Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Методы разделения и анализа аминокислот

    Второй раздел практикума ставит своей целью познакомить студентов с особенностями выделения, фракционирования, идентификации и количественного определения различных природных азотсодержащих < оединений. белков, пептидов, аминокислот, нуклеиновых кислот, нуклеотидов и пр Предлагаемые экспериментальные работы включают аиболее широко используемые в лабораторной практике современные методы разделения и анализа этих соединений различные виды электрофореза, хроматографии, спектрофотометрии, колориметрии и др. Работа проводится как на готовых коммерческих препаратах высоко- и низкомолекулярных азотсодержащих соединений, так и на препаратах, выделяемых студентами из различных тканей лабораторных животных. [c.79]


    С момента создания метод количественного анализа аминокислот использовали для анализа других природных соединений, дающих положительную реакцию с нингидрином. По сравнению с анализом белковых гидролизатов в этом случае предъявляются гораздо более высокие требования к эффективности разделения, поскольку приходится анализировать смеси очень сложного состава. Наряду с аминокислотами такие смеси включают вещества самой разной природы их единственным общим свойством является способность давать положительную реакцию с нингидрином. С целью повышения эффективности анализ в данном случае проводят на более длинной колонке. Естественно, что такой анализ требует большего времени, чем анализ белковых гидролизатов, и особой системы буферных растворов. Источники свободных аминокислот существенно различаются в количественном и качественном отношении, и, следовательно, каждую конкретную смесь приходится анализировать в особых, нестандартных условиях. [c.307]

    Хроматография — метод разделения и анализа смеси веществ, основанный на различной сорбции компонентов анализируемой смеси определенным сорбентом. Впервые X. предложена в 1903 г. русским ученым М. Цветом. Разделение ведут в колонках, наполненных силикагелем, оксидом алюминия, ионообменными смолами (ионитами) и др., или же на специальной бумаге. Вследствие различной сорби-руемости компонентов смеси (подвижная фаза) происходит их зональное распределение по слою сорбента (неподвижная фаза) — возникает хроматограмма, позволяющая выделить и проанализировать отдельные вещества (процесс подобен многоступенчатой ректификации). В зависимости от агрегатного состояния подвижной фазы различают газовую и жидкостную X. по механизмам разделения — ионообменную, осадочную, распределительную и молекулярную (адсорбционную) X. в зависимости от техники проведения разделения в X. различают колоночную (колонки сорбентов), бумажную (специальная фильтровальная бумага), капиллярную (используют узкие капилляры), тонкослойную X. (применяют тонкие слои сорбентов). Методами X. анализируют смеси неорганических и органических соединений, концентрируют следы элементов. В химической технологии X. применяют для очистки, разделения веществ. X. позволяет разделять и анализировать смеси веществ, очень близких по свойствам (напр,, лантаноиды, актиноиды, изотопы, аминокислоты, углеводороды и др.). [c.151]


    Газовая хроматография как метод анализа аминокислот имеет следующий недостаток перед разделением необходимо дважды проводить дериватизацию. Как уже говорилось в предыдущих главах, некоторые методы ЖХ разработаны применительно к немодифицированным аминокислотам, тогда как другие предусматривают дериватизацию с целью упрощения обнаружения и увеличения чувствительности. [c.177]

    Первым методом превращения аминокислот для использования в ГХ-анализе была реакция с нингидрином. Как известно, в этой реакции наряду с окрашенными веществами и СОг образуются и упоминавшиеся выше альдегиды, имеющие на один углеродный атом меньше, чем в исходной молекуле. Опираясь на метод количественного определения аминокислот, разработанный на основе этой реакции [92], с помощью ГХ удалось разделить и идентифицировать эти летучие альдегиды [37]. Очевидно, этот метод пригоден только для тех аминокислот, которые в реакции с нингидрином дают летучие альдегиды, и, следовательно, из этой группы, естественно, исключаются Про и родственные ему аминокислоты [61]. Побочные реакции при ГХ, такие, как полимеризация, затрудняют или вообще делают невозможным идентификацию определенных аминокислот [130]. Чтобы преодолеть указанные трудности, альдегиды окисляли [3] до карбоновых кислот и хроматографировали в виде метиловых эфиров. Несмотря на отмеченные недостатки, Златкис и др. [130] указывают, что этот процесс модификации аминокислот интересен в техническом отношении. По принципу реакций, используемых в ГХ, превращение аминокислот, а затем разделение и количественное определение альдегидов, переводимых в результате каталитического гидрокрекинга в метан, может происходить [c.326]

    Современные методы количественного анализа аминокислот основаны на элютивной ионообменной хроматографии с использованием колонок, заполненных сульфополистирольным катионитом в натриевой форме. Этот метод аминокислотного анализа впервые предложен сотрудниками Рокфеллеровского института в США Штейном и Муром [1], которые до этого занимались разделением аминокислот на крахмальных колонках. [c.124]

    Разделение смеси аминокислот. Для разделения смеси аминокислот, находящихся в гидролизате белка, и качественного обнаружения отдельных аминокислот широко используется метод распределительной хроматографии на бумаге. Этот метод представляет собой одну из модификаций метода хроматографического анализа, предложенного М. С. Цветом в 1903 г. [c.15]

    ХРОМАТОГРАФИЯ — метод разделения и анализа смесей газов, паров, жидкостей или растворенных веществ сорбционными методами в динамических условиях. Хроматографические сорбционные, методы различаются по следующим. признакам по средам, в которых производится разделение (газовая, газожидкостная, жидкостная X.) по механизмам разделения (молекулярная, ионообменная, осадочная и распределительная X.) по технике проведения разделения (колоночная, капиллярная, бумажная и тонкослойная X.), Методами X. анализируют смеси неорганических соединеиий, концентрируют следы элементов. В химической т хнологии X. применяют для очистки и разделения различных веществ, близких по свойствам лантаноидов, актиноидов, аминокислот и др. [c.280]

    Анализ. Методы анализа белковых макромолекул селективны и осуществляются в зависимости от того, какая структура является объектом исследования, и начинаются с определения аминокислотного состава. Для этого необходимо провести полный гидролиз пептидных связей и получить смесь, состоящую из отдельных аминокислот. Гидролиз проводят при помощи 6 М соляной кислоты при кипячении в течение 24 ч. Так как для гидролиза пептидных связей изолейцина и валина этого может быть недостаточно, проводят контрольный 48- и 72-часовой гидролиз. Некоторые аминокислоты, например триптофан, при кислотном гидролизе разрушаются, поэтому для их идентификации используют гидролиз при помощи метансульфоновой кислоты в присутствии триптамина. Для определения цистеина белок окисляют надмуравьиной кислотой, при этом цистеин превращается в цистеиновую кислоту, которую затем анализируют. Вьщеление и идентификацию аминокислот проводят при помощи аминокислотных анализаторов, принцип действия которых основан на хроматографическом разделении белкового гидролизата на сульфополистирольных катионитах, В основе количественного определения той или иной аминокислоты лежит цветная реакция с нингидрином, однако более перспективным следует считать метод, при котором аминокислоты модифицируют в производные, поглощающие свет в видимом диапазоне. Разделение смеси аминокислот проводят при помощи высокоэффективной жидкостной хроматографии, а само определение — спектрофотометрически. Следующим этапом является определение концевых аминных и карбоксильных [c.40]

    Реакция сводится к получению производных уже разделенных зон образца. Обычно требуется тщательный подбор аппаратуры и реагентов. Этот метод был применен Стайном и Муром для анализа аминокислот, не имеющих окраски. Аминокислоты после выхода из колонки взаимодействуют с нингидрином, превращаясь в окрашенные соединения, способные поглощать свет на длине волны 570 нм и обнаруживаемые фотометром. Принципиальная схема установки для получения производных после колонки приведена на рис.3.1. [c.70]


    Вопросу анализа аминокислот методом хроматографии на бумаге посвящено большое число работ советских и иностранных авторов. Однако почти все они связаны с разделением аминокислот белков и других биологических препаратов [61. Наша попытка применить их для анализа мелассы не дала положительных результатов, что можно объяснить мешающим действием остальных компонентов мелассы, ио отношению к которым содержание отдельных аминокислот составляет лишь 0,1—3 вес. %. Описанный в литературе метод 17, 81, состоящий в сорбции аминокислот на катионите с последующей их элюцией и идентификацией на бумаге неудобен, так как требует сложной специальной аппаратуры и чрезмерно длителен. Первой частью нашего исследования было хроматографическое разделение искусственной смеси из десяти аминокислот, приблизительно имитирующей аминокислотный состав мелассы [1, 81. Смесь включала лизин, аргинин, серии, глицин, аспарагиновую и глютаминовую кислоты, а-аланин, валин, метионин и лейцин. Растворы аминокислот готовили в 15%-ном этиловом спирте с концентрацией 0,5—1 у аминокислоты в 1 мкл. [c.212]

    Для разделения всевозможных смесей, для анализа и вьщеления из смесей отдельных веществ в лабораториях очень часто пользуются хроматографией это один из лучших методов разделения и анализа смесей. Хроматографию применяют и в промышленности, когда надо очистить и разделить похожие вещества - органические и неорганические - от лантаноидов до аминокислот. Суть ее в том, что отдельные компоненты смеси (жидкости или газа) по-разному удерживаются веществом-адсорбентом, способным избирательно поглощать те или иные химические соединения. [c.155]

    При использовании подобного метода разделения для анализа последовательности аминокислот избирательность разделяюш,их [c.342]

    Количественный анализ аминокислот методом ГХ представляет несомненный интерес. Как правило, количественное определение аминокислотного состава пептида является одним из решающих моментов анализа последовательности. Поскольку при деградации крупного белка образуется большое число фрагментов, желательно затрачивать на анализ каждого из них минимальное количество времени и вещества. Привлечение в данном случае ГХ достаточно хорошо удовлетворяет этим условиям. Многочисленные исследования по ГХ аминокислот в конечном итоге направлены на решение этой задачи. Однако к действительно эффективному количественному методу предъявляются несоизмеримо более высокие требования, чем к качественному. Если учесть к тому же трудности получения и разделения производных аминокислот, станет ясно, почему до сих пор не разработан стандартный метод их количественного определения с помощью газового хроматографа. Основные трудности связаны, как подчеркивалось в разделе о получении производных, с полифункциональными аминокислотами. Метод, игнорирующий их идентификацию, может найти лишь ограниченное применение. Количественный анализ только простых аминокислот не может удовлетворять экспериментатора [40]. Вопрос о том, все ли аминокислоты, встречающиеся в белках, можно определять ГХ с достаточной точностью, все еще остается открытым. Здссь можно только вкратце рассмотреть имеющиеся условия и возможности. Проблемы, связанные с аппаратурой, необходимой для количественной ГХ, уже обсуждались ранее (см. стр. 302). [c.335]

    Второй положительной особенностью применения методов ХОП является улучшение разделения анализируемых соединений. Улучшение разделения объясняется тем, что индивидуальные различия в образовавшихся производных проявляются более заметно, чем в исходных соединениях. Например, рацематы аминокислот могут быть разделены на энантиомеры газохроматографическим методом, если их превратить с помощью оптически активных реагентов в диастереомеры, которые можно разделить на оптически неактивных НЖФ [22]. Отметим, что этот метод для анализа энантиомеров аминокислот используют существенно рел е, чем способ их анализа, основанный на использовании оптически активных НЖФ [9]. Это связано с необходимостью использовать в качестве реагентов очень чистые соединения. Оптически активные примеси приводят к образованию большого числа побочных продуктов. [c.19]

    ЭТОМ оказалось, что оптимальная скорость элюирования основных аминокислот достигается лишь при использовании более концентрированных буферных растворов. Однако при значительном изменении концентрации и pH буфера наблюдалось увеличение объема набухшего ионита и возрастание гидродинамического сопротивления колонки. Одновременно повышался уровень базовой линии. Кроме того, в этих условиях после каждого опыта приходилось извлекать иониты из колонки, а затем, после их регенерации, вновь набивать колонку. В итоге оказалось удобнее проводить анализ образца на двух колонках. На первой осуществляли анализ кислых и нейтральных аминокислот, а сумму основных аминокислот вытесняли в конце анализа гидроокисью натрия. На второй, более короткой колонке вначале в виде суммарного пика элюировали смесь кислых и нейтральных аминокислот, а затем осуществляли разделение основных аминокислот. После получения более качественных ионитов и усовершенствования метода детектирования был разработан современный одноколоночный аминокислотный анализ. [c.306]

    Хроматография производных аминокислот получила интенсивное развитие в связи с разработкой методов определения первичной структуры белков. Вероятно, трудно найти в органической химии и биохимии более удачный пример столь тесной взаимосвязи развития представлений о структуре и функциях большого класса веществ, каким являются белки, с хроматографическими методами анализа. Основное внимание было направлено на разработку методов определения N-концевых остатков аминокислот в белках, причем в идентификации соответствующих производных большое значение имели тонкослойная (ТСХ) и бумажная хроматография (БХ) (см. обзоры [1, 2]). Газожидкостная и жидкостная колоночная хроматографии находят в этой области ограниченное применение, однако интерес к последнему методу постепенно растет. Интерес к жидкостной хроматографий вызван вполне определенными причинами. Во-первых, постоянно появляются новые методы избирательной модификации остатков аминокислот в белках, а идентификация производных аминокислот требует развития хроматографических методов. Во-вторых, исследованию подвергают все более труднодоступные белки, что в свою очередь вызывает необходимость создания надежных методов количественного анализа. Интерес к колоночной хроматографии возрастает также в связи с выделением и получением необычных аминокислот, а также в связи с необходимостью предотвращения ошибок при определении аминокислотной последовательности. Понятия современный и классический метод используют здесь условно, поскольку новые методики обычно создают на базе стандартной аппаратуры примером может служить автоматический анализ ДНФ- и ДНС-аминокис-лот [3, 4]. Насколько известно, до сих пор не пытались использовать скоростную хроматографию высокого разрешения для разделения производных аминокислот, хотя некоторые соединения, например ДНС-аминокислоты, являются для этого метода довольно удобным объектом. Производные аминокислот использовали в структурном анализе белков крайне неравномерно. По-видимому, всеобщее увлечение ДНФ-аминокислотами проходит окончательно, уступая место повышенному интересу [c.360]

    По-видимому, всем методам, за исключением автоматического анализа ДНФ-аминокислот, присущи недостатки, связанные с нестандартностью силикагеля. Поэтому для разделения ДНФ-аминокислот предложено использовать колонки с кизельгуром, предварительно промытым кислотой [8]. При этом вначале удаляют кислоторастворимые ДНФ-аминокислоты, экстрагируя образец подкисленным раствором метилэтилкетона (10% [c.364]

    Основы метода. Подвижной фазой служат органические растворители, частично смешивающиеся с водой фенол, з-колли-дин. изомасляная кислота, смесь 1 1 н-бутилового и бензилового спиртов, крезолы. Внешне метод похож на давно известный метод капиллярного анализа, однако разделение здесь основано не на адсорбции, а на различиях в коэфициентах распределения разделяемых веществ между дву.мя несмешивающимися жидкими фазами. На бумажной хроматограмме разделяются свободные, незамещенные аминокислоты и пептиды. Скорость движения аминокислот (Яр-) вполне совпадает со скоростью, рассчитанной по коэфициентам распределения. [c.390]

    Для устранения указанных выше недостатков оказалось выгодным производить смолы с определенными характеристиками. Так, сферическая смола типа АА-15 позволяет анализировать все кислые и нейтральные аминокислоты белковых гидролизатов за 4 ч при высоте столбика смолы 56 см основные аминокислоты анализируются на колонке высотой 5 см, заполненной смолой типа РА-35 [130]. Позднее была получена смола типа РА-28, применяемая для анализа аминокислот, обычно обнаруживаемых в таких пробах, как плазма крови или моча. Кислые и нейтральные аминокислоты определяются по методу анализа физиологических жидкостей на этой смоле за 5 с лишним часов основные аминокислоты анализируются в этом случае почти за 6 ч на упомянутой выше смоле типа РА-35 [88]. Названные смолы дают очень сильное увеличение высоты пиков, свидетельствующее о том, что аминокислоты элюируются из сферической смолы в виде более узких зон, улучшая разделение пиков. Несколько позднее появилась смола типа иК-ЗО, с помощью которой можно анализировать кислые и нейтральные аминокислоты как белковых гидролизатов, так и физиологических жидкостей. Преимуществом этой смолы является также и то, что на ней [c.35]

    Сравнительно недавно синтезирована смола типа UR-40, которая позволяет определять кислые и нейтральные аминокислоты по методике анализа физиологических жидкостей за 170 мин на колонке высотой 26 см. Основные аминокислоты физиологических жидкостей также могут быть определены на этой же колонке за 210 мин. Одноколоночный метод анализа белковых гидролизатов на этой смоле описан в разд. 1.6. Использование более коротких колонок и улучшение разделения пиков аминокислот стало возможным благодаря устранению специфических перемешивающих узлов (таких, как реактор, подводящие трубки, краны и кюветы), имеющихся в большинстве приборов. [c.36]

    Четырехчасовой метод анализа, смолы иН-ЗО, РА-35. Увеличение pH первого буфера (pH 3,25 0,20 н. раствор) для кислых и нейтральных аминокислот всего на несколько сотых долей улучшает разделение пары аминокислот треонин — серин. Увеличение pH второго буфера с 4,25 до 4,41 (0,20 н. раствор) ухудшает разделение пары изолейцин — лейцин. При увеличении pH буфера (pH 5,25 0,35 н. раствор) гистидин элюируется быстрее по сравнению с другими основными аминокислотами. [c.41]

    Наиболее быстрым методом разделения ДНФ-аминокислот является хроматография на смеси кремневой кислоты с цели-гом. По данным авторов этой работы, полный анализ может занять не более 2 ч [9]. Большинство коммерческих препаратов кремневой кислоты пригодны для работы без специальной обработки. Для получения удовлетворительной скорости элюирования сорбент смешивают с целитом в весовом соотношении 2 1, а затем отбирают фракцию менее 60 меш. Рекомендуется колонка размером 1—1,4x17 см. [c.365]

    Несколькими исследователями разработаны ускоренные методы хроматографического анализа аминокислот не только для обнаружения многих врожденных дефектов метаболизма, о которых упоминалось выше, но и для быстрого анализа многих аминокислот физиологических жидкостей. Так, Льюис [79] использовал короткую ионообменную колонку для определения метионина и цистина. Для разделения при комнатной температуре была использована колонка размером 40X1.5 см, заполненная смолой зеокарб-225 (>200 меш) пробу предварительно окисляли. При скорости течения буферного раствора 200 мл/ч цистеиновая кислота элюируется при объеме элюата 36—40 мл. [c.13]

    В настоящее время интенсивно развиваются методы автоматического анализа аминокислот. Основы этих методик заложены Спакманом и сотр. [186], которые использовали в своей работе метод ионообменной хроматографии на сильнокислотных катионитах, разработанный Муром и 111тейном [126]. В настоящее время ведутся поиски способов ускорения анализов и совершенствуются анализаторы (см. гл. 8). Разрабатывается техника анализа белков и продуктов гидролиза пептидов, а также физиологических жидкостей. Анализ соединений первой группы проще, поскольку он предусматривает разделение лишь тех 18—20 аминокислот, которые обычно встречаются в продуктах гидролиза пептидов. Анализ физиологических жидкостей слож- [c.305]

    Хроматографические методы занимают особое место среди физико-химических методов анализа, являясь прежде всего универсальным способом разделения элементов. Они выгодно отличаются от всех других известных методов разделения высокой специфичностью (избирательностью действия), позволяют осуществить разделение весьма близких по свойствам неорганических или органических веществ. Так, например, хроматографическим путем разделяют смеси катионов металлов щелочной группы, щелочноземельных металлов, редкоземельных элементов, элементов-двойников, таких как цирконий и гафний разделяют смеси геометрически изомерных комплексных соединений (например, цис-транс-язомерных комплексов платины или кобальта) отделяют микроколичества трансплутониевых элементов от основной массы урана или плутония, а также от продуктов деления разделяют смеси анионов галидов, кислородных кислот галогенов, фосфорных кислот, аминокислот, смеси органических соединений, являющихся пред- [c.9]

    Определение качественного и количественного состава веществ сильно облегчилось благодаря усовершенствованию методов анализа, а в последнее время и благодаря созданию автоматических приборов, выполняющих такие операщш, как элементный анализ, разделение смесей аминокислот и др. Распространение микрометодов позволяет обходиться навесками в несколько миллиграммов вместо преж1п1х 200—300 мг. Определение молекулярной массы с помощью масс-спектромегприи требует тысячных долей миллиграмма и дает, кроме точной молекулярной массы, еще и ценные сведения о фрагментах, на которые распадается молекула. Иногда одних этих данных достаточно для построения структурной формулы. [c.338]

    Можно вводить метку в а-положение аминокислоты путем декарбоксилирования производных а-ацетиламиномалоновой кислоты см. схему (7) в кислых растворах тритийсодержащего растворителя. Альтернативно, можно вводить метку в а-положение аминокислоты непосредственно в условиях, которые вызывают рацемизацию при а-С атоме, т. е. в сильно щелочных средах или при кипячении с уксусным ангидридом в уксусной кислоте. Однако для проведения многих биологических исследований лучще избегать применения [а- или Р- Н] меченных аминокислот. Обмен трития в этих положениях происходит через реакции трансаминирования схема (32) потеря трития, находящегося в р-положении аминокислот, используется в методе анализа трансаминаз. Обработка а.р-тритированных а-аминокислот с помощью оксидаз аминокислот или почечной ацилазы может приводить к существенной потере активности осторожность следует соблюдать и при использовании ферментов для разделения рацемических аминокислот, меченных радиоактивными изотопами. [c.249]

    Пептиды, подобно аминокислотам, как правило, гидрофильны. Поэтому методика хроматографического анализа аминокислот в тонком слое в принципе применима также к пептидам. Эта аналогия справедлива в определенных пределах. Б случае высших пептидов на растворимость и адсорбцию оказывает влияние число, природа и последовательность аминокислотных остатков и поэтому в данном случае следует работать при других условиях опыта или даже перейти к другим методам разделения. Пептиды с защищенными функциональнцми группами (синтез промежуточных продуктов) менее гидрофильны, чем пептиды без защитных групп. [c.408]

    Метод хроматографии на бумаге впервые был применен для анализа смеси аминокислот (Мартин, Кондсен, Гордон, 1944 г.). В настоящее время известно большое количество методов, которые позволяют анализировать сложные смеси аминокислот. При этом используют различные растворители, различные методы проявления, одномерные и двухмерные хроматограммы и др. В данной работе предлагается один из наиболее простых методов разделения и определения смеси двух или трех аминокислот.  [c.65]

    Имеется ряд детальных обзоров, охватывающих применение хроматографии для анализа аминокислот, извлеченных из белков гидролитическими методами [89, 127, 134]. Читатель может найти в этих обзорах сведения об анализе отдельных белков. Достаточно указать на то, что в настоящее время количественно наиболее точным является метод, разработанный Муром и Стейном [93]. В этом методе применен градиентный проявительный анализ на ионообменных колонках из сульфированного полистирола. На рис. 165 показан типичный пример [62] превосходного разделения, осуществленного этим методом. Если применение сложной аппаратуры нецелесообразно, то хроматография на бумаге вполне применима для анализа белковых гидролизатов [7, 10, 30, 80]. [c.336]

    Для разделения смесей молекулярных соединений большое значение имеет адсорбционная хроматография на колонках с окисью алюминия. Этот метод вообше является родоначальником всех методов хроматографического анализа. Он был предложен русским ученым М. С. Цветом в 1903 г. для разделения различно окрашенных растительных пигментов — отсюда и название метода. Метод нередко является основным для аналитического и лрепаративного разделения сложных смесей. Особенно велико его значение для анализа растительных пигментов, витаминов, антибиотиков, аминокислот, жиров и многих других сложных систем. Метод применяется также для определения чистоты и для очистки металлохромных индикаторов, применяемых в фотометрическо1м анализе. [c.167]

    Еще более современный метод высокоскоростного разделения первичных аминов основан на применении производных флуорескамина. В отличие от анализа аминокислот (см. гл. 32) лишь [c.279]

    Созданию современной аналитической хроматографии аминокислот предшествовало два очень важных события — разработка методов получения химически гомогенных белков (школа Норт-ропа, середина 30-х годов [1]) и организация промышленного производства ионообменных смол с последующим развитием ионообменной хроматографии (50-е годы). В промежуточный период были разработаны адсорбционная и распределительная хроматографии аминокислот (на бумаге и на колонках с сорбентами), оказавшиеся, однако, непригодными для решения практических задач. Так колоночная хроматография не нашла применения, главным образом, из-за несовершенства имеющихся в то время сорбентов, в основном природного происхождения. Тем не менее благодаря тщательному подбору условий анализа В. Стейну и С. Муру, лауреатам Нобелевской премии за 1972 г., удалось добиться вполне удовлетворительного разделения смеси аминокислот [2]. Однако этот метод оказался слишком трудоемким и также не нашел широкого применения, поскольку требовалась тщательная стандартизация крахмала, хроматографические свойства которого зависят от источника выделения и метода получения. [c.305]


Смотреть страницы где упоминается термин Методы разделения и анализа аминокислот: [c.62]    [c.24]    [c.488]    [c.13]    [c.91]    [c.85]    [c.329]    [c.118]    [c.103]    [c.132]   
Смотреть главы в:

Начало биохимии -> Методы разделения и анализа аминокислот




ПОИСК





Смотрите так же термины и статьи:

Методы разделения



© 2025 chem21.info Реклама на сайте