Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Алкены присоединения алканов

    Прямое галогенирование алканов было уже рассмотрено. Оно приводит к галогенопроизводным, содержащим от одного до предельного числа атомов С1 и Вг. У алкенов и алкинов первоначально происходит присоединение СЬ и Вг2 по тс-связям, а затем может проходить дальнейшее галогенирование  [c.412]

    Для выяснения конкурентных отношений между этими реакциями недостаточно знания скоростей прямых реакций, необходимо также знать положение равновесия в этих реакциях. Располагая величинами констант равновесия реакций соединения радикалов с молекулами алкенов, реакций замещения радикалов с молекулами алканов и алкенов, а также реакций диссоциации молекул на радикалы (мономолекулярным или бимолекулярным путем), можно выяснить, являются ли равновесия при некоторых из этих реакций в условиях крекинга причиной замедления реакций распада алканов, описанного в предыдущей главе. Так, например, реакции присоединения атомов Н к молекулам пропилена или изобутилена могут вызывать торможение цепного распада вследствие меньшей активности вторичных пропильных и третичных изобутильных радикалов в том лишь случае, когда эти радикалы обладают устойчивостью в условиях крекинга алканов, т. е. при значительном размере обратимой реакции образования их. Точно так же и реакции замещения Н и СНз-радикалов с молекулами алкенов, несмотря на возникновение в результате этих реакций менее активных радикалов, не смогут явиться серьезной помехой для развития цепей крекинга, если равновесия в этих реакциях в условиях крекинга сильно смещены в сторону исходных продуктов. [c.246]


    Присоединение алканов и алкенов. г идро-алкил-присоединение [c.195]

    Как отмечалось выше, реакциями присоединения можно объяснить менее половины общего числа продуктов реакции. Из многочисленных наблюдавшихся побочных реакций многие могут быть объяснены с позиций теории радикального механизма, если принять, что суммарная реакция слагается из цепных реакций разложения алканов, цепного алкилирования алканов алкенами и цепной автоконденсации алкенов. Образование димера и тримера пропилена, несомненно, является результатом побочной реакции автоконденсации, которая сравнительно часто наблюдается при реакциях, протекающих по радикальному механизму. Иа других побочных реакций может протекать разложение гептильных радикалов, ведущее к образованию разнообразных продуктов, например пентана, бутилена, гексана и пропана  [c.129]

    Сущность процесса. В технологии переработки нефти ал кил и-рованием называется процесс присоединения алкенов к алканам или ароматическим углеводородам. Технологический процесс алкилирования алканов существенно отличается от процесса алкилирования ароматических углеводородов. Первый процесс имеет большее распространение, чем второй. [c.279]

    Как известно, окислением называют реакции, связанные с потерей атомом (или молекулой) электронов. Достаточно легко установить происходящие при этом изменения в состоянии окисления реагирующих партнеров для чисто ионных реакций. Однако для превращений ковалентных органических соединений понятия окисление или восстановление далеко не всегда кажутся столь же очевидными. Действительно, если речь идет об окислении первичного спирта в карбоновую кислоту (или обратном процессе), об окислении алкенов в эпоксиды или их превращении в алканы, то ясно, что это все — типичные окислительно-восстановительные реакции. Но уже классификация в тех же терминах таких реакций присоединения по двойной связи, как гидратация или бромирование, и обратных им реакций элиминирования не кажется столь же определенной. Тем не менее и по отношению к подобного рода реакциям можно уверенно использовать понятия окисления и восстановления, если опираться на определенные формальные критерии и принять за начало отсчета степень окисления углерода в алканах (уровень окисления 0). [c.132]

    Величины стерических факторов различных радикальных реакций присоединения и замещения Н и СНз-радикалов с молекулами алкенов й алканов и их эффективные значения, получающиеся путем умножения вычисленных значений зт ка число равноценных атомов водорода в молекуле, с которыми может идти реакция замещения (или атомов С в случае реакций присоединения), рассчитанные по формуле-(120) на основании данных табл. 36, даны в табл. 37. [c.194]


    В результате присоединения Н2 к алкену образуется алкан. Эта реакция, называемая гидрированием, не протекает при обычных температурах и давлениях. Одной из причин низкой реакционной способности водорода по отношению к алкенам является большая энергия связи Н2. Для проведения реакции гидрирования необходим катализатор, способствующий разрыву связи Н—Н. Чаще всего в реакции гидрирования применяются гетерогенные катализаторы-тонкоизмельченные металлы, на поверхности которых происходит адсорбция Н2. Действие таких гетерогенных катализаторов в реакции Н2 с алкенами подробно описано в разд. 13.6. Молекулярный водород также реагирует в присутствии катализаторов с алкинами, образуя с ними алканы, например  [c.423]

    Известны два важных пути присоединения алканов к олефинам— термический и кислотно-катализируемый [335]. Обе методики приводят главным образом к смесям продуктов, и ни одна из них не пригодна для получения относительно чистых веществ с разумными выходами. Однако обе реакции находят промышленное применение. В термическом методе реагенты нагревают до высоких температур (около 500°С) при высоком давлении (150—300 атм) без катализатора. Например, при взаимодействии пропана и этилена получаются 55,5%, изопентана, 7,3% гексанов, 10,1% гептанов и 7,4%. алкенов [336]. Несомненно, реакция идет по свободнорадикальному механизму, который может быть проиллюстрирован одной из возможных схем взаимодействия пропана и этилена  [c.195]

    В сравнении с алкенами и алканами ацетилен и алкины-1 проявляют относительно высокую кислотность и легко образуют соли с различными металлами. Электрофильное присоединение к ацетиленовой связи неожиданно проходит менее легко, чем к олефиновым связям, в то время как нуклеофильное присоединение идет относительно легко. Ацетиленовые соединения вступают в ряд интересных реакций циклоприсоединения, индуцируемых термическим или фотохимическим путем. [c.262]

    Простейшим случаем является присоединение водорода в реакциях каталитического гидрирования. Катализаторами служат никель, платиновые металлы. С помощью гидрирования осуществляется переход от алкинов к алкенам и затем к алканам  [c.247]

    В основе технологического процесса алкилирования лежит реакция присоединения алкенов к алканам, которая в общем виде может быть представлена уравнением [c.24]

    В полном согласии с этими параметрами электронной структуры находится значительно более высокая реакционная способность алкенов по сравнению с алканами. Пространственная и энергетическая доступность л-МО алкена объясняет его повышенную склонность, прежде всего, к реакциях электрофильного присоединения. [c.68]

    Простейшей из рассматриваемых реакций является гало- генирование алкенов-присоединение брома и хлора по двойной углерод-углеродной связи (иод слишком малоактивен и соответствующие дииодиды неустойчивы реакция с фтором, как и в случае алканов, приводит к разрушению молекулы углеводорода). [c.47]

    Гидратация алкенов (присоединение воды) Вода является слабым электрофилом, и по этой причине ее прямое присоединение к алкенам осуществить не удается Однако в присутствии сильных минеральных кислот в результате гидратации образуются спирты Так получают синтетический этиловый спирт, техническую потребность в котором промышленность удовлетворяет гидратацией этилена, выделяемого из газов крекинга или продуктов пиролиза легких алканов (этана, пропана, бутана) [c.274]

    Хотя реакция алкен + водород-> алкан является термодинамически разрешенной, водород —весьма стабильная молекула, мало чувствительная к поляриза-ции, вследствие чего в отсутствие катализатора реакция водорода с алкеном не наблюдается. Согласованное присоединение оказывается запрещенным также по симметрии. [c.11]

    Галоиды могут вступать в реакции замещения и присоединения по ионному или радикальному механизму, что зависит от природы реагентов и условий реакции. Прямое замещение в алканах и цикло-алканах, присоединение к алкенам и ароматическим углеводородам может протекать по радикальному механизму, а замещение в ароматических углеводородах и присоединение к олефинам в присутствии ионных катализаторов (или в полярных средах) — через ионный. [c.266]

    В монографии рассмотрены применения третьего закона термодинамики и приближенных следствий из него к расчету констант равновесия радикальных реакций присоединения и замещения, рекомбинации и диспропорционирования радикалов, реакций молекулярного диспропорционирования алканов и алкенов и реакций изомеризации радикалов, наряду с параллельным расчетом равновесий этих реакций по кинетическому методу. [c.8]

    Успешное развитие цепей при крекинге алканов связано с -легкостью реакции отрыва радикалами атомов Н от молекул исходного алкана, т. е. с реакцией замещения и пределами протекания этой реакции. Реакция распада сложных радикалов, возникающих при развитии цепи, определяет регенерацию простых радикалов-передатчиков цепи. Реакции присоединения и замещения простых радикалов с молекулами алкенов могут приводить к замене активных радикалов менее активными и, следовательно, к замедлению крекинга. [c.246]


    Вращательно-колебательные теплоемкости этильных, пропильных, бутильных, винильных и аллильных радикалов можно в первом приближении вычислить на основе известных теплоемкостей молекул, близких к радикалам. Возможны два подхода к вычислению вращательно-колебательных теплоемкостей радикалов по теплоемкостям молекул, из которых можно образовать радикалы. Теплоемкость радикалов можно находить как промежуточную величину между теплоемкостями молекул алкена и алкана, из которых данный радикал может быть образован путем присоединения или отнятия атома водорода. При этом на первых порах можно оперировать полуразностью теплоемкостей молекул предельного и непредельного углеводородов, чтобы получить теплоемкость радикала. Можно также теплоемкость алкильных радикалов получать на основании теплоемкости алкана путем вычитания из последней теплоемкости атома Н и вращательно-колебательной теплоемкости, связанной с исчезновением одного валентного и двух деформационных колебаний при разрыве С—Н-связи (следует учесть, что вкладом электронного состояния можно пренебречь). Этот последний способ расчета должен оказаться более верным, так как алкильные радикалы по своему строению ближе к алканам, чем к алкенам. Однако при последнем способе расчета необходимо знать характеристики разрываемой связи С—Н-молекулы, которые не всегда доступны. Поэтому приходится ограничиться более грубым способом вычисления, но достаточным для получения удовлетворительных результатов. [c.251]

    В отличие от алканов этилен и его гомологи проявляют большую реакционную способность, что обусловлено наличием в нх молекулах двойной связи. Алкены способны вступать в реакции присоединения за счет разрыва л-связн. Кроме того, л-связь под действием окислителей разрушается легче, чем а-связь, поэтому для алкенов характерно участие в качестве восстановителей в окислительно-восстановительных реакциях. [c.318]

    Углеводороды, содержащие в составе молекулы двойную связь, отличаются от алканов повышенной реакционной способностью. Их окисление в условиях тропосферы начинается с присоединения радикальных частиц или молекулы озона. Из приведенных ниже констант скоростей реакций [см /(молекула с)] четырех первых представителей гомологического ряда алкенов видно, что скорость присоединения гидроксила возрастает по мере замещения двойной связи алкильными группами при переходе от этилена к дизамещенному 2-бутену она увеличивается почти в десять раз. [c.180]

    Большинство алкенов содержат не только двойную углерод-углеродную связь, но также и алкильные группы, представляющие собой по существу остатки алканов. Кроме реакций присоединения, характерных для двойной углерод-углеродной связи, алкены могут подвергаться свободнорадикальному замещению, характерному для алканов. Наиболее важные реакции присоединения и замещения приведены ниже и подробно обсуждаются в следующих разделах. [c.173]

    В реакциях замещения алканов (разд. 4.23) ориентация зависит от характера замещаемого атома водорода ориентация в реакциях присоединения реагента YZ к алкенам зависит от того, к какому углеродному атому двойной связи присоединяется Y и к какому — Z. [c.181]

    Реакции замещения алкенов протекают по такому же механизму, как и для алканов. Алкильные группы влияют на реакционную способность двойной связи в реакциях присоединения, однако и двойная связь влияет на реакционную способность алкильных групп в реакциях замещения. [c.201]

    Алкены характеризуются ввиду наличия двойной связи высокой реакционной способностью в реакциях присоединения, но повышенной, по сравнению с алканами, термостойкостью в отношении реакций распада. Этилен из алкенов наиболее устойчивый. Он всегда содержится в продуктах термолиза нефтяного сырья как первичный и вторичный продукт их превращений. По термической стабильности он занимает промежуточное положение между метаном и этаном. Термический распад этилена заметно начинается при температуре 660 °С. При 400 - 600°С в основном протекает его полимеризация  [c.359]

    Процесс алкилирования проводится с целью получения смеси жидких изоалканов, добавляемых к бензинам для повышения их октанового числа. В основе алкилирования лежит реакция присоединения алкенов к алканам  [c.202]

    Каталитическое гидрирование. Присоединение водорода к алкенам или циклоалкенам приводит к алканам или соответственно циклоалканам. В присутствии специальных платиновых и палладиевых катализаторов эта реакция в большинстве случаев протекает уже при нормальных условиях. В промышленности используют менее активные катализаторы, и поэтому работают при повышенных температурах (200—300 ""С) и при высоком давлении. [c.225]

    Из смесей диазометана с алканами образуются одинаковые продукты внедрения по С—Н-связям как ари пиролизе, так и при фотолизе. Аналогичное явление наблюдается в случае алкенов с той лишь разницей, что при этом образуются продукты как внедрения, так и присоединения (см. разд. 2.4). [c.430]

    С2-СИНТ0НЫ на основе ацетилена. Как известно, ацетилен, благодаря кислотному характеру протонов, способен давать соли (ацетилениды) под действием сильных оснований. Моноацетилениды НС=С М+ (М = металл) в реакциях с электрофилами (Е ) образуют монозамещенные производные ацетилена НС=С-Е. Последние, в свою очередь, также способны давать ацетилениды, реакции которьгх с другими электрофилами (Е ) будут приводить к соединениям типа Е —С=С—Е. Следовательно, ацетилен может рассматриваться как реагент, эквивалентный и синтону НС С , и синтону С=С . Далее, если учесть возможности трансформаций ацетиленового фрагмента (например, гидрирование до алкенов или алканов, гидратацию по Кучерову, а также и ряд других реакций присоединения), то становится очевидной эквивалентность ацетилена синтонам -С2 и 2-С2 как насыщенным, так и с самой разнообразной функциональностью Сг-фрагмента. [c.198]

    Взаимодействие активированного алюминия, водорода и высокомолекулярных алкенов (получаемых крекингом соответствующих сырьевых фракций) приводит к образованию высокомолекулярных алюминийтриалкилов. Из этих алюминийтриалкилов окислением воздухом можно получить производные три-алкоксиалюминия непрореагировавший алкен и алкан удаляют перегонкой. Алкоксиды алюминия гидролитическим разложением водой превращают в первичные спирты. Этот процесс открывает возможность экономичного производства первичных спиртов из алкенов, главным образом в результате реакции присоединения воды по месту двойной связи, протекающей вопреки правилу Марковникова [131, 132]. [c.273]

    Во второй части четвертой главы рассмотрены термодинамика и кинетика элементарных реакций присоединения и замещения радикалов с простейщими непредельными и предельными углеводородами, а также реакций рекомбинации и диспропорционирования радикалов и молекул алканов и алкенов и реакций изомеризации радикалов. Эти реакции играют важную роль не только в термическом радикально-цеп-ном крекинге и пиролизе, но и во многих других цепных реакциях органических веществ, протекающих в газовой фазе. Рассмотренные реакции относятся к основным реакциям химии радикалов вообще, а решаемые вопросы — к проблеме реакционной способности частиц в радикальных реакциях. [c.11]

    В алкенах имеется относительно малопрочная я-связь, поэтому их реакционная способность гораздо выше, чем у алканов. Для алкенов характерны реакции, П1юходящие с разрывом я-связи, — реакции присоединения и окисления  [c.41]

    Алкины присоединяют водород в присутствии металлических катализаторов (например, Р1, Р(1), образуя алканы. Промежуточный алкен трудно выделить из-за его быстрого превращения в алкан. Однако, применяя катализатор Липдлара (Ри, РЬО и СаСОд), восстановление можно остановить на стадии алкена, когда присоединился только 1 моль водорода. В данном случае имеет место г ис-присоединение водорода к тройной связи  [c.373]

    Мы сохранили основное построение первого издания по классам с разделением на алифатические и ароматические соединения. Такое построение представляется рациональным, поскольку оно дает возможность студенту познакомиться поочередно с каждым типом структур. Кроме того, оно логично, поскольку зависимость свойств вещества от его строения, а следовательно, от принадлежности к определенному классу, является основой органической химии. Так, при изучении алканов студент естественно знакомится с реакциями свободнорадикалького замещения, при изучении алкенов — с реакциями электрофильного и свободнорадикального присоединения, при изучении ареиоБ — с реакциями электрофильного замещения в ароматическом ряду. [c.7]

    В органической химии вносится качественно новый материал и в понятия о механизмах реакций [26, 28]. Впервые дается представление о свободнорадикальном механизме реакций замещения и полимеризации и ионном механизме реакций присоединения. Свободнорадикальный механизм рассматривают на примере реакций замещения (галогенирова-ние алканов), присоединения (полимеризация), отщепления (крекинг углеводородов). В неорганической химии этот механизм не разбирают (цепные реакции исключены из программы). Расширяется понятие о ионном механизме химической реакции приводятся примеры присоединения неорганических веществ к алкенам (симметричным и несимметричным), реакций замещения при гидролизе галогеналкилов. [c.279]

    Реакции алкенов, не сопровождающиеся разрывом двойной углерод-углеродной связи, менее распространены, чем реакции присоединения. Чаще всего они протекают таким образом, что гомолитически разрывается С—Н-связь, образованная атомом углерода, соседним с винильной группой. В простейшем случае, когда алкеном является пропен, в результате такого разрыва, который, как оказалось, требует существенно меньшей затраты знергии (323 кДж/моль), чем разрыв С—Н-связи при третичном атоме углерода (384-кДж/моль) в алканах, образуется аллильный радикал  [c.69]

    Ранее уже обсуждались промышленные и лабораторные методы получения спиртов окислением алканов (см. разд. 1.1.3), реакциями электрофильного присоединения к алкенам и их гидробо-рирования с последующим окислением (см. разд. 1.2.3.1), гидролизом галогенпроизводных (см. разд. 2.1.2). В дальнейшем будут рассмотрены также многие другие пути синтеза спиртов. [c.169]


Смотреть страницы где упоминается термин Алкены присоединения алканов: [c.198]    [c.286]    [c.317]    [c.119]    [c.302]    [c.70]   
Органическая химия (1974) -- [ c.175 , c.194 ]




ПОИСК





Смотрите так же термины и статьи:

Алканы

Алканы и алкены

Алкены

Химические свойства алкенов Реакции присоединения (водорода, галогенов, галогенводородов, воды, алканов, формальдегида), правило Марковникова Реакции полимеризации, окисления, озонирования, замещения Оксосинтез, изомеризация



© 2025 chem21.info Реклама на сайте