гомогенно-каталитических реакциях в растворах молекулы катализатора равномерно распределены по всему объему жидкой фазы. В гетерогенном каталитическом процессе молекулы или атомы, принимающие участие в элементарном каталитическом акте, сосредоточены в очень малом объеме, ограниченном поверхностью катализатора и толщиной слоя раствора (газа) Л, равной расстоянию, на котором начинают существенно проявляться силы притяжения между молекулами реагирующих веществ и поверхностью катализатора. Принимая /г 10 м и 5уд 100 м г"1, рассчитаем объем реакционного пространства, в котором протекает элементарный химический акт  [c.636]

    Опасность для здоровья при обращении с катализатором гидрообработки можно связать в основном с тремя наиболее часто содержащимися в них переходными металлами никелем, кобальтом и молибденом. В США установлены приводимые ниже пределы максимально допустимых загрязнений воздуха производственных помещений при среднем пребывании работающе- [c.122]

    Ниже указан типичный температурный режим регенерации никель-молибдено вого гидрообессеривающего катализатора. Вначале при температуре около 260 °С удаляются вода и легкие углеводороды. Сера выжигается при температуре до 350 °С, чтобы избежать образования стабильных сульфатов, которые не могут быть удалены позже, на стадии собственно регенерации. Затем, повысив постепенно температуру до максимальной (в пределах 482-593 °С по согласованию с заказчиком) ведут процесс до тех пор, пока содержание углерода не станет соответствовать требованиям по спецификации. [c.109]

    Активность никелевых катализаторов в отношении реакции гидрирования определяется величиной поверхности металлического никеля, и поэтому выявление закономерностей формирования поверхности металла, позволяющих получить катализаторы с максимально развитой поверхностью, представляет большой интерес. [c.24]

    При окислении 2,2 -дифенилдиальдегида расход озона увеличивается и составляет 0,5 моль на каждую альдегидную группу. Это можно объяснить большей скоростью разложения с выделением кислорода из соответствующей первичной перекиси. В отличие от неустойчивых первичных перекисей, имеющих структуру иадкислот, оксиперэфиры содержат перекисную группу в цикле. Поэтому последние более устойчивы, и для более полного и селективного превращения их в дифеновую кислоту нео бходимо нагревание при температуре 150— 60°С присутствии катализаторов — уксуснокислых солей кобальта или никеля. Максимальная селективность достигается при использовании солей никеля, что позволяет получить дифеновую кислоту с выходом 90—91 % от теории (таблица). [c.117]

    Эту реакцию проводили с приме-непием йодистого никеля при 240— 270° и давлении окиси ла лерода 200 ат выход достигал 75—80% [116]. В отсутствии галоида выход адиииновой кислоты весьма нпзог йодистые соли значительно более активны в этом отношении, чем бромистые или хлористые. Во всех опытах в продуктах реакции присутствовал карбопил никеля. Максимального выхода кислоты достигали при совместном применении карбонила никеля н йодистого пикеля. Высокая активпость сочетания карбонила и йодистого никеля в известной мере подтверждает предположение, что активным началом катал1 затора являются галогениды карбонила никеля [N1 (СО)212]. Для проведения реакции требуется йод в концентрации 1 —2 %. [c.72]


    Для котельных листов повышенной прочности в США используют также никелевые низколегированные стали по техническим условиям А203. Эти стали содержат от 2 (на нижнем пределе для сталей 203А и В) до 3,75% (на верхнем пределе для сталей 2030 и 203Е) никеля. Максимально допустимое содержание зависит от толщины листа и колеблется в пределах от 0,17 до 0,25%. Сталь выпускают в двух вариантах для фланцев и для корпусов. Для корпусной стали установлены меныние допустимые содержания 8 и Р. [c.47]

    Были изучены интервалы концентраций никеля, максимальный избыток аммиака и влияние температуры на воспроизводимость результатов титрования [856]. Особенно много внимания было уделено определению никеля в присутствии других элементов, образующих с K N осадки, комплексные соединения или малорастворимые гидроокиси. Методом Либиха никель легко отделяется от кобальта [660, 900]. При добавлении цианида калия к смеси солей кобальта и никеля оба элемента переходят в комплексы [Ni( N)4] и [Со ( N)e] ". Если на такой раствор подействовать бромной водой, то кобальт перейдет в соединение Со ( N)e] ", а никель выпадает в виде М1(0Н)з осадок отделяют от раствора, растворяют в щавелевой кислоте, подщелачивают раствор аммиаком и вновь титруют раствором K N. Эванс [635] предложил одновременно определять никель и кoбaльт этим методом из одной пробы. В начале по Мору титруют сумму металлов, затем добавляют избыток K N, кобальт переходит в очень прочный комплекс [Со (СМ)б] ". Затем избыток N -ионов удаляют кипячением с перекисью водорода и оттитровывают никель. Ионы Fe " , АР , Сг + маскируют винной кислотой. Этот метод широко применяется при анализе сталей (главным образом высоколегированных). [c.91]

    Пионтелли) следует, что у металлов с низким перенапряжением переход от одной грани к другой вызывает значительное относительное изменение его величины. Так, переход от грани (П1) к грани (ПО) при выделении свинца уменьшает перенапряжение на нем с 4,4 до 3,0 мв, т. е. почти в полтора раза. Такое же изменение наблюдается и для олова, если сравнивать перенапряжение на гранях с индексами (001) и (100). В случае меди относительное влияние природы грани проявляется слабее, и максимальная разница в величине перенапряжения не превышает 40%, хотя абсолютное изменение перенапряжения при переходе от одной грани к другой здесь значительно больше, чем в предыдущем случае. При выделении никеля максимальная разность в перенапряжении была отмечена для граней (111) и (100), где она достигает 30 мв. Природа грани здесь не играет такой существенной роли, поскольку относительное изменение перенапряжения составляет всего лишь 3—4%. Из табл. 48 следует также, что величина металлического перенапряжения в большей степени определяется природой металла, чем кристаллографической ориентацией электродной поверхности. Независимо от того, на какой из граней происходит выделение металла, перенапряжение всегда выше для никеля, чем для меди, а для меди оно всегда больше, чем для олова или свинца. [c.422]

    Данные, приведенные в табл. 49, относятся к обычным условиям электролиза, когда металл выделяется на поликристаллической основе и дает отложения, также имеющие поликристаллическую структуру. Поверхность таких осадков образована гранями с различными кристаллографическими индексами. В зависимости от режима электроосаждения на поверхности осадка могут преобладать те или иные грани. Поэтому важно выяснить, зависит ли металлическое перенапряжение от того, на какой грани выделяется металл. Опыты с монокристаллами ряда металлов, ориентированными по отношению к раствору различными гранями, подтвердили существование подобной зависимости. Так, например, из табл. 50 (по Пионтелли) следует, что у металлов с низким перенапряжением переход от одной грани к другой вызывает значительное относительное изменение его величины. Так, переход от грани (П1) к грани (110) при выделении свинца уменьшает перенапряжение на нем с 4,4 до 3,0 мв, т. е. почти в полтора раза. Такое же изменение наблюдается и для олова, если сравнивать перенапряжение на гранях с индексами (001) и (100). В случае, меди относительное влияние природы грани проявляется слабее, и максимальная разница в величине перенапряжения не превышает 40%, хотя абсолютное изменение перенапряжения при переходе от одной грани к другой здесь значительно больше, чем в предыдущем случае. При выделении никеля максимальная разность в перенапряжении была отмечена для граней (111) и (100), где она достигает 80 мв. Природа грани здесь не играет такой существенной роли, поскольку относительное изменение перенапряжения составляет всего лишь 3—4%. Из табл. 50 следует также, что величина металлического [c.421]

    Авторы исследовали также влиянне различных факторов на ход реакции. Определены оптимальные условия получения циклооктатетраена температура 85°С, давление от 12 до 28 ат, растворитель — диоксан, катализатор — ацетилацетонат никеля и цианистый никель. Максимальный выход цикло- [c.125]

    Температуры плавления рассматриваемых соединений изменяются сходным образом (рис. 88). Максимумы температур плавления обнаруживаются у карбидов и нитридов титана, циркония, гафния. При переходе к соединениям высоковалентных металлов VI—VII групп (хрома, молибдена, марганца) наблюдается интенсивное падение температур плавления, затем новый подъем температур плавления при переходе к соединениям железа и дальнейшее понижение температур плавления соединений никеля. Максимальные температуры плавления среди моноборидов имеют бориды металлов V группы ванадия и ниобия. Среди моноокислов и моносульфидов наиболее тугоплавкими являются соединения щелочноземельных металлов. [c.186]

    Металлический никель, нанесенный на кизельгур, тоже обладает но-лимеризующей активностью, правда, не в такой степени, как окись никеля, максимальная активность которой проявляется нри содержании ее на кизельгуре, равном 35"о. [c.23]

    Дополнительные сведения об эффективной величине кислотности и о природе кислотных центров (льюисовского типа) можно получить на основании тщательного анализа данных, приведенных на рис. 3. Как видно из рисунка, максимумы скорости превращения не совпадают с максимумом кислотности. В том случае, если бы реакция катализировалась кислотами как бренстедовского, так и льюисовского типа, максимальная скорость реакции должна была бы наблюдаться при максимальной кислотности, получаемой при титровании амином (при условии, что рассматривается эффективная сила кислотных центров). Действительно, как нами было показано-ранее, в случае реакции деполимеризации паральдегида, которая, как известно, катализируется не только бренстедовскими ( [2804, ССЦСООН и др.) [12], но также и льюисовскими (Т1С14, А1С1з, ЗпС14 и др.) [13] кислотами, максимум скорости реакции совпадает с максимумом кислотности (см. рис. 4) [14, 15]. Скорость реакции полимеризации пропилена на никель-сульфатных катализаторах также хорошо согласуется с суммарной величиной бренстедовской и льюисовской кислотности при силе кислотных центров +1,5 [16]. Однако при изомеризации а-пинена в камфен на тех же самых катализаторах максимум скорости реакции не совпадал с максимумом кислотности [17]. В случае использования сульфата никеля максимальная кислотность при любой силе кислотных центров наблюдается при температуре прокаливания 350° С, а максимальная скорость реакции — на образце, предварительно прокаленном при 250 С (см. рис. 4). Подобное явление наблюдалось также при изомеризации бутена-1 в бутен-2 на сульфате никеля, нанесенном на окись кремния [18]. В реакции превращения хлористого метилена максимальную каталитическую активность показали образцы сульфата никеля, прокаленные при 400 С (см. рис. 3). Эта температура на 50° С превышает температуру, при которой наблюдается максимум кислотности. Наблюдаемое расхождение можно объяснить, принимая во внимание природу кислых центров сульфата никеля. На основании результатов, полученных при изучении новерхности сульфата никеля методами ИК-спектроскопии, рентгеновским, ЭПР и др. [19], пришли к выводу, что кислотные центры сульфата никеля характеризуются наличием ионов никеля с одной незаполненной орбиталью, которые проявляются в неполностью дегидратированной, метастабильной, промежуточной структуре б) (см. стр. 383). Образующаяся конфигурация является промежуточной формой между моногидратом (а) и ангидридом (е). Эта свободная орбиталь и возникающее сродство к электронной паре и объясняет льюисовскую природу кислотности сульфата никеля и его каталитическую активность. [c.382]

    Нанесение сульфидов металлов на носители способствует улучщению их каталитических свойств. В работе [45] установлено, что в присутствии никельсодержащих цеолитов СаА, СаХ, СаУ начальный выход тиолана при гидрировании тиофена (Г= 250-300 °С, / =0.1 МПа, т = 1.5-3 с) составляет 90-98 %, но он быстро снижается через 0.5-1 ч работы, при этом с 1 г катализатора получается не более 0.35 г тиолана. По данным [46, 47], среди катализаторов, содержащих 0.2-5.1 мае. % никеля в цеолитах типа X, V, морденит, высококремнеземистый цеолит в Ка- или Н-форме (степень обмена 70-90 %), активность в образовании тиолана (Г= 250 °С, / =0.1 МПа, т = 2-7 с) проявляет только никель, введенный в цеолиты фожазитного типа. При этом скорость образования тиолана на катализаторе К1/КаХ в 7-10 раз ниже, чем на М/НаУ, что обусловлено частичным (до 40 %) разрушением кристаллической структуры КаХ в ходе реакции. Увеличение кислотности поверхности катализатора способствует повыщению активности никель-цеолитных катализаторов. Так, скорость образования тиолана на обладающем высокой кислотностью катализаторе К1/НКаУ в 2 раза превыщает наблюдаемую на некислотном катализаторе К1/КаУ. Применение методов рентгенофазового анализа, электронной микроскопии, ИК- и рентгенофотоэлектронной спектроскопии показывает, что в катализаторе К1/НКаУ, свежем и после проведения реакции, никель равномерно распределен в объеме цеолитного носителя, находится в виде изолированных и ассоциированных катионов а металлический никель отсутствует. В катализаторе после проведения реакции гидрирования тиофена содержится сера, по-видимому, под влиянием серосодержащей реакционной среды происходит превращение металлического никеля в высокодисперсный сульфид никеля. Максимально достигнутый выход тиолана на К18/НКаУ составляет 80 мол. % при селективности 86 %, скорость его образования равна [c.125]

    В элементах второй группы после снижения напряжения ниже допустимого возможна регенерация активных масс путем процесса заряда. При заряде реакция в электрохимической систем протекает в направлении, обратном тому, которое наблюдается при разряде, т. е. в сторону увеличошя свободной энергии. Подобные циклы разряда и зар [да могут повторяться многократно максимальное число циклов зависит от особенностей ХИТ и условий их эксплуатации. Такие источники тока называют вторичными элементами илп аккумуляторами. К их числу относятся кислотные (свинцовые) и щелочные (железо-никеле-вые, кадмий-никелевые, цинк-серебряные и др.) аккумуляторы. [c.208]

    При рациональном решении проблем комплексной схемы переработки гудронов на каждой ее стадии вплоть до утилизации ванадия и никеля, накопленных на катализаторах и адсорбентах или вьтеденных с асфальтенами, может быть решена задача по созданию схемы безос-таточной переработки нефти с максимальным использованием ее. [c.14]

    В отличие от ванадия и никеля железо проникает в гранулы не более чем на 100—150 мкм. Профиль содержания серы коррепируется с профилем содержания суммы металлов, что дополнительно подтверждает связь серы с металлами. Максимальное содержание углерода наблюдается в зоне, прилегающей к наружной поверхности, т. е. до глубины около 150 мкм, а в остальной части профиль его содержания практически равномерный. [c.130]

    Гидрирование окиси углерода с образованием спиртов и углеводородов выше Gj представляет собой относительно медленную каталитическую реакцию. Андерсон [27с] рассчитал, что молекула окиси углерода живет на поверхности кобальтового катализатора около 5 мин., прежде чем она прореагирует. Все активные катализаторы синтеза содерн ат железо, иикель, кобальт или рутений в качестве основного гидрирующего компонента. Эти четыре металла в условиях синтеза медленно, но с измеримой скоростью образуют карбонилы металлов, что, по-видимому, имеет определенное значение. Оптимальная температура синтеза для никеля и кобальта находится в пределах 170—205°, для железа 200—325° и для рутения 160—225°. Допустимое максимальное давление для синтеза на никелевых катализаторах составляет примерно 1 ат, на кобальтовых — около 20 ат. При более высоком давлении активность этих катализаторов резко падает (по мере повышения давления). Железные катализаторы, приготовляемые плавлением магнетита, проявляют активность под давлением 20—100 ат i, в то время как осажденные железные катализаторы выше 20 ат ослабевают I27d]. Рутениевые катализаторы относительно неактивны при давлении ниже 100 ат, но их активность быстро растет по мере его повышения до 300 ат [27е]. При оптимальных давлениях (О—1 ат для Ni 1—20 ат для Go, 1—20 ат для осажденных Fe-катализаторов, 20—100 ат для плавленых Fe-катализаторов и 100—300 ат для Ьи) коэффициент давления (показатель п в уравнении скорость = коистат та х давление") составляет около 0—0,5 для Ni и Go и близок к единице для Fe и Ru. [c.521]

    Максимальная aктивнo tь катализатора прн гидрировании бензола наблюдается при содержании никеля, равном 22%, а в реакции восстановления ацетона — равном 11%. Это указывает на избирательность в отношении состава катализатора и на то, что оба рассмотренных процесса идут, по-видимому, на различных активных центрах, [c.300]

    В лабораториях водород получают большей частью электролизом водных растворов NaOH или КОН. Концентрация этих растворов выбирается такой, которая отвечает их максимальной электропроводности (25% для NaOH и 34% для КОН). Электроды обычно изготовляют из листового никеля. Этот металл не подвергается коррозии в растворах щелочей, даже будучи анодом. В случае надобности получающийся водород очищают от паров воды и от следов кислорода. Из других лабораторных методов наиболее распространен метод выделения водорода из растворов серной или соляной кислот действием на них цинка. Реакцию обычно проводят в аппарате Киппа (рис.105). [c.343]

    Сырьем для производства смазочных масел служат нефтяные фракции, выкипающие выше 350 °С. В этих фракциях концентрируются высокомолекулярные соединения нефти, представляющие собой сложные многокомпонентные смеси углевюдородов различных грушп и их гетеропроизводных, в молекулах которых содержатся атомы кислорода, серы, азота и некоторых металлов (никеля, ванадия и др.). Компоненты масляных фракций обладают различными свойствами, и содержание их в готовых маслах может быть полезным и необходимым или вредным и нежелательным. Поэтому наиболее распространенным путем переработки масляных фракций для получения масел является удаление из них нежелательных компонентов при максимально возможном сохранении желательных , способных обеспечить готовым продуктам необходимые физико-химические и эксплуатационные свойства. [c.7]

    Реакции гидрогазификации в реакторе идут при температурах, несколько меньших, чем минимальные температуры в реакторе типа ГРГ или ему подобных. Катализатор, применяемый в гидрогазификаторе, аналогичен тому, который используется при низкотемпературной конверсии, т. е. богатый никелем на алюминиевой основе. Однако осуществляемая при этом технология процесса отличается от технологии низкотемпературной паровой конверсии тем, что катализатор должен периодически подвергаться регенерации. Этим достигается двойной эффект с одной стороны (что весьма важно), уменьшается опасность загрязнения серой, а с другой, обеспечиваются условия, способствующие удалению отложившегося полимерного углерода. Регенерация катализатора осуществляется, как правило, водородом, т. е. вместо продувки его смесью пара (выходящего низкотемпературного газа и паров дополнительного количества углеводородов) катализатор восстанавливается водородом максимальной степени чистоты. Реакции, протекающие в установке каталитической гидрогазификации, исключительно сложны. Высокая степень метанизации не только понижает содержание водорода и окислов углерода, но и обеспечивает условия реагирования ос- [c.126]

    Применительно к условиям установки с шариковым катализатором типа 43-102 расчеты были выполнены для производительности 1200 т/сут., расхода катализатора 4,0 т/сут., количество катализатора в системе 200 т. Максимальное количество никеля, которое мохкет отложиться на шариковом катализаторе при переработке арланского вакуумного газойля, составит 0,01%, ванадия 0,02% и железа 0,05% (см. рис. 64). [c.150]

    Каталитическая активность, селективность и стабильность тех ке сплавных катализаторов может заметно изменяться при изме-[ении условий проведения процесса давления, температуры, pH реды и скорости подачи сырья. Так, при исследовании [24, 31] успендированных и стационарных сплавных катализаторов на ос-юве никеля, промотированных различными добавками, установ-16НЫ следующие закономерности. С увеличением температуры от 50 до 200—220°С выход глицерина возрастает от 3 до 30—35%. Дальнейшее увеличение температуры до 240 °С понижает выход лицерина и гликолей на 30—40% от максимального значения. Очевидно, при высоких температурах (240—250 °С) происходит [c.41]


Смотреть страницы где упоминается термин Никель i максимальная: [c.86]    [c.17]    [c.17]    [c.150]    [c.171]    [c.115]    [c.62]    [c.86]    [c.262]    [c.57]    [c.337]    [c.401]    [c.178]    [c.88]    [c.67]    [c.181]    [c.150]   
Физическая химия растворов электролитов (1950) -- [ c.546 ]




ПОИСК





Смотрите так же термины и статьи:

Никель сернокислой, константа диссоциации максимальная



© 2025 chem21.info Реклама на сайте