Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Методы разделения энантиомеров

    МЕТОДЫ РАЗДЕЛЕНИЯ ЭНАНТИОМЕРОВ 67 [c.597]

    Хроматографические методы разделения энантиомеров применяются прежде всего при определении конфигурации аминокислот, для исследования рацемизации и для препаративного выделения небольших количеств энантиомеров. Некоторые аминокислоты могут быть разделены на оптические [c.62]

    МЕТОДЫ РАЗДЕЛЕНИЯ ЭНАНТИОМЕРОВ [c.57]


    В процессе химической эволюции природа должна была выбрать избирательные методы синтеза аминокислот и специфического узнавания, В связи с этим интересно, какими же химическими методами синтеза аминокислот в оптически чистой форме и разделения энантиомеров владеем мы сегодня Ниже рассмотрены два подхода к асимметрическому синтезу аминокислот с применением понятия асимметрической индукции и специфического комплексообразования с ионами металлов. [c.92]

    Чтобы достаточно полно разобраться в современных хроматографических методах, используемых для разделения оптических изомеров, необходимо иметь четкое представление о наиболее важных достижениях в стереохимии и о методах разделения энантиомеров, которые были развиты задолго до появления хроматографии. Именно эти вопросы и рассматриваются в трех первых главах книги. Три последующие главы посвящены теоретическим проблемам хроматографического разделения энантиомеров. В них также затрагиваются общие принципы жидкостной и газовой хроматографии в приложении к разделению оптических изомеров. В заключительных главах книги обсуждаются аналитическое и препаративное использование хроматографических методов разделения оптических изомеров и тенденции их развития. [c.11]

    Такой метод разделения косвенно связан с другим, в котором природа является единственным богатым источником оптически чистых хиральных реагентов. Во многих случаях разделение рацематов произведено с помощью сложных оптически активных оснований биологического происхождения, для которых в природе существует только один энантиомер (например, хинин, цинхонин или стрихнин). [c.197]

    Назовите функциональные группы, имеющиеся в молекуле адреналина. С помощью каких качественных реакций можно подтвердить наличие этих групп Почему адреналин является оптически активным соединением Предложите метод разделения рацемического адреналина на энантиомеры. [c.764]

    В чем заключается предложенный Пастером метод разделения энантиомер-ных веществ  [c.169]

    Взаимное превращение стереоизомеров имеет большое практическое значение, потому что оно ограничивает возможность их выделения. Стереоизомеры, с трудом превращающиеся друг в друга, можно разделить (специальными методами разделения энантиомеров) и изучить в индивидуальном виде помимо других свойств, можно измерить их оптическую активность. Изомеры, легко превращающиеся друг в друга, нельзя разделить, и поэтому исследовать индивидуальные изомеры невозможно оптической активности не наблюдается, поскольку любые диссимметричные молекулы присутствуют в виде нерасщепляемых рацемических модификаций. [c.100]


    Оптически активные соединения играют исключительно важную роль во многих биохимических процессах, их исследование имеет принципиальное значение для теоретической органической химии и фармации, а контроль оптической чистоты производимых лекарственных средств в настоящее время законодательно введен во всех промышленно развитых странах. В свете этого не удивителен все возрастающий интерес исследователей к соверщенствованию старых и разработке новых методов разделения рацематов и контроля оптической чистоты получаемых продуктов. Однако вплоть до последнего времени методы разделения оптических изомеров мало отличались от предложенных Пастером еще в конце прошлого века, и лишь развитие хроматографии, особенно высокоэффективной жидкостной хроматографии, открыло новую страницу в этой области химической науки. Разработка хроматографических методов разделения энантиомеров позволила не только получать хиральные соединения со стопроцентной степенью оптической чистоты, но и, что особенно важно, перейти от эмпирического поиска разделяющих систем к созданию систем, позволяющих осуществлять разделение целых классов соединений на вполне рациональной основе с предсказуемым успехом. [c.5]

    Оптически активные соединения интересуют химиков с того самого момента, как только выяснилось, что природа обладает удивительной способностью создавать подобные объекты. В то же время разделение синтетических рацемических смесей на оптически активные компоненты всегда представляло сложную задачу и часто рассматривалось как своеобразное искусство ввиду трудности осуществления и непредсказуемости успеха при использовании того или иного метода. Даже сегодня мы еще далеки от того, чтобы рассматривать разделение энантиомеров как вполне рутинную задачу. Однако в последние десять лет начали интенсивно развиваться хроматографические методы разделения энантиомеров, позволившие сконцентрировать знания об источниках хирального распознавания, которые лежат в основе разделения оптических изомеров. Цель данной книги — дать читателю по возможности полное представление о хроматографических методах разделения энантиомеров, причем как теоретическое, так и методологическое, включая, например, представление о типах неподвижных фаз и различных областях их приложения. И хотя в последние годы появился ряд обзоров, посвященных этой теме, к моменту написания данной книги ощущалась отчетливая потребность в монографии, которая обобщила бы имеющийся материал. Поскольку никакое достаточно глубокое обсуждение механизма хирального распознавания, лежащего в основе хроматографии энантиомеров, невозможно, если читатель плохо представляет себе основы органической стереохимии, то первые три главы книги мы посвятили именно этой теме. Изложение указанного материала ни в коей мере не является исчерпывающим, и задача состоит лишь в том, чтобы дать читателю необходимый минимум для понимания последующего материала. [c.7]

    Интенсивное развитие хроматографических методов разделения оптических изомеров проходило параллельно с развитием самой хроматографии, и большие достижения в этой области являются результатом углубленного изучения процессов хирального распознавания энантиомеров в хроматографических системах, совершенствования хроматографических методов разделения, особенно способов синтеза и структуры применяемых неподвижных фаз. Именно эти вопросы и составляют основу предлагаемой книги. Монография охватывает практически все современные хроматографические методы разделения оптических изомеров, дает их сравнительный анализ и показывает основные области применения. В этом плане предлагаемая книга является первой и пока единственной публикацией подобного рода в отечественной литературе, по- [c.5]

    Таким образом, в заключение можно сказать, что многие методы разделения энантиомеров с помощью ЖХ хорошо подходят для прямого контроля энантиомерной чистоты или энантиомерного состава лекарственных средств данного типа. Они будут играть все большую роль в связи с развитием производства оптически чистых соединений и проведением фармакокинетических исследований. [c.196]

    Другие методы разделения. Для разделения оптически активных веществ, ио-видимому, можно использовать различия в скоростях разложения фотохимически чувствительных энантиомеров при облучении светом той длины волны, при которой лежит полоса поглощения подлежащего расщеплению вещества. [c.67]

    Классический метод разделения смеси энантиомеров состоит в превращении их в два диастереомера с последующим разделением полученных диастереомеров обычными лабораторными способами (главным образом, путем кристаллизации) и регенерированием индивидуальных энантиомеров (рис. [c.152]

    В случае газохроматографического разделения энантиомеров различают методы, основанные на двух принципах  [c.63]

    Добавка второго хирального селектора, В этом методе в буферной системе находятся два различных хиральных селектора. Однако этот способ до настоящего времени только в отдельных случаях приводил к улучшению разрешения при разделении энантиомеров. Например, комбинация хирального краун-эфира с ЦД для некоторых проб проявляет синергический эффект. Иногда к улучшению селективности приводит также использование двух различных ЦД в одной буферной системе. Однако, в общем случае введение второго селектора и, таким образом, второй равновесной системы в буфер приводит к потере селективности. [c.90]


    Активный реагент. Пару энантиомеров можно разделить с помощью активного реагента, скорость реакции которого с одним энантиомером больше, чем с другим. Такая реакция служит методом разделения на оптические изомеры. Если абсолютная конфигурация реагента известна, конфигурацию энантиомера часто можно установить, зная механизм реакции и определив, какой из диастереомеров образуется в большем количестве [66]. С помощью активного реагента можно провести реакцию, в ходе которой новый хиральный центр создается в неактивной молекуле, однако при этом селективность редко достигает 100 %. Примером служит восстановление изопропилфенилкетона реактивом Гриньяра, полученным из ( + )-1-хлоро-2-фенилбутана [67]. В результате реакции образуется изопропилфенилкарбинол, состоящий на 91 7о, из ( + )-изомера и на 9% из (—)-нзомера. (Еще один пример рассмотрен в т. 3, реакция 15-13.) Реакцию, в которой неактивный субстрат селективно превращается в один из двух энантиомеров, называют энантиоселективной. Под это определение подпадают рассмотренные реакции, а также реакции, описанные ниже в пп. 3 и 4. [c.157]

    Разделение энантиомеров осуществляется методами жидкостной хроматографии гораздо чаще, чем методами газовой хроматографии. Вследствие этого гл. 7, в которой рассматриваются методы жидкостной хроматографии, по объему существенно больше, чем гл. 6, посвященная газовой хроматографии, а в гл. 9, в которой [c.7]

    Со времени первого расщепления рацемического соединения на энантиомеры, осуществленного Пастером, и до момента создания современных скоростных хроматографических методов наши знания в области стереохимии неизмеримо углубились (рис. 1.1). Тем не менее большинство современных методов разделения оптических изомеров базируется на эмпирических результатах. [c.11]

    МЕТОДЫ, ОСНОВАННЫЕ НА РАЗДЕЛЕНИИ ЭНАНТИОМЕРОВ [c.37]

    Вплоть до недавнего времени в ГХ и ЖХ применялись практически только ахиральные фазы, т. е. их основу составляли оптически неактивные соединения. Следовательно, непосредственное разделение энантиомеров хроматографическими методами не представлялось возможным. Вследствие этого хроматографические разделения, ставившие своей целью определение энантиомерного состава, были ограничены разделением диастереомерных производных, полученных взаимодействием с оптически чистым реагентом (схема 3.1). [c.38]

    Жесткие стерические требования, обусловливающие возможность образования комплексов типа хозяин—гость , предполагают, что это явление может быть стереоселективным. Следовательно, при использовании хирального хозяина можно разделить энантиомерные гостевые молекулы. Этот принцип полностью или отчасти используется в ряде методов жидкостной хроматографии, описываемых в гл. 7. Рассмотрим кратко процесс образования комплексов включения, действительно или предположительно имеющий место при разделении энантиомеров. [c.78]

Рис. 6.1. Структуры ХНФ, использовавшихся в первых работах по разделению энантиомеров методом ГХ. Рис. 6.1. Структуры ХНФ, использовавшихся в <a href="/info/981661">первых работах</a> по <a href="/info/108332">разделению энантиомеров</a> методом ГХ.
    Для детального и углубленного ознакомления с методами разделения энантиомеров через диастереомерные производные читателям рекомендуется обратиться к недавно вышедшей книге Соутера (см. список литературы), [c.67]

Таблица 8.7. Методы разделения энантиомеров некоторых жаропонижающих препаратов ряда арилпропионовых кислот Таблица 8.7. Методы разделения энантиомеров некоторых <a href="/info/1279221">жаропонижающих препаратов</a> ряда арилпропионовых кислот
    Модифицируя этот метод разделения рацематов в более удобную форму, а именно используя очищенный фермент, можно устранить недостатки, связанные с применением живых систем. Так, амины можно разделить, превращая их в М-этано-илпроизводное с последующим ферментативным гидролизом рацемического амида. Используя соответствующие условия, можно избирательно гидролизовать путем отщепления фермента один из энантиомеров амида, после чего останется смесь амина и амида, которую легко разделить с помощью стандартных химических методов, например  [c.199]

    В данном разделе перечислены почти все применяемые методы оптического разделения или реагенты для разделения органических систем общее рассмотрение этого вопроса читатель может нантп в 24, 25], а также в [2], Современные и довольно обстоятельные обзоры опубликованы в работах [60, 61]. Некоторые из перечисленных ниже реагентов поступают в продажу в виде ул<е разделенных энантиомеров, многие —в виде солей (это в особенности относится к алкалоидам и аминам). [c.256]

    VI.д.2. Методы определения оптической чистоты, включающие действительное разделение энантиомеров или диастереомериых производных [c.260]

    Возникновение стереоспецифического анализа орг. в-в во 2-й пол. 20 в. связано с развитие.м хро.матографич. методов. Для разделения энантиомеров чаще всего предварительно проводят р-цию между анализируемыми в-вами и оптически активными реагентами с образованием диастереомеров, к-рые затем разделяют. методами газо-жидкостной или высокоэффективной жидкостной хроматографии на колонках с оптически активны.ми неподвижными фазами. [c.403]

    Др. способ расщепления Р.-биохимический-основан на том, что микроорганиз.мы при своем развитии используют только один из двух оптич. изомеров, присутствующих в р. Остающийся энантиомер м. б. выделен. Этот путь позволяет получать только один из энантиомеров, второй необратимо теряется. Избирательность действия микроорганизмов по отношению к энантио.мера.м связана с высокой энантиоселективиостью содержащихся в микроорганизмах ферментов. Поэтому для разделения энантиомеров нет необходимости применять самн микроорганизмы, достаточно использовать в этих целях выделенные из биол. объектов фер.ментные препараты. Наиб, широко для расщепления Р. применяют гидролазы - ферменты, катализирующие гидролиз сложноэфирных или амидных связей. При этом гидролизу подвергается только один из двух энантиомеров субстрата, а разделение конечной смеси, напр., своб. к-ты и ее сложного эфира м.б. легко осуществлено обычными методами. Так, при действии фермента ацилазы на рацемич. К-ациламинокислоту гидролизу (а следовательно, и отделению) подвергается лишь Ь-форма. [c.200]

    Если синтез приводит к рацеми.ческой модификации и если ее нельзя разделить обычными методами перегонки, кристаллизации и т. п., как узнать, что полученный продукт является рацемической модификацией Он оптически неактивен как же выяснить, действительно ли он состоит из смеси двух оптически активных веществ Разделение энантиомеров (называемое расщеплением) можно провести специальными методами с использованием оптически методы обсуждаются в разд. 7.10. [c.132]

    История С. началась с открытия Ж. Био в 1815 оптической активности орг. соединений в р-рах. Затем Л. Пастер в сер. 1840-х гг. разработал первые хим. и биохим. методы разделения рацематов на энантиомеры и впервые высказал мысль, что оптич. активность в-в-следствие асимметрии молекул. Позже (1874) Я. Вант-Гофф и Ж. Ле Бель построили теорию тетраэдрич. углеродного атома, а в 1893 А. Вернер предложил октаэдрич. строение комплексов металлов. Исследование стереохим. хода р-ций началось с открытия П. Вальденом в 1896 обращения конфигурации [c.433]

    Промышленное производство DL-мeтиoнинa (в 1977 г. произведено 100 ООО т), который применяется главным образом как добавка в корм скоту, ведется по методу Штрекера из /3-метилмеркаптопропионового альдегида, который получают из акролеина и метилмеркалтана. В этом случае не требуется разделения энантиомеров, так как L- и о-метионин одинаково хорошо усваиваются животными. [c.43]

    Газовая хроматография предложена как метод Джеймсом и Мартином в 1952 г. как метод химического анализа ГХ отличается особо высокой производительностью. Благодаря высокой скорости потока подвижной фазы (газообразные водород, гелий, азот и аргон) достигается быстрое установление фазового равновесия. В качестве стационарной фазы применяют чаще всего силикон, полиэфир или полигликоль на таких носителях, как цеолит, хромосорб, стерхамол и др. Длина колонки при обычных разделениях колеблется от 1 до 6 м, при разделениях энантиомеров на капиллярных колонках их длина достигает 150 м. Идентификация разделенных веществ производится высокочувствительными детекторами — пламенноионизационным (10 моль), электронзахватывающим, а также работающими на основе измерения теплопроводности (10 моль). Предел обнару- [c.61]

    Было показано, что при разделении энантиомеров важную роль наряду с выбором подходящего хирального селектора играют и другие параметры электрофоретической системы, которые требуют дальнейшей оптимизации. Например, на процесс оптимизации разделения энантиомеров решающее влияние оказывает величина pH. Вследствие того, что разделение энантиомеров методом КЭ основано на различии в подвижностях между - и 1-формами, анализируемые вещества необходимо перевести в ионную форму, что обеспечивается подходящим значением pH. При электрофоретическом движении анализируемых веществ через "квазистациомарную" фазу (в данном случае - ЦД) происходит разделение пары энантиомеров. Важнейшими оптимизирующими параметрами в данном случае являются концентрация хирального селектора в используемой буферной системе, сама буферная система (вид фонового электролита), а также другие буферные добавки, такие как ДДСН, метанол и др. Их [c.90]

    Методы разделения и повышение чув- [133] ствительности анализа Получение и анализ флуоресцирующих [409] производных с 4-бромметил-7-ацето-ксикумарином Анализ в виде производных с 9-антрил- [449] диазометаном Разделение энантиомеров на хиральной [426] неподвижной фазе Разделение оптических изомеров [71] [c.300]

    Почему разделение энантиомеров вызывает интерес у исследователей Отчасти это, несомненно, обусловлено чисто научным интересом. Данная проблема является вызовом исследователю, и ею можно заниматься как в теоретическом, так и в практическом плане. В течение длительного времени вопросами, связанными с оптическим вращением асимметричных молекул, занимались специалисты в области молекулярной спектроскопии. Несомненна важность оптически активных соединений для выяснения механизма реакций, динамическое поведение хиральных молекул послужило основой ДЛЯ развития ряда принципиальных положений органической химии. Достаточно вспомнить, что выяснение механизма реакций ну- леофильиого замещения и элиминирования (5. 1, 2, Е, Е2 и "Г- Д-) вряд ли было бы возможно без изучения оптически активных соединений методом поляриметрии. Накопленные в результате [c.11]

    Для небольшого числа случаев предпочтительную адсорбцию одного из двух энантиомеров на хиральной неподвижной хроматографической фазе можно удовлетворительно объяснить на молекулярном уровне и сформулировать более или менее общий механизм хирального распознавания. Таким образом для серии структурно родственных соединений можно установить корреляции между порядком элюирования энантиомеров и их абсолютной конфигурацией. Если различия в удерживании достаточно заметны, то этот метод может дать вполне надежные результаты при наличии очень небольщого количества вещества. Похожий на корреляционные методы прием, основанный на кинетическом разделении энантиомеров, предложен Хорео [26]. В его основе лежит энергетическое различие диастереомерных состояний, которое достаточно хорошо известно. Можно ожидать, что привлечение молекулярного моделирования и расчетных методик сделает эти методы в будущем более распространенными. [c.44]

    Проблема получения эффективных ХНФ для разделения энантиомеров методом ГХ достаточно сложна. Во-первых, ХНФ должна иметь необходимые термические свойства низкую температуру плавления и высокую температуру кипения. Использование три-и более высоких пептидов в качестве пептидных фаз ограничено из-за высоких температур плавления этих соединений. В то же время многие производные самих аминокислот имеют низкую температуру плавления и такое высокое давление пара, что это приводит к сильному вымыванию неподвижной фазы при рабочих температурах колонки. Во-вторых, стереохимическая структура ХНФ должна допускать хиральную дискриминацию, т. е. диастереомерные сольваты, образующиеся при растворении рацемического сорбата в ХНФ, должны различаться по энергии. В-третьих, эффективность колонки, т. е. число теоретических тарелок, должно быть высоким, что предполагает отсутствие ухудшения процессов массопередачи. [c.88]

    В газожидкостной хроматографии, как недавно выяснилось, можно использовать эффект образования комплексов включения, который в свое время привел к появлению химии соединений типа хозяин—гость (см. разд. 5.2.3). Хиральным лигандом в данном случае служит циклодекстрин (ЦД), смешанный с полярным растворителем, вьшолняющим роль своего рода жидкой матрицы. В хиральной ГХ насадочные колонки заполняют цеолитами, покрытыми неподвижной фазой такого типа. Этот метод позволяет достигнуть значительной энантиоселективности при разделении энантиомеров ряда углеводородов. Однако разделение в режиме ГХ на этих колонках должно проводиться при слишком низких температурах (<70 °С). [c.97]

    СКОЛЬКИХ лет служила материалом для упаковки колонок, и на ней впервые удалось почти полностью разделить энантиомеры. (В 1944 г. было опубликовано сообщение о том, что основание Тре-гера разделено на колонке с лактозой длиной 0,9 м [2].) Разделяющая способность полисахаридов, в частности целлюлозы, была впервые обнаружена при попытке разделить рацемические аминокислоты методом бумажной хроматографии [3—5]. При этом выяснилось, что эти соединения в некоторых случаях дают два пятна на бумажной хроматограмме. Далглищ развил свою теорию трехточечного взаимодействия в 1952 г. на базе данных о бумажной хроматографии рацемических аминокислот [6]. Известны и другие ранние работы по непосредственному разделению энантиомеров аминокислот посредством бумажной хроматографии [7] и тонкослойной хроматографии на целлюлозе (ТСХ) [8]. Все это способствовало использованию целлюлозы и ее производных, а также крахмала и циклодекстринов в хиральной ЖХ. В настоящее время в качестве потенциальных хиральных сорбентов изучается ряд природных полисахаридов. [c.108]

    Исследование равновесия в растворах между сывороточными белками и различными лигандами, особенно фармакологически активными соединениями, показало значительное различие в константах связывания соответствующих энантиомеров [82, 83]. Этот эффект, однако, более надежно был зафиксирован с помощью хроматографической техники. Так, в 1973 г. ранее известное высокое сродство I -триптофана к бычьему сывороточному альбумину (БСА) было использовано для разделения энантиомеров на колонке, заполненной гелем БСА—сефарозы [84]. Элюирование о-формы проводилось боратным буфером (рН9), а элюирование ь-формы — разбавленной уксусной кислотой. Этот метод был в дальнейшем использован для определения сродства ряда лекарственных препаратов к сывороточным альбуминам [85, 86]. В последние несколько лет аналитические методы хиральной ЖХ, основанные на использовании иммобилизованных белков в качестве неподвижных фаз, развивались очень быстро и нашли применение для решения широкого круга задач. [c.132]


Смотреть страницы где упоминается термин Методы разделения энантиомеров: [c.6]    [c.200]    [c.102]    [c.71]    [c.98]   
Смотреть главы в:

Органическая химия Часть 2 -> Методы разделения энантиомеров




ПОИСК





Смотрите так же термины и статьи:

Методы разделения

Энантиомер

Энантиомерия



© 2025 chem21.info Реклама на сайте