Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Электронно-колебательное, колебательно-вращательное н электронно-колебательно-вращательное взаимодействия

    Молекула образуется из атомов потому, что при этом снижается полная энергия (Ч. Коулсон). Основной вклад в общее снижение энергии вносят члены, представляющие потенциальную и кинетическую энергию взаимодействия электронов друг с другом, электронов и ядер, а также ядер друг с другом. Все эти слагаемые иногда объединяют под названием электронная энергия в отличие от энергии (колебательной, вращательной и поступательной) движения молекулы как единого целого. При умеренных температурах электронная энергия и энергия связи значительно больше поступательной энергии. При 291 К, например, полная электронная энергия молекулы водорода в 740 раз больше поступательной энергии и приблизительно в 7 раз больше электронной энергии связи .  [c.93]


    Все молекулы имеют электронные спектры, так как переход от одной электронной структуры к другой всегда обусловлен взаимодействием с электромагнитным излучением. В электронных спектрах гомоядерных двухатомных молекул, не имеющих вращательных или колебательно-вращательных спектров, проявляются вращательная и колебательная структуры. [c.469]

    Переходам электронов в молекулах, так же как и в атомах, соответствуют еще большие (на один-два порядка) энергии величиной в несколько электронвольт. В видимой и ультрафиолетовой частях спектра (УФ-спектроскопия) можно получить электронно-колебательно-вращательные спектры, отражающие все три вида молекулярной энергии. Следует подчеркнуть, что взаимодействие электромагнитного излучения с веществом возможно лишь в случае изменения его дипольного момента. Поэтому вращательные и колебательные спектры поглощения могут наблюдаться только у полярных молекул и связей. [c.217]

    Некоторые виды переходов, характерных для атомов решетки или электронов в твердом теле, приводят к поглощению в видимой области. При поглощении кванта электромагнитной энергии электрон может перейти на расположенный выше свободный уровень, а атомы переходят на более высокие колебательные или вращательные уровни. При наличии взаимодействия между атомными и электронными уровнями оба типа уровней возбуждаются одновременно. Оптическая спектроскопия является одним из самых эффективных методов исследования электронной структуры твердого тела метод позволяет, используя ту или иную модель электронной структуры твердого тела (или связи на языке химии), проверить результаты квантовомеханического расчета энергии дозволенных уровней. [c.76]

    Природа взаимодействия столь различающихся по энергии квантов с веществом принципиально отличается. Так, излучение 7-квантов связано с ядерными процессами, излучение квантов в рентгеновском диапазоне обусловлено электронными переходами во внутренних электронных слоях атома, испускание квантов УФ и видимого излучения или взаимодействия вещества с ними — следствие перехода внешних валентных электронов (это область оптических методов анализа) поглощение ИК и микроволновых квантов связано с переходом между колебательными и вращательными уровнями молекул, а излучение в радиоволновом диапазоне обусловлено переходами с изменением ориентации спинов электронов или ядер атомов. [c.163]


    В дальнейшем обсуждении мы опускаем рассмотрение вращательных спектров, поскольку для чисто аналитических задач они используются относительно редко, а вращательная энергия по сравнению с общей энергией молекулы сравнительно мала. В первом приближении будем считать, что энергия молекулы определяется ее электронной и колебательной энергиями. Вследствие сильного взаимодействия атомных ядер на первый взгляд представляется, что движение атомов нельзя считать независимым от движения электронов. В действительности, однако, с очень хорошим приближением общую энергию молекулы можно рассматривать как сумму электронной энергии, зависящей только от состояния электронов, и колебательной энергии ядер. Это обусловлено тем, что, хотя электроны и ядра подвержены действию сопоставимых по величине электрических сил, массы первых на несколько порядков меньше масс ядер отсюда переходам электронов из одного состояния в другое отвечает более высокая частота, чем колебаниям ядер. Поэтому можно считать, что ядра (атомы) колеблются в среднем электрическом поле, создаваемом электронами. [c.174]

    Рассмотренные выше различные модели ядер приводят к спектру состояний ядра, весьма сходному со спектром многоатомной молекулы существуют внутренние состояния (одночастичные для ядер и электронные для молекул), вращательные и колебательные состояния. Однако следует сразу же подчеркнуть, что это сходство в гораздо большей степени обусловлено свойствами взаимодействия ученых с проблемой многих тел , чем каким-либо сходством взаимодействий в молекулах и ядрах. [c.294]

    Ионизирующее излучение (гамма- и рентгеновские лучи) обладает такой энергией, что способно выбить из молекулы электроны с образованием ионов. Инфракрасное излучение обладает низкой энергией и при взаимодействии с молекулами вызывает колебательные и вращательные эффекты. Электромагнитное излучение в близкой ультрафиолетовой и видимой областях спектра (240—700 нм) взаимодействует с электронами молекулы. Ниже 240 нм ультрафиолетовый участок спектра задерживается озоном иа уровне 20—30 км от Земли. При поглощении света с длиной волны менее 800 нм изменяется электронная, вращательная и колебательная энергия молекул, что приводит к возбужденному состоянию молекул. [c.26]

    Взаимодействие внешних электронов атомов (или групп атомов) приводит к химической связи между ними. Энергия взаимодействия между атомами в молекуле (т) имеет характерный вид кривой с минимумом, соответствующим энергии диссоциации (рис. 2.4). Энергетические уровни дискретны и имеют электронную колебательную и вращательную составляющие  [c.42]

    Молек ла углеводорода обладает определенным запасом внутренней энергии. Эта энергия слагается из энергии взаимодействия электронов с ядрами, из энергии колебательного движения атомов (линейного и деформационного), энергии вращательного движения атомов или групп атомов. Энергия взаимодействия электронов с ядрами (энергия электронных переходов) в 10—20 раз превышает энергию колебательных движений и в тысячу раз превышает энергию вращательного движения внутри молекулы. [c.32]

    Инфракрасные спектры возникают в результате взаимодействия вещества с электромагнитными колебаниями определенной частоты. Инфракрасное излучение сообщает молекуле, находящейся в основном электронном состоянии, энергию, необходимую для переходов между вращательными и колебательными уровнями энергии. Характеристические полосы поглощения (или отражения) в инфракрасных (ИК) спектрах связаны с энергетическими переходами [c.157]

    Внутренняя энергия системы состоит из энергии всех видов движения и взаимодействия входящих в систему частиц энергии поступательного и вращательного движения молекул и колебательного движения атомов, энергии молекулярного взаимодействия, внутриатомной энергии заполненных электронных уровней, внутриядерной энергии и т. д. [c.225]

    Внутренняя энергия U представляет собой сумму различных видов энергии. К этой энергии относится потенциальная и кинетическая (поступательная, вращательная, колебательная) энергия молекул, атомов, электронов и ядер. Потенциальная энергия связана с взаимодействием частиц и зависит от химического состава и реакционного объема или внешнего давления. Кинетическая энергия определяется абсолютной температурой системы. Поэтому изменение внутренней энергии AU зависит только от начального и конечного состояний (функция состояния) и не зависит от условий проведения процесса. Работа А (следовательно, и Q) зависит от пути процесса. Если при постоянной температуре процесс протекает при постоянном объеме, изохорный процесс (например, в автоклаве), тогда A=pAv = Q и [c.33]

    В-третьих, как уже упоминалось, взаимодействие вещества с инфракрасным излучением, сопровождающееся поглощением излучения, а также испускание радиации в этой области спектра возможно для молекул, у которых вращение и колебание сопровождаются изменением электрического момента (дипольный момент). У молекул, состоящих из одинаковых атомов (Оа, N5, Нг. ..), дипольный момент равен нулю и не появляется ни при колебаниях, ни при вращении, поэтому для таких веществ отсутствует испускание или поглощение в инфракрасной области. Однако изменения колебательных и вращательных состояний могут сопровождаться электронными переходами, а также проявляются при рассеянии света. [c.252]


    Для диапазона 2,2—4,2 мкм Пайн [104] использовал спектрометр, работающий на разностной частоте прп смешении в кристалле LiNbOs излучения перестраиваемого лазера на красителях, работающего в непрерывном режиме, с излучением аргонового лазера с фиксированной частотой [66]. При работе обоих лазеров видимого диапазона в одномодовом режиме Пайн получил перестраиваемое по частоте инфракрасное излучение мощностью 1 мкВт со спектральным разрешением 5-10 см (15 МГц) и плавной перестройкой электронными средствами в пределах 1 см . С помощью этой установки он из.мерил ограниченные доплеровским уширением спектры колебательной полосы з молекул СН4 и СН4 и с высокой точностью определил тетраэдрическое расщепление в Р- и R-ветвях. Полученное высокое разрешение существенно для выбора одной из двух моделей, предложенных для описания колебательно-вращательного взаимодействия высокого порядка, вызывающего расщепление вращательных уровней. Были исследованы также [105] уширение и сдвиг молекулярных линий при низком и высоком давлениях (давление атмосферного воздуха). [c.269]

    Природа взаимодействия столь различающихся по энергии квантов с веществом принципиально неодинакова. Так, излучение уквантов связано с ядерными процессами, излучение квантов в рентгеновском диапазоне обусловлено электронными переходами во внутренних электронных слоях атома, испускание квантов УФ- и видимого излучения или взаимодействие вещества с ними — следствие перехода внешних валентных электронов (сфера оптических методов анализа), поглощение ИК- и микроволновых квантов связано с переходом между колебательными и вращательными уровнями молекул, а излучение в ра-диоволновом диапазоне обусловлено переходами с изменением ориентации спинов электронов или ядер атомов. Для решения разнообразных задач наибольшее значение имеют спектральные методы анализа, оперирующие с излучением рентгеновского, оптического, ИК- и радиоволнового диапазонов. В данном практическом руководстве по физико-химическим методам анализа рассматриваются оптические методы, которые традиционно делятся па оптическую атомную и оптическую молекулярную спектроскопию. В первом случае аналитические сигналы в области спектра от 100 до 800 нм являются следствием электронных переходов в атомах, во втором — в молекулах. [c.7]

    Спектр поглощения должен содержать набор тех же линий, что представлены в спектре испускания. В случае молекул спектр получается более сложным. Это связано с тем, что как энергия основного состояния молекулы, поглощающего электромагнитное излучение, так и энергия электронно-возбужденных состояний, образующихся в результате поглощения излучения, не являются столь однозначно определенными величинами, как для атомов. Они характеризуются набором возможных значений энергии колебаний и вращения молекулы. Поэтому вместо одной линии в спектре поглощения молекулы каждод1у электронному переходу соответствует множество линий, отвечающих различным многочисленным вариантам сопутствующих переходов между колебательными и вращательными состояниями молекулы. Практически за исключением спектров поглощения простейших многоатомных частиц, находящихся в газовой фазе (когда отсутствуют дополнительные возмущения, вносимые нековалентными взаимодействия-I I I II I м [ I I I I I ми), все линии, соответствующие одному [c.152]

    ЭСП представляет из себя электронно-колебательно-вращательный спектр, поскольку, наряду с электронным, всегда возбуждаются колебательные и вращательные состояния молекулы. Они отражаются в спектре, ибо ( ,р < < м) энергия вращательного и колебательного перехода меньше эл. Поэтому в газовой фазе (в отсутствие каких-либо сильных межмолекулярных взаимодействий) в ЭСП просматривается четкая колебательновращательная структура (линейчатый спектр). В присутствии растворителя (в жидкой фазе) наблюдается эффект размывания тонкой колебательной структуры молекулы в ЭСП (полосатый спектр). Наличие колебаний и воздействия окружающей среды <фазмывает энергетические уровни, в результате чего энергетический уровень превращается в энергетический интервал. [c.111]

    Ранее термодинамические функции 5Н вычислялись Харом и Фридманом [1910] на электронной счетной машине. Авторы работы [1910] вывели формулы для расчета термодинамических функций двухатомных идеальных газов в случае, когда основным электронным состоянием молекул является состояние П. При выводе использовались уравнения Хилла и Ван-Флека (1.25) для уровней вращательной энергии. Полученные в работе [1910] формулы эквивалентны формулам, выведенным Хачкурузовым и Броунштейном [445] (см. стр. 99). В отличие от последних Хар и Фридман учли ряд членов в выражении для статистической суммы по вращательным состояниям, являющихся дополнительными членами формулы Эйлера-Маклорена и имеющих существенное значение только при низких температурах. Для 5Н при Т =298,15° К эти члены пренебрежимо малы, и поэтому при расчете табл. 83 (II) не учитывались. Центробежное растяжение, ангармоничность колебаний и колебательно-вращательное взаимодействие 8Н в работе [1910] [c.332]

    Вообще говоря, превращение поступательной энергии молекул в колебательную при столкновениях не может быть рассмотрено в рамках модели, в которой игнорировалось бы превращение поступательной энергии во вращательную и вращательной в колебательную. Это следует из того факта, что эффективность превращения поступательной энергии во вращательную в принципе велика и пренебречь взаимодействием поступательных и врап ,атепьных степеней свободы при рассмотрении механизма колебательного возбуждения молекул нельзя. Тем не менее для молекул, у которых асимметричная часть потенциала межмолекулярного взаимодействия мала, теория, основанная на пренебрежении взаимодействием поступательных и вращательных степеней свободы, дает правильные результаты по зависимости скорости колебательного возбуждения молекул от параметров взаимодействия и молекулярных констант. Поскольку значения параметров потенциала точно пе известны, теория носит полуэмпирический характер, и поэтому возможные ошибки, связанные с пренебрен<ением превращения поступательной энергии во вращательную, неявным образом компенсируются оптимальным подбором параметров. Разумеется, существуют случаи, когда никакой разумный подбор параметров взаимодействия не может объяснить результат эксперимента в терминах Т—У-обмена энергией. Тогда необходимо привлекать либо взаимодействие с вращением, либо неадиабатическое взаимодействие с близко расположенными электронными термами. [c.165]

    Взаимодействие электрона с молекулой рассматривают как столкновение или удар, хотя вследствие малых размеров электрона столкновения в обычном смысле слова здесь нет. Процесс столкновения может быть упругим (электрон в основном отражается), неупругим (энергия электрона передается молекуле) и сверхупругим (энергия молекулы переносится на электрон). Ионизация электронным ударом — пример неупругого столкновения. Энергия, переданная молекуле при неупругом столкновении, может быть преобразована во вращательное, электронное и колебательное возбуждение одновременно или неодновременно с ионизацией. Далее следствием многоэлектронного возбуждения может быть аутоионизация, причем во многих случаях этот процесс сопровождается образованием значительной доли полностью ионизованных продуктов 10]. Так, электрон с энергией 20 эВ (32,04-10" Дж) может вызвать все указанные выше типы возбуждения. Однако давление в масс-спектрометре и плотность электронов в электронном пучке таковы, что ионизация вследствие столкновения нескольких электронов с молекулой крайне маловероятна. [c.14]

    До появления электронных вычислительных мащин рядом авторов были предложены методы вычисления термодинамических функций двухатомных газов по молекулярным данным, в которых приближенно учитывались ангармоничность колебаний, центробежное растяжение и колебательно-вращательное взаимодействие. Наиболее известные из них — методы Касселя, Майера и Генперта — Майера и Гордона и Барнеса. Во всех [c.224]

    Спектры поглощения растворов и веществ в жидком и твердом состояниях. Энергия межмолекулярного взаимодействия в конденсированном состоянии больше энергии вращения молекул. Молекулы не могут совершать полные обороты и вращательные полосы в спектрах не наблюдаются. Вместе с этим полосы поглощения, связанные с изменением энергии колебательного движения и электронного возбужде-1П1Я молекул, становятся более широкими. [c.21]

    Теоретические расчеты вероятностей превращения энергии электронного возбуждения в колебательную, вращательную и поступательную энергию требуют детального знания нескольких потенциальных поверхностей и динамического исследования характера движения системы атомов. На фоне такой довольно общей задачи исключение представляют квазирезонансные процессы превращения одного или двух квантов молекулы в энергию электронного возбуждения — чаще всего возбуждепия тонких состояний атомов при большом спин-орбитальном взаимодействии. Одним из таких подробно [c.104]

    Заметим, что для соударения упругих шаров из-за неблагоприятного соотношения масс доля кинетической энергии электрона, переходящая в колебательную (и вращательную) энергию молекулы, ничтожно мала поэтому с точки зрения этой модели при электронном уд р(1 не должно иметь места ни возбуждение колебаний, пи вращение молекуль. (имеются в виду медленные электроны). Наблюдаемое возбузкдение колебаний указывает па неприменимость простой механической модели к этому процессу. Франк [283] предложил механизм возбуждения колебаний молекулы лри электронном ударе, в основе которого лежит представление о том, что электрон прн сближении с молекулой сильно искажает ее внутреннее поле и тем самым изменяет взаимодействие атомов в молекуле, вследствио чего и может произойти изменение ее колебательного состояния. [c.176]

    Имеются такж1 указания, что колебательно-возбужденные частицы могут возникать в результате перезарядки ионов [385], а также в результате вторичных нроцеесоп химического взаимодействия образующихся при электронной бомбардировке положительных ионов с нейтральными молекулами. К такому. заключению приводят, в частности, данные Франкевича (см. [1371), изучавшего вторичные процессы типа Н2О+ 4- Н3О = Н3О+ + + ОН. Наконец, колебательно- и вращательно-возбужденные молекулы образуются также нри рекомбинации атомов и радикалов. [c.177]

    Термодинамические функции идеального газа, построенные из квазитвердых молекул, особенно просто вычисляются при условии, если энергию внутренних движений молекул ег можно разделить на слагаемые, соответствующие электронному, колебательному и вращательному движениям. Хотя такое разделение является приближенным, часто оно хорошо оправдывается (см. 13). Такое разделение используется при вычислении термодинамических функций многоатомных газов, для которых неизвестны постоянные, характеризующие взаимодействие отдельных видов движений. В предположении разделения энергии внутренних движений молекулы е,- можно написать [c.314]

    Если уравнение (1.1) сопоставить с приведенными значениями разностей энергий для соседних энергетических уровней, то излучение в УФ-области спектра будет давать кванты света, достаточные, чтобы вызвать типичные электронные переходы. Например, длина волны 250 нм соответствует энергии кванта примерно 0,5-10 Дж, а моль таких квантов имеет энергию примерно 300 кДж. Энергия квантов электронного возбуждения одного и того же порядка, что и величина энергии диссоциации связи. Поэтому электронное возбуждение иногда сопровождается фотохимическим разложением. Однако в больщинстве случаев разрыва химической связи не происходит, так как во.чбужденные молекулы возвращаются в основное состояние в результате различных фотофизических процессов, а в конденсированных средах, кроме того, взаимодействие между частицами приводит к быстрой передаче поглощенной энергии всему коллективу частиц. В некоторых молекулах электронные уровни расположены так близко друг от друга, что для электронного перехода достаточен видимый свет. Если уровни удалены друг от друга, то, чтобы вызвать эти переходы, необходимо УФ-излучение или даже рентгеновское. Инфракрасное излучение вызывает переходы между колебательными уровнями, радиочастотное излучение — между вращательными. [c.7]

    Полосы на спектрах, расположенные в диапазоне видимого и ультрафиолетового излучения, возникают в результате взаимодействия вращательных, колебательных и электронных переходов и имеют сложную структуру. На рис. А.23 и А.24 приведена упрощенная схема термов двухатомной молекулы. На рис. А.23 дана схема основного состояния с колебательными и вращательными уровнями энергии. Диссоциированная молекула, атомы которой могут принимать любое количество кинетической энергии, соответствует заштрихованным областям (рис. А.23 и А.24). Вращательные термы приведены в другом, значительно меньшем масштабе. На рис. А.24 показаны аналогичные термы электронных переходов возбужденной молекулы. Полоса электронных переходов состоит из ряда полос, соответствующих различным колебательным переходам, а те в свою очередь имеют тонкую структуру, связанную с вращением молекул. Энергию диссоциации молекулы можно определить, установив частоту, при которой полосатый спектр переходит в сплошной, однако при этом следует учитывать энергию возбуждения образовавшихся атомов. Положение колебательных уровней при электронных переходах в молекуле определяется принципом Франка — Кондона при электронных переходах расстоя- [c.66]


Смотреть страницы где упоминается термин Электронно-колебательное, колебательно-вращательное н электронно-колебательно-вращательное взаимодействия: [c.143]    [c.200]    [c.143]    [c.207]    [c.41]    [c.137]    [c.102]    [c.491]    [c.667]    [c.569]    [c.169]    [c.232]    [c.3]    [c.447]    [c.137]    [c.83]    [c.138]    [c.51]    [c.53]    [c.560]   
Смотреть главы в:

Квантовая химия -> Электронно-колебательное, колебательно-вращательное н электронно-колебательно-вращательное взаимодействия




ПОИСК





Смотрите так же термины и статьи:

Колебательно-Вращательное взаимодействие

Электронно-колебательно-вращательное

Электронно-колебательно-вращательное взаимодействие



© 2025 chem21.info Реклама на сайте