Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Работа Лг2 41. Ванадий

    При глубоком обессоливании нефти достигается почти полное удаление мышьяка (отравляющего катализатор и снижающего время его работы), ванадия и других вредных соединений. [c.42]

    Продолжаются работы в области разработки катализаторов для глубокого гидрообессеривания мазута (до содержания серы в продукте 0,3-0, %) при переработке сырья с более высоким содержанием металлов (более 90 10" % ванадия и никеля). Разработанные катализаторы прошли промышленную проверку при гидрообессеривании остатков кувейтской нефти (3,9—4,5% серы) [88]. [c.111]


    В работе [S2] показано, что зона максимального накопления ванадия лежит на гл иие 300-400 мкм от наружной поверхности гранулы катализатора, имеющего средний диаметр пор 11,5 нм, а в катализаторе со средним диаметром пор 7,65 нм в пределах 150-200 мкм. Длительность работы первого образца составила 285, а второго - 179 сут. Распределение никеля в зерне катализатора как и по высоте слоя, значительно равномернее (рис. 330). [c.123]

    Поскольку деасфальтизаты содержат повышенное количество металлов по сравнению с соляровыми дистиллятами, то во избежание порчи больших масс катализатора накапливающимися примесями железа, никеля, ванадия и т. д. переработку такого сырья на некоторых заводах сосредоточивают на одной установке каталитического крекинга и разбавляют его прямогонными фракциями. При переработке деасфальтизатов, как и других нестойких в условиях процесса крекинга высокомолекулярных видов сырья, необходимо весьма тщательно контролировать и регулировать работу реактора во избежание быстрого и чрезмерного коксоотложения на катализаторе. [c.215]

    Другим новым направлением является синтез чередующихся или альтернантных полимеров. Работами Фурукавы [9] было установлено, что системы, содержащие алюминийорганические соединения и галогениды ванадия, в присутствии некоторых кислородсодержащих компонентов при пониженных температурах полимеризации, приводят к образованию сополимеров со строгим чередованием звеньев исходных мономеров. Наибольший технический интерес представляют альтернантные сополимеры на основе Бутадиена и пропилена. [c.13]

    Присутствие металлов в самих катализаторах также приводит к снижению активности и влияет на его избирательность. Дезактивация катализатора происходит вследствие уменьшения удельной поверхности и потери активности на единицу удельной поверхности. Металлы попадают на катализатор в виде увлеченных сырьем солей, вместе с парами или в виде растворенных соединений в жидкой среде, поступающей на катализатор. Содержание металлов на катализаторе даже в ничтожных количествах (0,007%) ухудшает его селективность и снижает выход бензина. Допустимые нормы содержания металлов в сырье для установок с движущимся слоем шарикового катализатора выше, чем для установок с псевдоожиженным слоем, так как при работе первых поверхность шариков истирается и основная масса металлов выводится из системы с катализаторной пылью. Для установок с псевдоожиженным слоем отложения металлов на катализаторе, например никеля в количестве 0,01% и ванадия 0,003%-, [c.21]


    Агрессивность УгОз проявляется только тогда, когда этот оксид находится в жидком состоянии. Скорость ванадиевой коррозии возрастает с ростом температуры и при наличии в газовой фазе серного и сернистого ангидридов, а также сульфата натрия. Имеется обширная информация зарубежных фирм об аналогичных коррозионных разрушениях печных деталей установок платформинга, каталитического крекинга и других, где в качестве топлива применяется мазут, содержащий 100 млн. ванадия, 2000 млн. натрия и 35% серы. В этих печах настенные опоры для труб вышли из строя после 14 месяцев работы. [c.175]

    В работах [14, 15] описывается применение катализаторов из корунда, пропитанного расплавом пятиокиси ванадия или смеси пятиокиси ванадия с трехокисью молибдена, соответственно для окисления нафталина и о-ксилола во фталевый ангидрид и бензола в малеиновый ангидрид. [c.183]

    Накопленные к настоящему времени сведения позволяют лишь в самом общем виде систематизировать типы связей элементов с нефтяными соединениями. Материалы оригинальных работ очень редко содержат сколько-нибудь убедительные доказательства химической структуры микроэлементных соединений. Зачастую такого рода сведения базируются на аналогиях с известными классами синтетических соединений того или иного элемента, а выводы авторов о структуре нефтяных соединений носят характер предположений. До сих пор достоверно не выяснена точная химическая структура ни одного содержащего микроэлемент нефтяного вещества, за исключением порфириновых комплексов ванадил а и никеля. Заключение о типе микроэлементного соединения [c.161]

    При переработке остаточного сырья с высоким содержанием тяжелых металлов для поддержания необходимого уровня равновесной активности катализатора требуется резко увеличить расход свежего катализатора по сравнению с обычным дистиллятным сырьем (см. табл. V. 5). Хотя при современном уровне цен на сырье стоимость катализатора не играет столь большой роли в экономике процесса, как раньше, чрезмерно высокий расход свежего катализатора обычно приводит к тому, что работа установок ККФ становится нерентабельной. Полагают, что благоприятное остаточное сырье — мазуты с содержанием ванадия до 5 мг / кг и коксуемостью по Конрадсону ниже 5% (масс.) —можно перерабатывать на обычных установках ККФ- При этом расход свежего катализатора увеличивается в допустимых пределах. [c.107]

    При глубоком обессоливании нефти (до содержания хлоридов менее 5 мг/л) практически полностью удаляются соединения мышьяка, попадающие в бензиновую фракцию и являющиеся сильнейшим ядом для платинового катализатора, используемого в процессе каталитического риформинга. Содержание ванадия в золе нефти после глубокого обессоливания уменьшается в 2 раза, почти полностью удаляются железо, кальций, натрий. На современных нефтеперерабатывающих зарубежных заводах содержание хлоридов снижают до 1—2 мг/л, что обеспечивает бесперебойную работу установок АВТ в течение двух и более лет. [c.7]

    Повышенное содержание окислов ванадия в золе сернистого нефтяного кокса привело к увеличению содержания его в выпускаемом металле до 0,02%, что в 8—10 раз больше, чем при работе на обычной массе. [c.242]

    На надежную работу трубчатых печей (особенно это касается износа решеток конвекционных пакетов) оказывает влияние ка-ество топлива, применяемого для сжигания. На некоторых трубчатых печах установок значительному коррозионному износу подвергались усиления крепления радиантных труб, решетки конвекционных пакетов. Как выяснилось, причиной коррозии является повышенное содержание серы и ванадия в топливном мазуте (391. [c.216]

    Ион металла при этом восстанавливается в одну из низших валентных форм. В результате совместного действия кислорода и углеводорода ионы металлов часто находятся в разных валентных состояниях, что в среднем соответствует некоторой дробной величине. Так, ион ванадия при окислении нафталина воздухом имеет среднюю валентность 4,3 вместо 5 в УгОб. Очевидно, что состояние иона металла определяется окислительно-восстановительными свойствами среды и зависит от соотношения кислорода и углеводорода, от наличия водяных паров и т. д. При этом в начальный период работы катализатор постепенно формируется в состояние, стабильное для данных условий синтеза, а варьирование условий может изменить его активность и селективность. [c.412]

    Отравление металлами и другими неорганическими ядами. Никель и ванадий. Эти два металла чаще всего встречаются в сырых нефтях. Как уже говорилось в разд. II, они содержатся главным образом в порфириновых соединениях и сконцентрированы во фракциях остаточных масел. Несмотря на то что никель и ванадий являются ядами катализаторов гидрообработки, сырье с высоким содержанием этих металлов приходится обрабатывать для гидрообессеривания или предварительного облагораживания перед дальнейшими стадиями. За последнее время опубликовано много работ, посвященных этой теме [10, 12, 18, 19]. Массовая концентрация никеля и ванадия в остатках атмосферной перегонки составляет 5—200 млн , а в остатках вакуумной перегонки — примерно вдвое выше. От- [c.116]


    К числу других советских катализаторов относится ИК-1, получаемый пропиткой тонкоизмельченного носителя раствором смеси сульфата ванадия и бисульфата калия. Используется также высокотемпературный катализатор ИК-2, низкотемпературный ИК-3, термостойкий ТС и катализатор для работы в кипящем слое КС. В табл. 4 сопоставлены описанные в литературе свойства советских катализаторов. [c.254]

    Основной задачей дальнейшего усовершенствования катализаторов является повышение их избирательности и производительности. Для улучшения показателей работы ванадий-калий-сульфпт-ного катализатора предлагается вводить в него различные добав- [c.50]

    Металлы, содержащиеся в сырье, при гидрировании почти полностью отлагаются на катализатореТак, в начальный период работы ванадий удаляется на 99,9%, но со временем степень удаления снижается до 98— 99%. В начале работы никель удаляется на 98%, а через месяц работы только на 93%. [c.27]

    В связи с продолжающимся укрупнением и комбинированием технологических установок и широким применением каталитичес — сих процессов требования к содержанию хлоридов металлов в тефтях, поступающих на переработку, неуклонно повышаются. При л ижении содержания хлоридов до 5 мг/л из нефти почти полностью /даляются такие металлы, как железо, кальций, магний, натрий и соединения мышьяка, а содержание ванадия снижается более чем в, 2 раза, что исключительно важно с точки зре1тия качества реактивных и газотурбинных топлив, нефтяных коксов и других нефтепродуктов. На НПЗ США еще с 60-х годов обеспечивается глубокое обессоливание нефти до содержания хлоридов менее 1 мг/л и тем самым бесперебойная работа установок прямой перегонки нефти в ечение двух и более лет, На современных отечественных НПЗ считается вполне достаточным обессоливание нефтей до содержа — тя хлоридов 3 — 5 мг/л и воды до 0,1 % масс. [c.146]

    Весьма инетересное применение метода ГПХ нашли авторы работы [32], которые оценили, как исключаются асфальтены из пор катализатора, применяемого при каталитическом гидрообессеривании остатков. Образец катализатора с известным распределением по размерам пор, погружают в нефтяной остаток с известным содержанием асфальтенов. Объем взятой навески остатка в 3 раза превышает общий объем пор взятой навески катализатора. Катализатор с остатком вьщерживают в автоклаве при постоянной температуре в течение 4 ч до установления равновесия, перемешивая каждые 1,5 ч. Для исключения возможности окисления воздухом свободное пространство автоклава заполняется азотом. После достижения равновесия жидкость, не проникшая в поры катализатора (наружная), сливают через сетку и анализируют методом ГПХ с получением распределения по размерам молекул и частиц и определением содержания металлов (ванадия, никеля). Жидкость, проникшая в поры катализатора (внутренняя), экстрагируется из катализатора последовательно бензолом и смесью метанола и бензола (1 1). После отгонки растворителя, оставшуюся жидкость анализируют так же, как и наружную часть остатка. [c.38]

    В отличие от кокса,содержание металлов на катализаторе увеличивается пропорционально времени работы катализатора и степени удаления серы. Как было сказано выше, основными металлами, определяющими дезактивацию катализатора при гидрообессеривании остаточного сырья, является ванадий и никель. На фоне этих металлов вклад в дезактивацию катализатора натрия, железа и других четко не выявлен. Однако после окислительной регенерации активность катализатора заметно ниже, если на нем присутствует натрий (рис. 3.14) [102]. Повышение содержания его на каталюаторе усиливает отравляющее действие ванадия и никеля. Введение натрия в катализатор в виде хлорида практически не влияет на активность катализатора. Активность его неэначительно снижается после окислительной регенерации. В то же время активность катализатора после регенерации резко снижается при совместном присутствии в нем ванадия и натрия (табл. 3.8). [c.118]

    Известны работы [52, 103,104,105], в которых изучалось распределение углерода по грануле закоксованиого катализатора. Так [105], было показано, что в зоне накопления металлов (ванадия, никеля) содержание углерода минимальное. По данным [52] углерод равномерно распределяется по зерну катализатора. По данным [103] при гидрогениза-циоииой переработке остатков кокс отлагается преимущественно в зоне наружного слоя гранулы катализатора. Такие несогласующиеся результаты могут быть объяснены различием свойств используемых катализаторов и перерабатываемого сырья, длительностью проведенного эксперимента. [c.122]

    Выше указывалось, что в зависимости от перерабатываемого сырья, условий его переработки, характеристики и длительности работы катализатора может накопиться много отложейий. Масса отложений может превышать массу исходного катализатора. Состоят эти отложения в основном из углерода, ванадия, никеля, серы меньше содержится водорода, железа, натрия, кальция (табл. 3.12). Из данных таблицы можно заключить, что уровень содержания углерода определяется, в первую очередь, режимом процесса (пониженным давлением, см. п. 9 и 10), характеристикой сырья и длительности провеса (см. п. 12—14). Содержание металлов (ванадия, никеля) определяется главным образом содержанием их в перерабатываемом сырье и длительностью пробега. Содержание серы пропорционально содержанию металлов (рис. 3.46). [c.145]

    При переработке мазутов нефтей месторождения Гач-Саран, Хафджи, Кувейта и Западного Техаса [98] (длительности работы 220 сут) на катализаторе в слое на выходе сырья накоплено 150 г отложений на 100 г свежего катализатора (табл. 3.13), их большую часть отложений составляют металлы и сера. Приводится [10] состав отложений на катализаторе, проработавшем в промышленных условиях 27 мес, при переработке мазута различных нефтей (табл. 3.14). Показано, как снизилась активность катализатора и особенно в первых реакторах по ходу сырья. Катализатор в этих реакторах характеризуется большим содержанием отложений (46,7%), более 50% которых составляет ванадий в последующих реакторах количество отложений меньше. Однако не приводятся данные по содержанию серы, хотя этот элемент обяза-. [c.145]

    В своей ранней работе по дегидроциклизацпи парафинов Гроссе, Моррель и Маттокс [15] исследовали применение катализаторов окись хрома на окиси алюминия, а также смеси окисей хрома, ванадия и молибдена на окиси алюминия. Было установлено, что катализаторы, осан ден-ные на пористом носителе, действуют значительно дольше вследствие большей механической прочности при регенерации. [c.168]

    Кинетика реакции на катализаторе из пятиокиси ванадия всесторонне изучалась. Эклунд провел обширную экспериментальную работу и предложил уравнение скорости  [c.327]

    Фталевый ангидрид получают при окислении воздухом о-ксилола или нафталина. В первом случаев качестве катализатора применяют пятиокись ванадия при температуре 482—621 °С и времени контактирования 0,1—0,15 сек. Новые катализаторы для окисления нафталина содержат 10% УзОз, от 20 до 30% Ка504, остальное—кремнезем. Обычная установка с неподвижным слоем работает при температуре 340—375 °С и избыточном давлении 0,5 ат время контактирования 4,2 сек, объемная скорость 0,07 катализатора. Установка с кипящим слоем ра- [c.333]

    На рис. 54 показаны зависимости содержания смол сернокислотных и си-ликагелевых, а также коксуемости нефти от содержания серы [124, 125] (при рассмотрении этих зависимостей нужно учитывать возможность отклонения фактических данных для конкретных нефтей от усредненных). Как видно, одновременно с увеличением содержания серы в нефти возрастают коксуемость и содержание смол. Увеличение содержания асфальтенов и смол, сопутствующее повышению сернистости нефти, показано и в работе [126] (рис. 55). В этой же работе показано, что нефти с более высоким содержанием серы характеризуются и более высоким содержанием ванадия и никеля (рис. 56), азота и значениями вязкости, плотности (рис. 57). Последнее отмечается также в других работах [127, 129]. Взаимосвязь содержания серы, ванадия и смолистых веществ объясняется [ГЗО] способностью находящегося в нефти ванадия восстанавливать сульфаты, присутствующие в пластовых водах, до сероводорода и серы и тем самым вызывать окисление нефти за счет кислорода сульфатов. [c.91]

    В среднем выход малосернистого кокса увеличивается с 17—20% (масс.) при коксовании гудронов выше 500 °С до 25—27% при коксовании сырья, подготовленного по схеме переокисление части мазута (20—30%) до температуры размягчения 60—70°С, смешение с неокисленной частью (70—80%), вакуумная перегонка смеси мазутов с получением остатка выше 500 °С, Содержание некоторых нежелательных примесей в коксе уменьшается, вероятно, в результате вовлечения в процесс коксообразования дополнительного количества легких компонентов с меньшим содержанием гетероатомов. Так, установлено снижение содержания ванадия в коксе при включении в подготовку сырья коксования стадии окисления с 55 до 45 млн (для украинской нефти). Ранее также отмечалось, что предварительное окисление позволяет снизить содержание ванадия ц никеля примерно на 50% [166]. Есть также сведения, что предварительное окисление снижает содержание серы в коксе [166, 181], но в работе [173] изменения содержания серы в коксе не наблюдалось, следовательно, необходимы дополнительные исследования. [c.121]

    Еще Вертело пытался ускорить реакцию между этиленом и серной кислотой, применяя в качестве катализаторов соли ртути. Фритцше [38] считал, что этилсерная кислота сама по себе достаточно акти1 ный катализатор. Это было подтверждено в работе [39]. В дальнейшем были изучены многие катализаторы [40, 41], причем наиболее эффективными оказались соли серебра, железа, меди и окислов ванадия. Действие солей в болынинстве случаев не зависит от аниона, но поскольку мы имеем дело с серной кислотой, рекомендуе -ся употреблять сульфаты (несколько отличаются друг от друга по действию соли одно- и двухвалентной меди). Иногда специфичность действия приписывается аммиачным солям [42] и циановым комплексам металлов [43], но, по нашему мнению, главная роль во всяком молекулярном комплексе принадлежит металлу (например, железу в соли Мора и ферроциановых соединениях). Различие может заключаться лишь в неодинаковом физическом состоянии катализатора в серной кислоте и в последующем изменении состояния с превращением части молекул серной кислоты в молекулы этилсерной кислоты или с введением влаги в серную кислоту. Сравнение действия различных катализаторов может привести к одним и тем же выводам кривые относительной интенсивности действия в ряду каталитических добавок приблизительно одного порядка. Абсолютные значения каталитического действия здесь не важны, поскольку они зависят от условий эксперимента. [c.22]

    На примере окисления углеводородов на гетерогенных окисных катализаторах было установлено, что в жидкофазном процессе в ряде случаев образуются иные продукты, чем в газофазном с той же исходной системой [77, 78]. Продукты реакции при этом приближаются к продуктам реакции жидкофазного цепного окисления с гомогенными катализаторами из растворимых солей металлов переменной валентности. Так, о-ксилол в газовой фазе окисляется на пятиокиси ванадия во фталевый ангидрид, а в жидкой — в о-толуи-ловую кислоту, которая получается при окислении о-ксилола в жидкой фазе и с солями кобальта и марганца. В некоторых работах роль поверхности окисных катализаторов при жидкофазном окислении углеводородов сводят только к генерированию радикалов для ценного процесса, протекающего в объеме [79, 80]. Однако исследования [c.42]

    Чувствительность катализаторов к воздействию высоких температур связана с рядом различных явлений. Прежде всего повышение температуры размораживает дефекты решетки катализаторов (как полупроводниковых, так и металлических), приближая систему к равновесию. Такое изменение дефектного состояния решетки неизбежно приводит к изменению активности катализатора в большинстве случаев к ее понижению [47 ]. Далее, повышение температуры и приближение ее к температуре плавления материала вызывает значительное ускорение самодиффузии в твердом веществе и, как следствие этого, — яв.чение спекания, приводящее к уменьшению поверхности катализатора. Как указывалось ранее, это во многих случаях приводит к понижению активности катализатора. Примеров такого рода явлений описано очень много можно указать на работу Борескова с сотрудниками но катализатору парофазного гидролиза хлорбензола [48 ] и работу Битенаж по алюмосиликатным катализаторам [49]. Еще одним следствием повышения температуры может быть превращение каталитически активных соединений в неактивные. Например, при температуре выше 500° С в смешанном катализаторе окисления нафталина во фталевый ангидрид происходит взаимодействие сульфата калия с сульфатом ванадия и образуется каталитически неактивный ванадат калия. Кро е указанных явлений, при высоких температурах может происходить растрескивание или расплавление всей массы катализатора, или носителя. [c.199]

    Производство ванадиевых катализаторов основано на получении порошкообразного силикагеля п]утем осаждения его из жидкого стекла, разбавленного серной кислотой. Сухой силикагель смешивают с ванадиевым ш елоком, состоящим из пятиокиси ванадия и щелочи. Полученную смесь прессуют в таблетмашине с получением колец или гранул, затем сушат в ленточной сушилке и досушивают, прокаливают и охлаждают. Для этого применяют шахтные печи. Эти печи дают высокую равномерность прогрева катализатора при незначительных потерях из-за разрушения или истирания они сравнительно просты и надежны в работе. [c.199]

    Несмотря на то, что основная масса соединений, содержащих металлы, переходит в тяжелые остаточные фракции нефти, некоторые из них, обладая летучестью, попадают и в дистиллятные фракции. Так, содержание ванадия в вакуумном газойле восточных нефтей в зависимости от природы нефти составляет (0,06— 0,1)Х10- %, а никеля (0,3—0,6)ХЮ- %. В мазуте и полумазуте содержание металлов резко увеличивается, достигая соответственно 0,005—0,012 и 0,003—0,004%, [48]. Все эти металлпроиз-водные, даже находясь в масле в очень незначительных количествах, могут катализировать их окисление в процессе работы и поэтому нежелательны. В процессах переработки нефтей (при перегонке, получении кокса, во вторичных процессах), при использовании топлив в двигателях или в котлах наличие металлов также крайне нежелательно. Продукты сгорания топлив, содержащих металлы (особенно окислы ванадия), резко увеличивают коррозию оборудования лопаток газовых турбин, хвостовых поверхностей котлоагрегатов и т. п. [c.39]

    Разработан катализатор, устойчивый в условиях гидроочистки остатков. При очистке до 1 % серы он работает 1500 ч. При 300 кгс/см срок службы увели-чиваетаяв 2—3 раза. Регенерация его, однако, затруднена, так как он адсорбирует из сырья до 1—3% никеля и 1,5—5,0% ванадия. Рекомендуется для переработки деасфальтизатов [c.83]

    Использование мазутов, в которых обьЛно концентрируется основная часть микроэлементов, в качестве котельных топлив приводит к загрязнению окружающей среды значительными количествами активных окислов. Например, количество У.,Од, выбрасываемое ежесуточно с дымом современной электростанции,. измеряется сотнями и даже тысячами килограммов. С другой стороны, золы топочных мазутов могут служить богатыми источниками ценных металлов [867—869]. Так, зола, полученная при сжигании сернистых мазутов, гораздо богаче ванадием, чем большинство промышленных руд. Уже работают установки по извлечению оОз из золы [870] и масштабы этого производства существенно расширяются [871, 872]. [c.159]

    Сёра, ванадий, никель, титан и фосфор входят в состав высокомолекулярных гетероциклических соединений нефти. Выделение их из нефтей, а затем из кокса — наиболее трудная техническая задача. Исследования в этой части пока еще не вышли из стадии поисковых работ. [c.141]

    Неюторые стали в результате длительной работы при тем-ператус1е свыше 450 °С значительно теряют ударную вязкость, сохраняя все другие механические свойства. Это явление называется тепловой хрупкостью и предотвращается легированием стали молибденом, вольфрамом, ванадием. [c.275]

    Наряду с успешной эксплуатацией в период пусконаладочных работ ц дальнейшей эксплуатации печей выявляются отдельные дефекты, неисправности в работе некоторых узлов оборудования, отклонения от норм эксплуатации. Основнылш из них являются 1) дефекты изготавливаемого и поставляемого оборудования (разнотолщиниость стеиок, погнутость, некачественные сварные стыки) 2) наличие в змеевиках грязи, окалины, посторонних предметов 3) некачественный монтаж змеевиков н неудовлетворительное производство футеровочных работ 4) применение топлива с повышенным содержанием серы и ванадия 5) значительные отклонения от технологического режима (низкие кратность циркуляции, температура реакции, качество сырья, работа на нагрузках ниже допустимой и др.) 6) отключение защитных бло-1ровок на прекращение подачи сырья и топлива при остановках циркуляционного компрессора. к [c.216]

    В работе [91] сделано предположение, что хлорорганические соединения нефти представляют собой металлоорганические комплексы типа соединений пиридина и его производных с металлами. Исследованиями во ВНИИНП установлено, что хлорорганические соединения нефти имеют более сложное строение и только часп. их действительно связана с такими металлами, как никель и ванадий. Соединения хлора, связанные с металлами, частично разлагаются при обработке щелочью. Это подтверждено результатами эмиссионного анализа на содержание никеЛя и ванадия. Результаты анализа представлены в табл. 28. [c.121]


Смотреть страницы где упоминается термин Работа Лг2 41. Ванадий: [c.64]    [c.115]    [c.117]    [c.123]    [c.130]    [c.312]    [c.381]    [c.62]    [c.373]   
Смотреть главы в:

Лабораторный практикум по общей химии Издание 2 -> Работа Лг2 41. Ванадий




ПОИСК







© 2025 chem21.info Реклама на сайте