Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Определение температур плавления и кипения, плотности и показателя преломления

    Для идентификации органических веществ и доказательства чистоты того или иного вещества используют методы определения физических констант органических соединений, важнейшими из которых являются температуры плавления и кипения, плотность, показатель преломления и другие. [c.82]

    Каждое органическое вещество характеризуется определенными температурами плавления и кипения, плотностью, показателем преломления и т. д. Эти величины называются физическими константами. С их помощью можно определить (идентифицировать) вещество, а также установить его чистоту. Для этого определяют некоторые физические константы вещества и сравнивают их с литературными данными. [c.39]


    Обычно при лабораторной ректификации наряду с кривой температур кипения в качестве дополнительной характеристики дистиллата определяют плотность, показатель преломления, температуру затвердевания или плавления, а иногда также молекулярный вес и йодное число (рис. 115). Только одновременное определение нескольких показателей (особенно при аналитической разгонке) дает возможность точно оценить чистоту продукта. Разделение дистиллата па фракции лишь по температуре кипения при- водит большей частью к ошибочному заключению [185]. [c.202]

    Определение температур плавления и кипения, плотности и показателя преломления [c.28]

    В качественном анализе органических веществ применяют реактивы, которые дают возможность идентифицировать определенные функциональные группы или получать производные изучаемых веществ с хорошо изученными свойствами. Особый интерес представляют цветные реакции, дающие возможность достаточно быстро идентифицировать вещество, а измерив оптическую плотность раствора продукта реакции, и определить его количество. Для идентификации и особенно проверки чистоты органического вещества обязательно определение физических констант— температуры плавления (или разложения, если вещество неустойчиво при нагревании) или при идентификации жидких веществ — плотности, температур кипения и замерзания, показателя преломления. При исследовании органических веществ особое значение приобрели хроматографические методы. [c.805]

    Для определения степени чистоты вещества применяются физические и химические методы исследования. К первым относятся для жидких веществ — определение плотности, температуры кипения, показателя преломления для твердых веществ — определение температуры плавления и ряд других ко вторым методам относятся химические анализы — качественный и количественный — на содержание примесей. [c.42]

    Определение физических констант (температура плавления, температура кипения, показатель преломления, плотность). [c.566]

    Органические соединения в целом нельзя исчерпывающе характеризовать только установлением их элементарного состава и определением молекулярного веса. Для их идентификации необходимо использовать и другие, прежде всего физические, свойства. Важнейшими из них являются температура плавления, температура кипения, плотность, показатель преломления, а в определенных случаях также вращение плоскости поляризации света и спектры поглощения. [c.85]


    Следующий этап работы исследователя с органическим соединением заключается в определении его физико-химических констант, элементарного состава и в установлении химического строения. Элементарный состав, найденный методами элементарного микроанализа (иногда полностью автоматизированного), дает брутто-формулу исследуемого органического соединения, но не позволяет сделать окончательного вывода о его строении. Физико-химические константы (температуры плавления н кипения, плотность, показатель преломления, молекулярная рефракция, константы ионизации, окислительно-восстановительные потенциалы, диэлектрические и магнитные константы) дают возможность установить чистоту вещества и создать представление об его строении. Наиболее [c.9]

    Следующий этап работы исследователя с органическим соединением заключается в определении его физико-химических констант и элементного состава и в установлении химического строения. Элементный состав, найденный методами элементного микроанализа (иногда полностью автоматизированного), дает брутто-формулу исследуемого органического соединения, но не позволяет сделать окончательного вывода о его строении. Физико-химические константы (температуры плавления и кипения, плотность, показатель преломления, молекулярная рефракция, константы ионизации, окислительновосстановительные потенциалы, диэлектрические и магнитные константы) дают возможность установить чистоту вещества и создать представление о его строении. Наиболее сложная и ответственная задача — установление химического строения органических соединений 1) взаимного расположения атомов и пространственного строения молекул 2) характера и порядка расположения связей  [c.7]

    По окончании опыта оформляют отчет о работе, основанный на использованной методике и собственных наблюдениях, где описывают практическое выполнение работы. Отчет должен содержать название получаемого соединения (по номенклатуре ИЮПАК, а также тривиальное) константы, взятые из литературных источников и определенные экспериментально (температуры плавления и кипения, плотность, показатель преломления), уравнение реакции, количества взятых веществ (в граммах и молях), описание использованной литературы, точное описание практического проведения опыта. Если вещества очищались перегонкой, в отчете следует привести диаграмму кипения или баланс перегонки. Кроме того, в отчете указывают выход полученных веществ и приводят расчет выхода. [c.192]

    В дополнение к определениям температуры пара и показателя преломления, которые обычно применяются для того, чтобы следить за течением разгонки и как средство интерпретации результатов разгонки, применяются также исследования других физических свойств, которые позволяют получить более полную картину исследуемой смеси. Так, иногда определяются плотности, вязкости, вращение плоскости поляризации света и температуры плавления. Обычно эти методы применяются лишь тогда, когда показатель преломления или точки кипения или обе величины вместе не дают точного ответа. Исследование вращения поляризованного света применяется к таким природным продуктам, как терпены и их производные. Температуры плавления и застывания имеют более широкое применение, в частности как критерий чистоты. Применение температур плавления получило значительное распространение в недавних исследованиях углеводородов, плавящихся при низких температурах [157]. Методы таких физических измерений могут быть найдены в книгах, посвященных физико-химическим методам [130], или в оригинальной литературе. Более широко применяются анализы с помощью ультрафиолетовых, инфракрасных спектров, спектров комбинационного рассеяния и масс-спектрального метода как для качественных, так и для количественных определений. [c.264]

    Методы определения температуры плавления, температуры кипения, плотности, показателя преломления и удельного вращения можно найти во всех практикумах по органической химии, и поэтому выше приведены лишь некоторые приемы определения констант, рекомендуемые при работе с малыми количествами вещества. [c.49]

    Установление индивидуальности вещества на первой стадии сводится к установлению его гомогенности, надежным свидетельством чего служит неизменность всех поддающихся в процессе очистки определению физических свойств. К таким свойствам относятся температуры кипения и особенно плавления, плотность, показатель преломления, для оптически активных веществ —< удельное вращение плоскости поляризации света. [c.287]


    Определение физических констант (температур плавления и кипения, показателя преломления, плотности) и их значение описаны в разд. А,3. При определении температуры плавления [c.328]

    При ультрамикрохимических исследованиях, наряду с проведением аналитических операций, иногда возникает необходимость определения физических констант, пользуясь очень малыми количествами вещества. Так, например, в связи с исследованием химических свойств трансурановых элементов были синтезированы новые соединения в количествах, не превышающих нескольких микрограммов . В процессе исследования этих соединений возникла необходимость определения целого ряда их физических констант. Эти работы лишний раз показывают, какую большую роль могут сыграть хорошо известные методы для решения новых проблем. При анализе очень малых количеств биологических веществ часто также возникает необходимость определять их физические свойства. Такие операции, как, например, определение температуры плавления, температуры кипения, показателя преломления и плотности веществ, количество которых не превышает нескольких миллиграммов, уже в течение многих лет проводятся в лабораторной практике. Для того чтобы с помощью эт ях методов можно было работать с количествами вещества порядка нескольких микрограммов, иногда можно просто уменьшить применяемую аппаратуру. Некоторые методы определения физических констант веществ, количество которых не превышает нескольких микрограммов, также хорошо разработаны и используются в практической работе. [c.319]

    Определение температуры плавления просто в выполнении, требует небольшой затраты времени и минимальных количеств вещества, поэтому, несмотря на все неточности, оно является наиболее употребительным методом контроля. Оно, конечно, неприменимо для веществ, жидких при обычной температуре, а также для твердых веществ, которые при нагревании обугливаются или разлагаются не плавясь. К последней группе относится прежде всего большинство сульфокислот, а также их соли с металлами. Из жидких веществ очень многие перегоняются без разложения. В этом случае критерием чистоты должна служить температура кипения. Очень полезным для проверки чистоты является, кроме того, определение плотности, которое легко осуществляется, если только в распоряжении имеется достаточное количество вещества. Сложнее определяются, но более чувствительны к загрязнению показатель преломления и для оптически активных веществ — оптическое вращение. Эти свойства очень ценны для идентификации и проверки чистоты, например в ряду терпенов. [c.48]

    Определение физических констант (температур плавления и кипения, показателя преломления, плотности) и их значение описаны в разд. А,3. При опреде.пе-НИИ температуры плавления с помощью нагревательного микроскопа следует обращать внимание на форму кристаллов, а также на визуально наблюдаемые явления возгонку, выделение кристаллизационной воды н др. [c.293]

    При получении веществ заданного строения по давно известным и многократно проверенным методикам при соблюдении всех условий синтеза идентификация полученных продуктов заключается только Б определении некоторых констант после соответствующей очистки. Такими константами являются для жидких веществ температура кипения при нормальном или другом, но вполне определенном давлении, абсолютная илн относительная плотность при стандартной температуре, показатель преломления нри указанной длине волны падающего света и т. д. Для твердых (при обычных условиях) веществ такой константой служит температура плавления, сравнительно мало зависящая от давления. Однако для подтверждения чистоты вещества можно использовать во многих случаях н температуру кипения прн определенном давлении. Чистоту полученного вещества часто подтверждают тонкослойной хроматографией, если разработаны условия ее проведения. Таким образом, идентификация полученного но проверенной методике вещества сводится по сути дела к оценке его чистоты. [c.63]

    Как известно, для индивидуального химического соединения характерна совокупность постоянных физических свойств, называемых константами этого соединения (плотность, температура кипения, температура плавления и др.). Нефть же является не только смесью многих индивидуальных соединений (или точнее нефть представляет собой взаимный сопряженный раствор различных углеводородов и гетероатомных соединений), но и смесью переменного (для различных нефтей) состава. Поэтому следует помнить, что физические свойства нефти являются специфическими параметрами, характерными для каждой данной нефти. Тем не менее определение некоторых физических свойств нефти имеет большое значение. Такие свойства, как плотность, температурные пределы кипения, температура застывания, показатель преломления и др., дают первую, хотя и грубую характеристику нефти и ее товарных качеств. [c.26]

    Поскольку численное значение индексов Ковача определяется лишь физико-химическими свойствами анализируемого вещества, природой неподвижной фазы и температурным режимом колонки, индекс удерживания вещества той или иной неподвижной фазой, отнесенный к определенной температуре, можно поставить в ряд с такими известными константами, как температура кипения (плавления), плотность или показатель преломления. [c.18]

    Определение физических констант. Каждое органическое вещество обладает рядом постоянных физических величин — констант. К ним относятся температуры плавления и кипения, плотность и показатель преломления (для жидких веществ), удельное оптическое вращение (для хиральных молекул) Идентичность констант исследуемого вещества со справочными данными свидетельствует одновременно о степени чистоты вещества. Но следует иметь в виду, что совпадение 1—2 констант является лишь доводом в пользу предполагаемой структуры, так как здесь возможно и простое совпадение. [c.481]

    Зависимость между показателем преломления и составом смеси используется также при анализе трехкомпонентных систем. Помимо показателя преломления в этом случае необходимо определение других физико-химических констант плотности, температуры кипения, температуры плавления и др. [c.72]

    Способы определения большого числа других физических свойств — плотности, вязкости, показателя преломления, температур плавления и кипения и т. д., а также вопрос об их значении в структурных исследованиях рассмотрены в I томе данной серии [c.453]

    В настоящее время показатель преломления, наряду с плотностью, температурами плавления и кипения, принадлежит к числу свойств, определение которых считается обязательным для характеристики жидких соединений. [c.34]

    Для полного анализа тройной смеси требуется определение двух каких-либо независимых параметров, характеризующих ее состав. Одним из таких параметров может служить показатель преломления. Вторым параметром может быть какое-либо легко определяемое физическое свойство, например плотность, поверхностное натяжение, вязкость, диэлектрическая постоянная, температура плавления или кипения. Вторым параметром может быть также химическая характеристика системы концентрация одного из компонентов, кислотность, щелочность, непредельность и т. п. [c.38]

    Раньше строение соединения доказывали исключительно химическим путем. При этом сперва иа основании предварительных проб выявляли определенные структурные особенности. К таким предварительным пробам (оценкам) относятся внешний вид веЩест а (цвет, форма кристаллов, запах, вкус), его физические константь (температуры плавления и кипения, плотность, показатель преломления), пробы горения н прокаливания, качественный элементный анализ, определение растворимости. Сведения о наличии функциональных групп получают на основании определенных качественных реакций. Так, алкены и цнк-лоалкены обесцвеч1шают растворы брома и перманганата. Альдегиды обладают восстанов1ггелы1ыми свойствами. Фенолы и енолы с расгво- [c.35]

    Для определения качества органических веществ часто применяют такие характеристики, как температуры кипения, плавления, застывания, плотность, показатель преломления, вязкость, кислотное число, йодное число, эфирное число, число омыления и содержание основного вещества. При определении температур плавления и кипения вводят поправки на температуру окружающей среды и атмосферное давление. Для приведения наблюдаемого атмосферного давления к 0° С вычитают из показания барометра (паскали) 266,6 Па при температуре окружающей среды 13—20° С 400 Па при 20—28° С 533,3 Па — при 29—35° С. Затем находят разность между нормальным давлением и давленнем по барометру в момент определения (паскали). Полученную разность умножают на [c.136]

    После окончания опыта офор.мляют отчет о работе, оспованный 1Сиользованной методике и собственных наблюдениях, где опи-ают практическое выполнение работы. Отчет должен содержат , занне получаемого соединения (по женевской номенклатуре, 1кже тривиальное название), константы, взятые из литерат> р-источников и определенные экспериментально (температуры еиия и плавления, плотность, показатель преломления), урав-ие реакции, количества взятых веществ (в граммах и молях), санне использованной аппаратуры, точное описание практиче- 0 проведения опыта. Если вещества очищались перегонкой, чете следует привести диаграмму кипения или баланс перегон-Кроме того, в отчете указывают выход полученных веществ и водят расчет выхода. [c.184]

    Идентифицировать элементы можно как в чистом виде, так и в смесях, и в соединениях. Методы идентификации, прн которых исследуется результат взаимодействия вещества с другими веществами, называются химическими. Методы, при которых идентификация вещества осуществляется без проведения реакций между ним и другими веществами, а также без превращения его в другие вещества, называются физическими. Соединения, свойства которых установлены предшествующими измерениями, обычно удается быстрее идентифицировать физическими методами, включающими определение плотности, показателя преломления, температур кипения и плавления, спектров поглощения или испускания (инфракрасных, видимых, ультрафиолетовых, рентгеновских), теплоемкости, вязкости, твердости, электропроводности и теплопроводности. Наиболее распространенная совокупность свойств, достаточная для идентификации,— температуры кипения и плавления, а также плотность. В большинстве случаев их можно определить с помощью простого оборудования и подробных таблиц, составленных для рблегче-ния идентификации. Особенно удобно использовать для идентификации уже изученных соединений их показатели преломления. Еще быстрее осуществляется идентификация спектроскопическими методами, однако они требуют применения дорогой аппаратуры. Современные спектрометры позволяют менее чем за час работы установить все элементы, имеющиеся в исследуемом образце вещества, и определить их процентное содержание. [c.163]

    Данные перегонки заносят обычно в таблицу, включающую следующие рубрики 1) номер фракции, 2) температура кипения (иногда приводится давление), 3) объем отобранного дистиллата или вес фракции, 4) общий объем (или вес) дистиллата. Обычно при контроле за ходом перегонки не ограничиваются одной лишь температурой кипения, но измеряют и другие физические константы фракций (показатель преломления, плотность, а у оптически активных веществ—удельное вращение). Можно использовать и любые другие характеристические константы желательно лишь, чтобы их значения для отдельных компонентов смеси как можно больше отличались друг от друга. Измерение таких констант дает наиболее четкую картину хода разделения веществ в процессе ректификации. Можно воспользоваться и химическими определениями (например, число кислотности, число омыления, йодное число, определение гидроксильных групп по Церевитинову и Чугаеву, определение карбонильной группы и т. д.) и определением физических свойств (температура плавления, инфракрасные, видимые и ультрафиолетовые спектры и т. д.). Если процесс перегонки контролируют одним из перечисленных способов, то полученные результаты также записывают в таблицу. В примечании можно указать и другие данные, имеющие значение при возможном воспроизведении опыта, например температуру в обогревательной рубашке, температуру в перегонной колбе, нагрузку колонки, флегмовое число и т. д. В случае точной перегонки вычисляют истинную температуру кипения с поправкой на давление и частичное погружение термометра. [c.255]

    Химически чистое органическое вещество характеризуется определенными физико-химическими константами температурами кипения и плавления, плотностью, показателем преломления. Определение физических и химических свойств низкомолекулярных органических веществ производится после выделения их в чистом виде. При исследовании высокомолекулярных органических соединений, ввиду трудности их выделения в химически чистом виде, процесс подготовки вещества для исследования сводится к получению полимера, в виде смеси полимер-гомологов, свободных от посторонних примесей. Выделенная в таком виде смесь высокомолекулярных соединений характеризуется средним молекулярным весом, более или менее широким интервалом температуры размягчения и средним коэффициентом преломления. Все эти показатели зависят от молекулярного веса и структуры полимеров (аморфные, кристаллические), а также от полидиоперсности данной смеси высокомолекулярных соединений. [c.12]

    К сожалению, учащиеся не всегда умеют пользоваться справочниками, в которых приведены свойства химических соединений, и другие сведения. Необходимо прививать будущим лаборантам навыки пользования справочными пособиями. Следует напомнить учащимся, что каждое вещество характеризуется определенными физическими свойствами агрегатным состоянием, температурами фазовых переходов (плавление, кипение), плотностью, цветом, растворимостью в воде и в некоторых наиболее распространенных растворителях (спирт, ацетон, эфир, бензол), структурой частиц для твердых веществ (кристаллическая, аморфная), показателем преломления жидких веществ. Иногда приводятся показатели, определяемые органолептически, - запах и вкус. Будущие лаборанты должны распознавать наиболее распространенные в лабораторной практике вещества и правильно описывать их физические свойства, например соляная кислота концентрированная - бесцветная или бледно-желтая прозрачная жидкость, дьплящая на воздухе плотность 1,18-1,19 г/см пары имеют резкий запах хлорводорода сульфат меди пентагидрат — твердое кристаллическое вещество синего цвета, без запаха, хорошо растворяется в воде при нагревании отщепляет воду и превращается в мелкокристаллическое вещество белого цвета аммиак - бесцветный газ с резким удушливым запахом, хорошо растворяется в воде. [c.31]

    Получены и охарактеризованы температурами кипения при нормальном давлении и зависимостями упругости пара от температуры, температурами плавления, скрытыми теплотами плавления и криоскопическими константами, а тахсже плотностями, показателями преломления и коэффи-циентами динамической вязкости 14 соединений (сульфиды, дисульфиды, тиофены), что существенно пополняет имеющиеся н литературе немногочисленные данные о сераорганических соединениях определенной степени чистоты. [c.225]

    Индиви.цуальное органическое соединение характеризуется постоянными физическими свойствами в определяемых условиях (температура, давление). Наиболее просто определенными и приводимыми в справочной литературе являются плотность р, показатель преломления п , температура плавления, температура кипения. Доказать чистоту или идентифидировать неизвестное соединение в первом приближении проще всего, сопоставив измеренные его физические константы с имеющимися литературными данными. [c.36]

    Для полного анализа тройных систем требуется определение двух независимых параметров, характеризующих их состав одним из таких параметров может служить показатель преломления, а вторым -какое-либо легко определяемое физическое свойство плотность, поверхностное натяжение, вязкость, диэлектрическая постоянная, температура плавления или кипения, - либо химическая характеристика системы (концентрация одного из компонентов, кислотность, непре-дельность и т.п.). Чаще всего используется рефрактоденситгшетри-ческий метод, заключающийся в измерении показателя преломления и плотности. Для этого готовят тройные смеси точно известного состава, планомерно расположенные в треугольнике составов, затем измеряют показатели преломления и плотности эталонных смесей. Для каждой из исследованных смесей строят вспомогательные графики п-состав р - состав, интерполируют их через равные интервалы, после чего проводят линии равного уровня - соответственно изорефракты и изоденсы. В результате получают калибровочную треугольную диаграмму с сеткой изорефракт и изоденс. [c.201]

    Бензол и большинство низших членов ряда алкилбензола при обычных условиях являются жидкостями. Однако некоторые высоко симметричные соединения имеют аномально высокие температуры плавления [см. данные, приведенные в табл. 2.5.1 для бензола, п-ксилола, 1,2,4,5-тетраметилбензола (дурола) и гексаметил-бензола]. Нафталин и более высокие аналоги бензола являются кристаллическими. С увеличением числа метиленовых групп температуры кипения моно-н-алкилбензолов закономерно повышаются, а изомеры с разветвленной боковой цепью имеют более низкие температуры кипения по сравнению со структурно изомерными -алкилбензолами. В общем, температуры кипения алкилбензолов выше, чем соответствующих алкилциклогексанов. Показатели преломления и плотность аренов, как правило, выше, чем для других классов углеводородов, что можно использовать для определения одержания ароматических соединений в погонах нефти. [c.319]

    В производстве красителей необходимо точное аналитическое определение исходных материалов. Для этого применяются как физические, так н химические методы. Для многих продуктов определяются только физические константы — температура плавления, температура застывания и температура кипения. Так, например, анилин, толуидин, нитросоединения и др. характеризуются только этими константами. В некоторых случаях определяют еще удельный вес (плотность) и даже показатель преломления моггохроматического света, В большом труде Лунге Можно панти все необходимые казапия. Часто этн константы точно фиксируются в договорах и имн руководствуются прн возникающих недоразумениях. Промежуточные продукты поступают теперь на рынок в таком чистом состоянии, что ни одно обоснованное желание не остается не выполненным. [c.339]

    Температура кипения циклоалканов выще температуры кипения алкенов или алканов с тем же числом атомов углерода в молекуле. Плотность соединений этой группы выще плотности соответствующих нормальных алканов, но ниже плотности аренов, (Это свойство иногда используется для определения группового состава фракций нефти). Наличие радикалов-заместителей резко снижает температуру плавления углеводорода, и тем значительнее, чем меньще углеродных атомов содержит алкильный заместитель Циклоалканы от нормальных алканов при одинаковом числе атомов С в молекуле отличаются большим показателем преломления, Циклоалканы - полярные углеводороды, поэтому имеют больший коэффициент адсорбции, чем алканы, Циклоалканы имеют меньшую температуру разложения, чем арены. [c.34]

    В настоящей работе исследовалась реакция взаимодействия сульфолена-3 2,4- и 3, 4-диметилсульфолепа-З с масляным и эпантовым альдегидами. Опыты проводились при 20, 50 и 80°. В качестве конденсирующего агента применялся едкий натр (в виде 10%-ного раствора), ингибитором полимеризации служил пирогаллол (0,05% к весу компонентов). Молярное соотношение сульфолен альдегид составляло 1 2 (при соот-дюшении компонентов 1 1 конденсация не происходила — возвращался исходный сульфолен). Методика проведения реакции заключалась в том, что к водно-спиртовому щелочному раствору приливалось (дважды равными порциями) рассчитанное количество сульфолена и альдегида в этиловом спирте, после чего реакционная смесь энергично перемешивалась при заданной температуре в течение определенного времени и по охлаждении экстрагировалась бензолом. Из высушенного над хлористым кальцием экстракта бензол отгонялся при пониженном давлении, а оставшиеся в перегонной колбе продукты подвергались дальнейшей обработке (жидкие перегонялись в вакууме, твердые перекристаллизовывались до постоянной температуры плавления) и исследованию. При 20° (независимо от продолжительности) альдегиды частично осмолялись, а сульфолен выделялся неизменным. Однако при нагревании реакционной смеси до 80° в течение 1,5 ч и последующей ее обработке по приведенной методике наряду с большим количеством смолы были выделены масляная и энанто-вая кислоты (в количествах, позволивших идентифицировать их по температуре кипения, показателю преломления и плотности, а также оставшийся после их отгонки не растворимый в обычных растворителях желтый порошок. Последний после промывки эфиром и сушки на воздухе не плавился при 230°, разлагаясь при дальнейшем нагревании, и дальнейшему исследованию не подвергался. Выход этого продукта (по-видимому, полимера сульфолена) составлял 40—45% от веса исходного сульфолена. Наиболее благоприятным для конденсации оказалось нагревание реакционной смеси при 50° в течение трех часов. При этом после отгонки бензола из бензольного экстракта оставалось светло-желтое масло, представляющее собой раствор продуктов конденсации в масляной или энантовой кислотах. Разделение этих продуктов проводилось вымораживанием при —70° в эфирном растворе. Кислоты растворялись в эфире и переходили в фильтрат, а не растворимые в эфире продукты конденсации отделялись на стеклянном фильтре и перекристаллизовывались из спиртобензольной смеси до постоянной температуры плавления. Структура полученных соединений устанавливалась при помощи ИК-спектров поглощения и данных элементарного анализа. Для некоторых продуктов при- [c.230]


Смотреть страницы где упоминается термин Определение температур плавления и кипения, плотности и показателя преломления: [c.162]    [c.253]    [c.48]    [c.43]    [c.36]    [c.52]    [c.622]    [c.449]   
Смотреть главы в:

Установление структуры органических соединений физическими и химическими методами -> Определение температур плавления и кипения, плотности и показателя преломления

Установление структуры органических соединений физическими и химическими методами том 1 -> Определение температур плавления и кипения, плотности и показателя преломления

Установление структуры органических соединений физическими и химическими методами Книга1 -> Определение температур плавления и кипения, плотности и показателя преломления




ПОИСК





Смотрите так же термины и статьи:

Плотность температуры

Показатель преломления

Показатель преломления определение

Показатель преломления температуры

Показатель преломления, определени

Преломление определение

Температура определение

Температура плавления

Температура плавления кипения



© 2025 chem21.info Реклама на сайте